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Abstract

The purpose of this paper is to develop an approximate chat-
tering arc for practical maneuver of the shuttle-type space vehi-
cle. Theoretically, in chattering arc of the first kind, the control
chatters between its positive and negative maximum values at an
infinite rate. Thus for shuttle-type vehicle at constant altitude
flight, we can use either bank control or lift control to obtain
theoretical chattering arc with the drag being maximized. This
chattering arc could be useful for minimum-time aerobraking ma-
neuver. In practice, switching of the conirol between its positive
and negative maximum values at an infinite rate is not possible.
The approximate chattering arc developed in this paper has fi-
nite rate of control switching. It has the potential for practical
maneuvers in actual flight. As compared with the theoretical
chattering arc, the effect of the finite rate approximation on the
final conditions is discussed in detail. Particular attention is de-
voted to the effect on the flight range.

Nomenclature

Cp =drag coefficient
Cpo =zgero-lift drag coeflicient
Cr, =lift coeflicient
Ci =C, for maximum lift-to-drag ratio
E* =maximum lift-to-drag ratio
g =gravitational acceleration
H =Hamiltonian
yii =reduced Hamiltonian
K =induced drag factor
l =length of approximate chattering arc
m =vehicle mass
N =number of control switching
Dus P8, Dg, Pyp=adjoint variables

2
(P17P2) ‘(p¢£17§'17 p‘uJE}TA_v)—
(Q1,Q2) =(tano,tan?o)
T =vehicle distance from center of earth
s =dimensionless time
$1,82,83,...=instants at which control switching occurs
S =reference area
t =time
v =dimensionless speed
|4 =vehicle speed
Subseripts
i =initial value
f =final value
maz =maximum value

L. Introduction

The frequent flight of the space shuttle and the developments
of the national aerospace plane (NASP) and personnel launch
system (PLS) indicate that the atmospheric maneuvers in the
moderate dense layer of the atmosphere are becoming more and
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more important. The evidence of the requirement for practical
application such as, for example, the maneuvers for a,tmosphenc
rendezvous, is more obvious than before. Two eminent books!?
and much htera,ture in the area of trajectory optimization have
discussed the maneuvers for optimal trajectories. In particular,
the characteristics and applications of the chattering arc have
been investigated in some published papers.3~® Theoretically,
in chattering arc of the first kind, the control chatters between
its positive and negative maximum values at an infinite rate.3
In practice, switching of the control between its maximum and
minimum values at an infinite rate is not possible. The pur-
pose of this paper is to develop an approximate chattering arc
in which the control chatters at a finite rate. In other words,
the approximate chattering arc we defined in this paper is re-
sulted from the finite frequency of control switching between its
positive and negative maximum values. It is expected that the
developed approximate chattering method will be more proper
for practical maneuvers.

In Ref. 5, the minimum-time aerobraking maneuver at con-
stant altitude was investigated. The final conditions specified
consist of the final position and final velocity vector (both mag-
nitude and direction) of the vehicle. This is required for the
purpose of atmospheric rendezvous or ground landing. Obvi-
ously, it is a set of very strong final conditions. The chattering
arc, when exists, is an arc along a great circle at the specified
altitude. Now, assume the maximum bank angle ¢,,,, is used
at first, The vehicle turns to the left at constant altitude. Then
at a certain instant the control is switched to its minimum value
(or negative maximum value, -0yq;). The switching time is se-
lected such that the vehicle will return to its original latitude
at the same final time as the theoretical chattering arc. Thus
the control “chatters” only once in this case, and the specified
final conditions may not be completely satisfied. For the sec-
ond case, we allow the control to “chatter” two times during the
flight. The flight path will have one fluctuation and two of the
four final conditions can be satisfied at the same final time. As
the number of chattering (or switching) of the control variable is
increased to three, the only final condition which remains unsat-
isfied is the final longitudinal range. The final longitudinal range
will be shorter than the theoretical chattering value, but the dif-
ference will be reduced when the number of control switching is
increased. In order to compensate the shortage of final longitu-
dinal range due to the finite frequency of control switching, we
can allow the vehicle to coast a proper distance from the initial
state. The approximate chattering arc then follows. With this
strategy there will be some penalty on the minimum flight time.

II. Equations of Motion

The geometry of constant altitude flight is shown in Figure
1, where 0 is the longitude and ¢ is the latitude, and f¢-surface
represents the constant altitude spherical surface. For a vehicle
with lift capability and zero thrust, the flight in the #¢-surface
is governed by the equations:?
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dt = 2m (1e)
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Figure 1. Geometry of Constant Altitude Flight.
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where V is the speed, p is the atmospheric density, S is the
reference area, Cp is the drag coefficient, m is the mass, 4 is the
longitude, ¢ is the latitude, 9 is the heading, r is the distance
of the vehicle from the planet center, Cr, is the lift coefficient, o
is the bank angle, and ¢ denotes the independent variable, time.
Using a parabolic drag polar of the form:

Cp =Cpo+ KC} 2)
we define the normalized lift coefficient A such that
Cr=XCj, )

where C} is the lift coefficient corresponding to the maximum
lift-to-drag ratio E*. With given values of Cpg and K assumed
constant at hypersonic speed, we have

1
" 2v/CpoK

By introducing the dimensionless altitude {2, dimensionless ki-
netic energy v, and dimensionless time s, defined as

2m Vv? t [q
Q—m‘ﬁ, ’U—’g—r', S—/(; \/;‘dt (5)

where ¢ is the gravitational acceleration and is constant for con-
stant altitude flight, we have the dimensionless equations of mo-
tion:

£ (4)

Z_;’ - _ﬁ[»l + Qz—%}ﬁ)-z—(l +tan’e)] - (6a)
% =+/vsine (6c)
% = 1\;; Jtan & — /v cos ¥ tan ¢ (64)

The constraining relation for eonstant altitude flight is
V2
Leoso =m(g— —) (7
T
where L is the lift. Or, in dimensionless form,

1—-vw

Acoso = Q

) ®)

v

This relation has been used in deriving Egs. (6).

The above equations are for the general two-dimensional
flight. For one-dimensional flight along the #-axis, we have
¢ =1 =0 =0 and Egs. (6) become the reduced form:

dv Vo3 2, 1=v, Vol
&= T Ealt T =g
de

s Vv (99)

and Eq. (8) becomes

1+ (%)

1—-w

A =9

) (10)

v

I11. Theoretical Chattering Arc

In Eqs. (6) there are four state variables, 4, ¢, v and 9,
and we use the bank angle o as the sole control variable. The
Hamiltonian can be written as

Vi Q%1 — v)? 2 Vvcosy
7= g+ S arwranen LB

11—

+ pe/v sin o + py( 7 Ytan ¢ ~ /v cos ¢ tan ¢]

Regarding the optimal bank angle, it suffices to consider the part
of the Hamiltonian containing o:

Q1 —v)?
Ex/v

This reduced Hamiltonian can be considered as the dot product
of the two vectors (P, P;) and (@1, Q2) such that?

tan’o + Py (1\;1_)”) tan o (12)

ﬁ:—pv

_ 1-v) _ Q1 - v)?
b= P Be=oheT (13a)
Qi =tano, Q=tan’s (13b)
and ~
H= P1Q1 + P2Q2 (14)

When o varies, the vector 6 = (Q1,€2) describes the domain
of maneuverability which is the parabola as shown in Figure 2,
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Figure 2. Domain of Maneuverability for the Bank Angle.




Q2= Q} (15)

To maximize H, if the vector P = (P1, P;) is inside the angle
A104,, the optimal bank angle used is an interior bank angle

such that the tangent to the parabola is perpendicular to P,
This is expressed by

Q2 Py
XL _9 —_——
80, G1=-7,
or E*
=Py
tanoc = 2Q(1—v)pu (16)

Thus it is necessary that P, < 0, or, in other words, p, > 0.

When the vector P is outside the angle A;OA,, the bank angle
used is 0 = Omae When py > 0 and 6 = —0rar When py < 0. In
the case when p, < 0 an&p py = 0 for a finite time interval, there
may exist a chattering control in which the bank angle switches
rapidly between 40, and —0,4, at an infinite rate. The re-
sulted flight path is called the chattering arc. Theoretically, the
rapid switching of bank angle between +o,0, and ~opm.r at
an infinite rate keeps the heading at constant and at the same
time maximizes the drag. Therefore, the chattering arc is along
a great circle with maximum deceleration for aerobraking ma-
neuver. Its application on time-minimization flight at constant
altitude has been presented in Ref, 5.

From the discussion above, it can be concluded that the chat-
tering arc is equivalent to one-dimensional flight with maximum
drag. Thus the equations of motion for the chattering arc are
the same as those in Eqgs. (9) except that A is replaced by its
maximum value A q.. That is, we have

dv vo?

-C_lg = E,,Q 72nlll') (17&)
dé

= N (170)

for the chattering arc. The analytic solutions of Eqs. (17) are
2E*Q

= 1+ Amaz (\/—f \/_ ) (lsa)
E*Q v;
b =17 o 111(—f- (18b)

where the conditions #; = s; = 0 have been used. We see that
sy is identically determined when v; and vy are prescribed. For
numerical computation, we assume the maximum normalized lift
coefficient A, q,=2.5, the maximum lift-to-drag ratio E* = 2, the
dimensionless altitude = 0.2, the initial speed v»; = 0.95, and
the final speed vy = 0.0741. The initial speed is selected to be a
little smaller than the orbital speed and the final speed is equal
to the stall speed calculated from Eq. (10). The length of the
chattering arc 8; and the dimensionless time of chattering flight
85 for E* = 2 are 67 = 0.1408 and s; = 0.2922, respectively.

In summary, for constant altitude flight, the theoretical chat-
tering arc is along a great circle. For Aoy = 2.5, E* = 2 and
) = 0.2, and with the specified initial states s; = 0, v; = 0.95,
0; = ¢; = ¢; = 0, the chattering arc is along the §-axis and the
final states are sy = 0.2922, vy = 0.0741(specified), 8y = 0.1408
and ¢; = ¥y = 0. In the following section, the approximate chat-
tering arc which has finite frequency of control switching will be
developed. Its characteristics will be investigated as compared
with the theoretical chattering arc.

IV, Approximate Chattering Arc

Theoretically, in chattering arc of the first kind, the control
chatters between its positive and negative maximum values at
an infinite rate. In practice, switching of the control between its
maximum and minimum values at an infinite rate is not possible.
The main purpose of this section is to develop an approximate
chattering arc which will be more proper for practical maneuver.

The approximate chattering arc we defined in this paper is re-
sulted from the finite frequency of control switching between its
positive and negative maximum values. Let N be the number
of control switching. As the first approximate chattering arc, we
allow the vehicle to make only one switch during the flight and
N=1. In other words, the vehicle makes a positive maximum
bank (to the left) from the initial point. Then, at a certain in-
stant 81, it switches to the negative maximum bank and keeps
this attitude till the final instant sy. From Eq. (8), the maximum
bank angle is a function of the vehicle speed:

&L= (19)

)\mar v

co8(Opmaz) =

Thus the value of 0., is decreasing when the vehicle speed is
becoming smaller due to the aerodynamic drag. There is only one
parameter which can be adjusted, it is the instant of switching
s1. Therefore, only one final condition can be satisfied. To obtain
the flight trajectory, we integrate Egs. (6) from the initial states
with the o4, calculated from Eq. (19). Then at sy, the bank
angle switches to — 0, till 7. From Eq. (6a) and Eq. (19), we
can prove that Eq. (18a)is also valid for two-dimensional turning
with maximum bank angle. This means that with specified »;
and vy, the final flight time s; can be calculated from Eq. (18a)
and is exactly the same as the theoretical chattering flight. The
parameter s is selected such that the vehicle returns to the 6-
axis and ¢; = 0. The flight trajectory for E* = 2 is shown in
Figure 3. It is clear that two final conditions remain unsatisfied:
py = —0.5827 # 0, §; = 0.1333 # 0.1408.

Now, we shaH consider the second approximate chattering
arc in Wluch the vehicle makes two switches during the flight
and N = 2. From the initial instant s;=0, the vehicle banks to
the left by using the positive maximum bank angle ¢pq,. Then
at a certain instant si, the vehicle banks to the right with the
control switches from G40 10 —Cpaz. And then, at another
certain insftant s, the vehicle banks to the left again and the
control switches from —0,,45 tO0 Opae. In this case, besides the
final condition vy = 0.0741 which can be satisfied when s; is
reached, two more final conditions can be satisfied since there are
two parameters s; and sp which can be adjusted. We select s
and sy such that the two final conditions ¢y = 0 and ¥y = 0 are
satisfied. The remaining final condition which is still unsatisfied
is 8 = 0.1373 # 0.1408. Actually, this final condition can never
be satisfied by using approximate chattering arc. What we shall
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Figure 3. One - Switching Approximate Chattering Arc.
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do is to develop the approximate chattering arc with some more
switchings such that the final position on the #-axis can approach
6y = 0.1408 as close as possible. The flight trajectory for the
second approximate chattering arc is shown in Figure 4.

For further investigation, we consider the third approximate
chattering arc which has three switching in the bank angle and
N = 3. As compared with the second chattering arc, we now
have three parameters s;, s3 and sz which represent the three
consecutive instants at which the control switching happens.
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Figure 5. Three - Switching Approximate Chattering Arc.
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Therefore, it becomes a parameter optimization problem with
the three parameters to be selected such that 8y = 4y = 0 and
0y is maximized. The optimal trajectory obtained is shown in
Figure 5. The final range obtained is 5 = 0.1390.

For N=4 and 5, the optimal trajectories obtained are plotted
in Figures 6 and 7, respectively. The growth of maximum 8;
along with the increase of the number of control switching N is
presented in Figure 8.
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Figure 6. Four - Switching Approximate Chattering Arc.
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Figure 7. Five - Switching Approximate Chattering Arc.
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Figure 8. Maximum 6y as a Function of N.

V. Discussion

From Figure 8, it is seen that the increase in maximum 6y
which can be obtained through the increase of N is limited be-
yond N=5. For N=5, the penalty on f; due to the approxi-
mation is only 0.5%. Generally speaking, this penalty is small
enough. In both theoretical and approximate chattering arcs,
the flight time is the same and is uniquely determined with pre-
scribed v; and vy values. Also, both arcs have the same length
which can be proved below. Let ! denotes the length of the ap-
proximate chattering arc, we have

t
l=/ Vit
0

sy
/ Vds
0

or, in dimensionless form,

L

(20)

This is exactly the same as the integration of Eq. (17b). Phys-
ically it is understandable since in both arcs the vehicle flies at
maximum drag. The time history, v(s) or V(t), is the same in
any case.
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There is a strategy by which we can obtain 6y = 0.1408 at
the end of approximate chattering arc with some sacrifice on the
flight time. The technique is to allow the vehicle to coast along
the -axis for a short distance from the initial states. Then the
approximate chattering arc follows. The length of the coasting
arc can be calculated through numerical iteration since the final
longitudinal range (coasting range plus approximate chattering
range) must be 0.1408. There will be a penalty on the flight time
due to the reason that the vehicle does not use the maximum drag
for deceleration during the coasting phase.

The approximate chattering arc has been introduced in
which the frequency of control switching between its maximum
and minimum values is finite. As compared with the theoret-
ical chattering arc in which the frequency of control switching
is infinite, the approximate chattering arc at constant altitude
is a two-dimensional flight. It has the same final states as the
theoretical chattering arc when the number of control switching
is equal to or greater than two except that the final longitudinal
range is shorter. The final longitudinal range can be maximized
when the number of control switching is equal to or greater than
three. The shortage in the final longitudinal range is 0.5% when
the number of control switching is five, and can not be improved
much even with more switchings. It can be completely elimi-
nated by adding a short coasting arc and with some sacrifice on
the flight time.
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