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Abstract

Problems of the flight the success of which is estimated by
meeting constraints for the trajectory parameters at a fixed
moment or throughout the whole flight time are examined.
Results of studies on the methodology development of the
aircraft successful flight probabilily estimation are given.
Numerical solutions of various problems are discussed. Re-
sults obtained by the above methodology are compared with
other analytical and nemerical estimations for model exam-
ples. Solutions of applied problems are presented,

Inéroduction

Problems concerning the estimation of the probability of
large flight parameters deviations from nominal values have
hecome extremely vital during the last decade due to the
introduction of probability normes into the practice of aero-
nautical science and technology.

Two types of problems are examined. A typical example
of the first type problem ("local” problem) is the analysis
of automatic landing process. The major requirement im-
posed by the existing norms on the landing control system
of & civil airplane is that the probability of a grave air ac-
cident at automatic landing may not exceed 10~% + 10~
. The possibility of an air accident is firat of all a fone-
tion of values of flight parameters (vertical speed 1}, . range
L, lateral displacemeni Z from the runway axis etc.) at
the airplane’s touchdown moment on landing (H = 0},
Therefore it is vital to estimate the probability of falling
of these parameters outside the tolerable himits, for exam-
ple PV, (H = 0) < V; yinl

To the second type (problems of "overshootings™) ate re-
ferred problems on the probability estimation of falling of
the flight kinematic parameters outside the tolerable limits
at & finite time interval. For instance for the airplane flying
in the zone of turbulent atmosphere at a time interval [fo, 4]
it is necessary to estimate the probability of the angle-of-
attack falling outside the safe limits, i.e. to estimate

Pla(7) > tmaa): T € [toty]

Both types of these problems are characterized hy small

values of probabilities sought which hinders the use of the
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widely-sptead Monte Carlo techmique for mathematical sim-
ulation: the number of the required realizations N turns out
10 be extremely large reaching some millions end even mil-
liagds.

Linear estimations based on the hypotheses of the Gans-
sian distribuiion of cutput parameters are not always well-
grounded. In reality under extreme conditions, for instance
under the impact of strong wind perturbations, the devia-
tions of airplane's control surface or the rates of the devi-
ations reach the allowable limits and besides some pertur-
bations have a non~Gaussian distribution especially in the
domain of large deviations from averaged values.

At the same tune the small value of the sought-for prob-
abilities simplifies the use of asymptotic estimations for the
calculation of extreme deviations of flight parameters,

Along with probabilistic approaches to the solation of
the poaed problems ”guaranteed” approaches are also used
in practice whenever for the available random perturba-
tions (for example given as a the whole complex of random
parameters) limiting values ase specified and ss predicted
cases most unfavourable combinations of limiting pertur-
bations are considered [1]. Without denying in principle
the "guaranteed” approach the anthors nevertheless believe
that the probabilistic approach is more naturally occurring.

Approximate selution of the local problem

While formulating the first type problem for a finite-
dimensional case it 19 assumed thai the set of random per-
turbations ia reduced to a finite number of independent
Gaussian normalized random parameters 2; (i = 1,n):

ple) = (zx)-?exp(—gch)

=1

The output variable y is a continuous differentiable func-
tion of ¢; ; the excess probability of variable y of value y, is
defined by integral

Ply>pl= [ole) der.. de (1)
a

taken around domain § which is located behind the sur-
face of level y = g . If this probability is too small and
surface y = y, 18 noticeably far from the ongm of coordi-
nates than the primary contribution to the integral value
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is made by the vicinily of surface point C. , the nearest to
the origin of coordinates, since in domain Q function p(c)
dirminishes rapidly as it maves away from point C. . Then
it is naturally to suppose that in substituting the surface of
level ¥ = y. by & plane which is a tangent to the surface in
peint C, (Fig.1) one may roughly estimate the probability
sought [2]:

Ply>wp)x~P=B(R) =

17 (
exp
V2% A

where B =

E Ctn

Eence for the probability estimation in a first approach
(P,) it is sufficient to solve a consirained optimization prob-
fem:

B =miny d (3)

under condition y(c) = Y or an equivalent problem y, =

max ¥ (c) under condition Z = R? where R is a function

of the specified pmbablhh P F(R) =

Figure 1: Location of the level surface in the space of rau-
dom parameters

Solution of such problem may be based on a combination
of stochastic and gradient techniques of optimization. The
input labour augments noticeably with the increase of the
dimensionality of the space of random parameters.

In order to improve on this estimation for non-linear func-
tion y (2) one ghould take into account the surface level cur-
vature, and moreover the most important here is the form
of the surface level in the vicinity of point C. . By rotating
the system of axes C4, ..., C, so that the axis €} is directed
towards point C. we shall write the surface level equation
in the form:

1 f 2 P
G = R+§RZZ%C£C’&+---,
i=2 b=l

where a;; > —1.
Then the improved estimation of the probability sought
is defined by the formula:

Ply >y o= Pr[det (£ +4)]72, (1)

where F is the unit mairix, A is the matrix composed of
elements a;.

The second approach estimation {(4) may cause noticeable
error i certain valnes of a;; are close to -1 or equal to -1
{singular case).

Another estimation improvement technique {2), accept-
able also for singular cases, is associated with the use of
a special modification of the Monte—Carlo technique i.e.
a substantial sampling technique allowing with the use of
spherical coordinates to determine approximately the multi-
dimensional integral (1) [3,4].

For the infinite-dimeneional case a typical problem of the
first type is reduced to the analysis of solutions of a stochas-
tic equation examined in the sense of Stratonovitch [5].

%:f(z,t)+6’(m,t)'f(ﬂ, (5)

where £(t) is the vecior of independent white noises,
fi=z,t) and G(z,t) the vector and matrix function, z {f)
the vector of phase coordinates.

If the initial value z(ty) is fixed and one has io eval-
uale the probability Ple; (T) < 2.), where 2 (f) is the
firat component of vector « (1) then in a first approach by
analogy with the finite-dimensional case the problem is re-
duced to an equivalent variational problem [6.7] concern-
ing determinalion of vector £ (1) giving minimum to value
K= Elﬁ? (¢} under condition z, (T') = z,, where m ia the

=

dimensional representation of the white noise vector.

Then

P[&’](T)(H’,@]NP1=

‘/;_WZexp (-—1‘2:) du  (6)

If the initial conditions for vector x are not fixed but
have a Gaussian digtribuéion then in the equaiion for R* a
quadratic form of values Ax;(#p) is added, characterizin
deviations of components of vector zq from their a\erages
values.

In some cases one succeeds in solving an equivalent varia-
tional problem analytically for example for scalar equation

da
S+ e)=g-£) M

at fp = —oc, f(0) =0, x. > 0 it appears that
g-€=2f(z) atf(z)>0,
g-£=0 at f(x) <O

{for equation

&z

= +?2 + flz)=g-£(t) (8)
4 () > 0 it appears that

g 6—4k§£

at fo = —o0, k> 0, [{0) = O,

From analogy with a finive-dimensional case one may im-
prove the eatimation of the probahlity sought if one con-
siders the second veriation of the functional and uses the
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neighbouring extremals technique [8} , which is equivalent
to formula (4) for the finite-dimensional case:

P, = P, [det (E + A))'*

where matzix A is defined as a solution of ordinary dif-
ferential equations after solution of the variational problem

7).

Automatic landing

The use of the technique described for the calculation of
the automatic landing process of a pasaenger airplane using
a complete model of perturbations was performed in the

foll: v ing way,
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Figure 2: Automatic landing, Variation of wind U, + W,
pitch angle # and vertical speed V, with range L. Minimum
vettical speed at touchdown.

As perturbations two components of a horizontally-
directed systematic wind U, and U7, were considered as well
as the atmospheric turbulence related to them (longitudi-
nal and lateral gusts W, and W, ). In order to describe
random functions defining the atmospheric turbulence by a
finite number of random parameters these functions were
replaced by canonical series [9), for instance

W, (t) = i axen ()
k=1

where o, are normalized independent Ganssian random pa-
rameters, @, (f) are deterministic coordinate functions.
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Figure 3: Automatic landing, miniram range.
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Figure 4: Automatic landing, maximum pitch angle.

This case is close to a singular one since the strongest
impact on the landing accuracy is ottributed to the atmo-
spheric turbulence with root-mean-square velues of gusts
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Figure 5 Automatic landing, minimum pitch angle.

ow proportional to the modulus of systematic wind IV =

72 + 172, Therefore an unconditional probability of vio-
lating specified constraints imposed on kinematic parameter
values at the touchdown was calculated after calculating of
conditional probabilities corresponding to various values of
U, and U, . Fig. 2-6 reveal typical "critical” realization
of the atmospheric turbulence for which extremal values of
different parameters are achieved. The stincture of these
realization is different and is dependent first of all on trans-
fer functions for the closed-loop system “airplane-control
system”.

Methodology of solution of “overshooting”

problems in a stmplified formulation

The problems of second type associated with the estima-
tion of probability of the threshold level crossing by ran-
dom functions at a definite time interval appear to be con-
siderably more complicated than the problems of the first
type. Here one succeeded in getting the necessary estima-
tions only for the cases when the dynamic system excited
by a white noise is similar to the system of the first or of
the second order.

For » dynamic system of the first order of type (7) the
probability sought Plz(r) > 2.], 7 € [0,1] is defined in
terms of solution of the cortesponding Fokker-Plank-Kol-
mogorov equation [3] by the Fourier technique for which it
is necessary to determine the specttum of eigen values g
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Figure 6: Variation of longitudinal and lateral wind, roll
angle ® and lateral displacement Z with range L. Masximum
lateral displacement.

of a one-dimensional boundary problern:

Ple(r)> 2] =1= 5 bpe™
k=0
For sufficiently large values of z, and ¢ this probability is
determined by a simplest formula:

Pla(r) > ) 1 — ™" (9

practicelly regardless of the initiel distribution of variable
z, and value yq is defined by relation [5] :

2 dﬂf =1 )
”"ﬁga[a/m(wl] (10)

where p,(z) is the stationary distribution of vari-
able z. This result relates to a simplest example of a
non-differentiable random function «(t) (the dispersion of
derivative # is infinite, 0; = 00 ).

For the case of a differentiable random function z(t)
(o; < oc) which ia typical for the systems of higher or-
der excited by & white noise at sufficiently large 2. and ¢
the probability sought is as before described by an approxi-
mated formula (9) where value ug is the least eigen value of
a nmlti-dimensional boundary problem for which one can-
Bot succeed in obtaining simple analytical expressions. For
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Gaussian processes it is proved [10] that at 2. — oo the
value moves near N-average number of intersections of func-
tion (t) of level z, {rom inside per a wait of time

pom W= / i (2,5) di (11)
[1]

However in the case of large but finite values of z. the
estimation (11) may turn ouf to be essentially overstated
since it is equivalent to the assumption that the subsequent
level crossings are independent of the previous ones.

The above is illustrated by numerical predictions per-
formed for a dynamic system [11] :

& dz

F+2kdt

for different & > 0, n > 0. The probability of overshooting

+ l;l" -signax = Zﬁf {t) (12)

Pllz ()} > 2.]. T € [0.1]

wag defined &t essential intervals of time ¢.

At n = 1 (a linear system, g, = 1, g; = 1) the largest
number of overshootings is observed for values of & some-
what less then 1; and for large and small values of & the rate
of overshootings is reduced {Fig.7) though the estimation in
this case gives the result independent on k:

o N = %e‘%‘ (13)

where B = =2, (in this case the estimation (11} should

be doubled because intersections of two levels R ia being
fixed).
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Figure 7: Comparison of analytical estimations of parame-
ter g with numerical experiment.

The reason is in the fact that for large k variable z is
the output of the chain of two aperiodic links with highly
different constants of time (2k and ﬁ), excited by the white

noise. Then the role of the link with a small constant of time
appears to be of minor importance, variable x(2) becomes
"close to non-differentiable”, intersections by function z({t)
of any level occur in a *flickering” manneri.e. by series. For
the other limiting case at very small k, intetsections of levels
by function z(z) also occur by series since process z(t) is os-
cillatory and weakly damped and variable 2(1) having once
reached level z, in many crses tepeats these intersections.
As o result of solution of equation (12) at n = 1 for the
case of large k and small } one may make approximation us-
ing solutions of equations of the first order: for the first case
it is eufficient to neglect term %5“5 in the equation (12}, and
for the second case to pass over to an equivalent equation
to change the amplitude of oscillations [5,12]. Then using
the formula similar fo {10) one may obtain estimations

<l

R .
T 14
Sl (14)
- al large &,
n . B
Hom kR e™ 7 {15)
- at small k.

Results of calculations using these formulae are also given
in Fig.7. The set formulae (14), (15} and (13) represents
with a euflicient completenesa "exact” results obtained dur-
ing mamerical predictions. As K increases the hmite of using
formula (13) are extended,

Similar numerical predictions were carried cut for cases
when n = 0 and n = 3 in equation (12). Correspondingly,
for these cases {formulne gimilar to those of (14), (15) and
(13) were obtained [11}.

The results obtained. permit to estimate the probability
of overshootings of angles-of-attack for the airplane with
nou-linear characteristica flying in a turbulent atmozphere
if the transfer function of the closed-loop system ”airplane-
control system” is near the transfer function of a dynamic
system of the first or the second order.

Conclusions

Estimation of a small probability of violating the preset con-
straints for flight parameters (10~% + 10~%) is an extremely
tedions problem of mathematical simulation. For problems
of the first type when parameters are defined at a fixed mo-
ment of time the proposed methodology permitsa to conflne
oneself to calculations of several hundreds realizationz re-
gardless of the value of the probability. For problem of the
second type when parameters are defined at a cerfain in-
tervel of time & methodology is developed that can he used
only in those cases when the system ” airplane-control sys-
tem” ig similar to a dynamic aystem of the first or of the
gecond ordet.

2014




References

[1] Powell R.W . Stone N.W. Analysis of the Space Shultle
Orbiter entry dynamics from Mach 10 to Mach 2.5 with
the November 1976 flight control system. NASA TP-
1667, 1980.

[2} Kugmin V.P., Yeroshevsky V.A. Estimation of the ex-
tremal airplane irajectory parameters deviations on
automatic landing. Uchenye zapiski TsAGI, Vol 16, N
6, 1985 (in russian).

[3] Kozmin V.P., Yaroshevsky V.A. Approximate method
of high airplane trajectory parameters deviations esti-
mation under impact of random perturbations, Tech-
nicheskaya kibernetika, N 2, 1989 {in russian).

[4] Kuzmin V.P. Estimation of probability of the safe
flight under imnpact of perturbations. Uchenye zapiski
TsAGI, Vol 21, N 1, 1990 (in russian).

[5] Stratonoviéch R.L. Topics in the theory of random
noise Vol.1. New York:Gordon and Beach, 1963,

[6] Wentzel A.D., Freidlin M.I. Fluctuations in the dy-
namic systems under impact of small perturbations,
Moscow, Nauka, 1979 (in russian).

[7] Kuzmin V.P., Yaroshevsky V.A. Asymplotic estima-
tions of the ligh stochastic phase coordinates devia-
tions from average values in dynamic systems. Uchenye
gapiski TsAGI, Vol 21, N 3, 1990 (in russian).

[8] Brysou A.E., Ho Yu Chi. Applied theory of optimal
control. Moscow, Mir, 1972 (in russian).

[9] Pugachev V.S. Theory of random functions and its
application fo the problems of automatic countrol.
Moscow, Fizmatgiz, 1962 (in russian).

[10] Cramer H., Leadbetter M. Stationary and related
stochastic processes. New York; John Wiley and sons,
1967,

[11] Kuzmin V.P., Yaroshevsky V.A. Evaluation of ex
tremal flight parameters, Uchenye zapiski TsAGI, to
be published (in russian).

[12] Dimentberg M.F. Nonlinear stochastic problems in me-
chamical oscillations. Moscow, Nauka, 1980 {in rus-
sian).

20156




