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Abstract
The flight path optimization for transport
mission of maneuverable aircraft as well as

suboptimal control synthesis for the optimal flight
path implementation are considered. The
calculation of the extremal fields for some
examples are carried out by the second order
method, which presents the extension of
previously known one, and by the maximum
principle. The approximations of optimum solutions
are proposed for the schedule design. The
synthesis for a normal load factor is performed
through  tracking this approximations. The
adaptive extremal law for the engine thrust
control is proposed. Some numerical results are
presented,

I~ Introduction

The possibilities of modern onboard computers,
as is well known, reveal the ways of optimal
solutions usage for aircraft trajectory control
The transport missions for maneuverable aircraft
have peculiarity related to the wide range of
initial and final conditions which may belong to
all range of possible flight regimes. Many papers
are devoted to trajectory optimization problems
for non maneuverable and maneuverable aircraft
including the consideration of the optimal control
solution expressed in a feedback form. One of
attractive approach to the solution of such
problems is related to the so-called singular
perturbation method which was successfully
employed for practically important tasks(1:2,3,4), A
very useful approach to the solution of usual
transportation task in the energy approximation
was proposed in Ref.\“/, One needs to point out

that the last approach to the solution of
transportation task may be extended for two
cruise~dash portion on trajectory for

maneuverable aircraft, Another approach may be
based on computation of extremals field. i.e. on
flooding the state-space with extremals and
control synthesis on the basis of tracking the
approximations to extremals, which satisfy initial
and final conditions. This approach is considered
in Ref. on the basis of energy formulation.

The similar approach is proposed for some
problems in this paper on the basis of the second
order method and on the basis of the maximum
principle, and is related apparently to the
approach in Ref, 7,8), The second order method,
which was developed by one of the authors( s
provides the optimization of control for discrete
nonlinear dynamic system (autonomous and non-
autonomous) taking account of control/state
constraints at fixed and free final time. This
method may be considered as a modification or
extension of the second order method(10), There

are several ways of engine thrust control. The
adaptive extremal control law, which contains
Lagrange multipliers, is considered for this

purpose in this paper.
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This. paper does not pretend to describe the
transportation control problem solution in full
volume, but only to demonstrate some approaches
and techniques that may be useful for application.

II _ Transport Mission

The main transport missions or tasks involve
the following functionals: time of flight (ff), range
({/) and fuel consumption (w). Al the
transportation tasks have the inijtial and final
conditions in terms of altitude, speed, flight path
angle etc. Some of them may be free.

It is known that cost function for transport
tasks to be minimized may be presented in the
form

J=7"wW+7"tff"7"l?f 1

where Ay, Ay and A} are constant non negative
Lagrange multipliers.

Taking Ay = 1, Ay = 0, Ay = 0, we have the
problem of final time minimization. Taking A, = 1
and Ay # 0, A7y 2 0, we have the problem of fuel
consumption minimization for given If and If, etc.
A similar problem statement may be considered for
mission when ff and ‘lf correspond to desirable
point of interception and it is necessary to
minimize fuel consumption. Additional constraints
may be imposed on the altitude and speed on
some portions of trajectory.

The solution of such problems with the usage
of full motion equations for arbitrary initial and
final conditions is difficult, It is the reason for
considering the simplified models of motion side
by side with more exact ones.

The Main Features of the Second Order
Method

The above mentioned transport tasks may be
formulated as follows. Let’s consider a wusual
discrete model of nonlinear dynamic system motion

11

xk+l = gk(xk iuk 7Atk)’

Atgay = Atk @

k=0,..,N-1

that corresponds to aircraft continuous motion
equations. The equation for Af is introduced when
final time is free.

State variables X that
components and control vector #f that has m
components satisfy inequality constraints

Qk(xk B A < 0,

vector has n

®)




where @ is vector with p components.
It is necessary to determine the succession

By , .., Hy.1 and value of Af so that

Wxy) = 0 @

and
N-1
J = F(xN) + kgoLk(xk M aAtk)

reaches the minimum, when initial state vector ¥g
is given. Vector ¥ has g components (¢ < n-1, if

L=0andg <anif Lz0).
Such a problem is similar to that considered in
Ref.(lo). The difference is related to introduction

of constraints (3) and the use of Af as state
variable. The last permits us to consider the
problems with free final time.

Optimality conditions
The first variation of Lagrange function gives

N-1
8J = Fydxy + EO(L,’g&k + Lrsuy + LEsAy) +

N-1
+k§0x'k+1 (ghoxy, + ghouy + g FsAy, - sxpyp) +

N-1
+ kZ:OHkH (BAtg — 8Atgy ) + ViyxSay +

N-1
+k§0m'k ((p/;Sxk + q){ﬁ&lk + q)ftSAtk— 8(])1( ),

where A, I, ®, V are Lagrange multipliers and ()’
notes transposition. Let’s introduce Hamiltonian

Bk = LkGey, ug, Atp) + Mg g, wg, Atp) +
+ WAty + o' e, g, Atp)
and adopt

A.'k=H§, pk=HAkt, k=0, .., N1,
' ' [ _ 3
A']\/=(F'x+vq’x.)1P'N—O,

then

N-1
87 = A ySxg + W pASH + EOH{ESuk- ', 5ok,

It may be shown(lo) that for optimal control at
5x0 = 0 the following expressions are valid:

ik
o; =0, (pk=0,

o; =0, q>k<0,

0,

©
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The determination of optimal solution demands
the solution of two-point-boundary-value-problem
(TPBVP), described by equations (2), (4), (5) and
(6).

The variation of solution

Suppc?se that we have nominal optimal solution
that satisfy (2), (4), (5) and (6). Let's consider
small deviations from this solution that arise from

desired small disturbances in &\‘:O, Sy, 8@, 5H§ and
Sp.o. These disturbances lead to the variations of
8vp , 8Ar, Bur, S@g , &V and OmE that satisfy
linearized equations (2), (4), (5) and (6):

8xpyy = g’;gaxk + g’szuk + gf,SAtk,

SAtgy = 8Al

Scpk = Q)I;Sxk + q)§8uk + q)fISAtk ,
Mg = ghohgey + HE Sy +
+ HE Sup + HE, sAn + of'op

SMk = Siges + g8, Ohgey + HE B +

)]
+ Hfy g + My S04+ of oy
SHE = gh'sag,, + HE o +
+ HE Suy + HE, S0+ of
k=0, .., N-1,
Sy =y Sy,
Sy = (F + V' W) Sy + W38V, Suy=0.
The equations (7) may be rewritten in more
compact form:
Syjpey = ARepy + Fouy ®)
8my, = AK'smy, ) + BRoyy + bhsuy + dV'soy, ©
SHE = ak'smy, ) + Broyg + HE sup + of's0y, (10)
8¢t = plouy + droyy (11
Smy = SNSyN, 12)
where
Sy SAk
Syp=| 8AM |, dmg=| dpg |,
v Sy




Hpge Hitar @1g |

Qgn 2q1 Qyq

et ol On
ak= Oin 1 Qg

Qqn g1 Igq

, Bk

13)
gk (HE,

& =|0im |, F=|HE, |, &=ckok 0y,
m.

\Zym

’ ]

Fy ¥ VU Oy Wy
an 0 qu s

¥y Q10

I, is the unit matrix, mxm; Q) is zero matrix,

SN:

mxl,

The expressions (8)-(12) describe linear TPBVP
concerning Oyt , Omg , O#p, Smf . At initial point,
the component &%y of 8y and the components
84y , 8y of 8my are given, at final point, the
boundary condition (12) is given. For solving this
problem this condition is transferred to the initial

point by the help of reverse run method .
-Assuming that

Sny = 8y 8y + Ay, 14
and substituting (8)-(12) in (14) we’ll have
Ompyy = SkHAkSyk + Sk+1ak8uk + By
Substitution of this expression in (9), (10)
gives
] 1
sm= ZJ, oy Z), Sup + ooy + APl (15)
sHk = zX oy + 2F, sup + o Sop + dFhyy . (16)
where

z}, = Bh+ ak'sy, 4k,
zf, = vh+ AFsp b,
zicu + ak'SkHak .

7k

uu q)fﬁ
oF
follows from (11), (16) that
k 1,7k
)= T )
=_ p _
8wy, <P]z§ Qpp p 2
{Zzicu ‘Pﬁj’l(ﬂk"’kﬂ - 8H,
ok Qpp -k )

By means of (14), we’ll get from (17)

zl,~H

If matrix is not singular, then
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k
Zyu ‘Pﬁ

—1 Zk
Smp = (Zy"y— (zykuﬁ)[q)s. Qpp] ( ;{J} Syg +

k
Zyu Q’z

, ~1akhy,, - SH
+Akhk+1—(z}]fuzi")[q,k,g J ( _+(13q,k 5}
u Lpp

Therefore the presentation (14) is wvalid if

ko k17K
yA Z
_ 2k k wu q’u uy
vy (yu ) q’}lf Qpp &
Zzicu (P{S

. ~1(ak'hy, | - 5H
hk=A.khk+1“(Z)’:cudk)[q)k' 0 ] ( —+<13q;k ;j
u pp

It is possible now to compute SO, IEO by means
of .(13) taking into account that #&y = 0. The
condition (14) at k = 0 gives the possibility to
compute OAqg, 8Afy, 8V that are components of &)y,

51!0. Thereafter, we'll get the solution of linear

problem (8)-(12) using recurrent expressions (8)
and (17).

Iterative procedure

Here we'll give a description of some
peculiarities of iterative procedure organization,
but it is brief because of restricted volume of the
paper. Let’s assume that we have succession #j,
k=0, .. N1, t and succession X, £ =0, ... , N,
which satisfy (2) and they are near to optimal
solution in a sense that initial condition and (3),
(4) are s?ctisfied with small disturbances Axg, Ay,
Agp, AH,, Alg . Then kadoptinkg 8xg = - Axg,
Sy =— Ay, S@p=-Agy, SH,=-AH}, dug=-Auy it
is possible to get the improving variation of
solution. But the received in accordance with (8)
variations of d%} after adding to initial succession

%k will not satisfy equations of motion (2) exactly.
That is the reason for the next proposal: to

compute 536]; (necessary to substitute in (17)) not
by use of the first formula in (7), but as the
difference

8ok = gh1(ep_y+ Sy, g+ Sug_y, At +BA) —xp,
k=1,.. 4N,

where &28=&x0 and Ot ; is determined by (17).

Short description of computer program
peculiarities.

The rather complicated computer program was
developed on the basis of this problem statement
for three-dimensional motion of aircraft.

The list of the main points of the developed
program for aircraft path optimization looks as
follows:

o smooth approximation of the aerodynamic,
thrust-consumption characteristics, and the usage
of analytical expressions for the first and the




second derivatives, that are necessary in the
second order method like Ref. ,

® the employment of wvariation of the first
order necessary conditions of optimality and
solution of TPBVP for linearized direct and
conjugate systems by the help of reverse run
method in manner like Ref.( ),

e the procedure of calculation of Lagrange
multipliers from the minimization of the norm of
Hamiltonian derivative vector for the beginning of
iteration procedure and their correction by means

of neighboring-optimal technique in iterative
procedure,
e the employment of the short initial

trajectories with fulfillment of convexity condition
for iteration procedure, which through the
neighboring-optimal technique provides given of
vector Xg and given boundary condition
l]!(xN) = 0.

e the correction or improvement of the second
derivatives matrix (in the neighboring-optimal
technique), which must be reversed on the basis
of transition to the principal axes of the
appropriate quadratic form,

IV _ Flight Path Optimization

The results presented in this section are
obtained. by the neighboring-optimal technique on
the basis of the second order method optimization
program described in section ITI. It will be shown
that the optimal schedules in space "altitude -

specific energy" ( (h,E)-space) may by
sufficiently simple for approximation. The
approximation of throttle control is more
complicated.

Equations of motion

The usual equations of motions were used for
solving some problems of optimal control in
vertical plane by the help of the second order
method

L] . ® g
V= g(ny - siny), y=7;(n,— cosy), (18)
i; =V siny, ; =V cosy,

W=-Q,

where the tangential and the normal load factors

TaxM, A S
= —-'——‘max;, ) €00, —~ % Cp,

Ty, M S
ny=———‘max%, 0 smoc+%CL,

the fuel consumption per second

Os=0sm, M, ), ~

the other notation is usual.

All the dependencies such as Tyg(M, h),
Cp(Cr, M), Qs(M, A, M) are approximated by
polynomials and fraction-rational functions. The

control variables are N and Cp in the presence of
inequality constraints:

g8
Nmin <N <1 CL < CrpaxM), 37 CL < Mypar -

The inequality constraints on state wvariables
are determined by permissible flight domain:

Vinin® SV < Vi) B 2 By

The additional constraints on flight path angle
may be imposed

Ymin <Y < Ymax ,

where Ymin s+ Ymax devend on A, ¥V and, maybe, on
My,

The final conditions for state coordinates are
given for each problem.

The transition from take-—off to final value of
specific energy.

The results of optimization for transition from
initial condition corresponding to take-off to the
given final value of specific energy
(E = h + V2/2¢), which correspond to the minimum
fuel consumption, are presented in Figures 1-3
for various values of initial weight,
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Altitode b, km

0 5 10 15 20 25 30 35

Specific Energy E.km
Figure 1. Extremals in (#,E)-space.
20

Altitude h, km

0 0.5 1 1.5 2

Mach Number
Figure 2. Extremals in (#,M)-gpace.




Throttle Setting

10 15 20 25 30 35

Specific Energy E km

Figure 3. Throttle setting vs specific energy.

It is known that such so-called basic
schedules may be considered as the portions of
the appropriate more common schedules.

Each of the computed schedules has the
portion of descending the shape of which
sufficiently = depends on initial weight. The

constructed. family of schedules may be presented
in form of two-dimensional function of altitude
W (£, WO).** This function after approximation
may be used for on-board implementation in
control system.

Figures 4-6 show how fuel consumption Aw,
time Af and range A! for these schedules depend
on £ for various values of initial weight WO‘

6 R

Fuoel Consomption, t
W
i

10 15 20 25 30 35

Specific Energy E,km

Figure 4. Fuel consumption vs specific energy.

** the superscript D corresponds to desirable
value
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Time, s
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Figure 5. Time of flight vs specific energy.
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Figure 6. Range vs specific energy.

These dependencies are the functions of two
arguments: Aw(E, Wy), AUE, Wy), AIE, Wy) that
have simpler form than basic schedules for
approximation. These functions allow us to
compute the fuel consumption, time and range for

the flight from the point 1 to the point 2 on the
schedule:

Aw1,2 = AW(E25 W()) - AW(EI, Wo),
Aty o = AEy, Wo) ~ AHE|, W),
Aly o = ANEy, Wo) ~ ANE, W).

It may be necessary to go to basic schedule,
when instant position is not on basic one
corresponding to instant value of aircraft weight.




The dependencies Wy(£, W) allow us to find for
instant value of £ the weight Wy that
corresponds to initial point of basic schedule and
to find the basic schedule #P(E, W) such that it
may be desirable to go to the schedule and go
along it further. For this purpose a smooth
additional schedule of short duration may be
constructed for transition from instant point in
the vicinity of desirable schedule to this one.

Minimum time transitions in vertical plane

The optimization for minimum time transition in
vertical plane from initial condition corresponding
to take-off to the final condition hf= const, ')ff= 0
for various values of final speed Vr was fulfilled.
The appropriate extremals field in (h,E)-space and
(h,M)-space are presented in Figures 7,8.

TS

14
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Altitude h, km

Specific Energy E,km

Figure 7. Extremals in the (E,1)-space.
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Altitude h, km
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Mach Number

Figure 8. Extremals in the (M,h1)-space.

It is seen that schedules in (4 £)-space are
simple and more convenient for approximation. The
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thrust is equal to maximum thrust for all
trajectories. These results are analogous to those
obtained in Ref. 11,12), put have more regular
character.

The flight to cruise point with fixed range

The flight to cruise point with the minimum
fuel consumption is the first portion of flight for
sufficiently large duration. The final conditions on

h, V at ¥ = 0 correspond to minimum of the fuel
consumption per unit of range (QOky) and depend

on the final weight. The approximation of cruise
regime in form

hf— ayy — a12Wf= 0,
Ve—an; - apWy- apWy =0,
Okm = a31 —anl,

gives good result. Positive coefficients ajj depend
on aircraft characteristics, its configuration and
atmospheric conditions.

The calculations for several values of range
show that, after some value of range, the
schedules vary insignificantly and may be easily
approximated.

V _Minimum Time Descent

We’ll consider in this Section the minimum time
descent in vertical plane with the usage of
maximum principle in simplified problem statement
when control variables are M and siny. This
approach is sufficiently simple for generation of

extremals field in (A4,V)-space for given initial
conditions because the problem has only one
parameter.

The application of previously described second
order method is not successful for such a
problem because the regular iteration procedure
brings to trajectories with the control and state
variables on boundaries of the admissible region.
It requires the employment of complicated
procedure for removing control and state
variables from boundaries.

The equation of motion for this problem can be
rewritten as follows

V= g(n - siny), H= Vsiny ,

where

)

(V- Tmax(M: h)n
Hy = W coso— 77 Cp

v
CD = CD(CL’ M), CL =q'—“g, W = const .

All the assumption in motion model
contained in these expressions.

It is necessary to transit from the given initial
condition ho, VO to any other for minimum time by
choosing optimal schedules (h,V)-space and
appropriate throttle control with account of

inequality constraints in the form

are

in

SinY 4y S SINY < SV |




where Yiin and Ypqe are functions of A, ¥ and ng

. These constraints are related to flight envelope
limitations.

We'll give the common scheme of this problem
solution omitting some details. The Hamiltonian for
this problem may be written in form

H=Aygnd + Qsiny,

where Q=AgV —Apg . The necessary conditions
for optimality include the ajoint equations

. oH o

8H
M=o M=y

" on

The solution of these equations linearly depend
on initial values 7»3 = Ay(0) and Ap = AL(0), If the
final values hg, V¢ would be given then it will be
necessary to choose the values of 7‘V and xh
appropriately. But in our case by varying both
parameters we can generate the extremals
originating from point hg, Vg in (h,V)-space. It
may be shown however that there is no need in
varying these parameters and it is sufficient to
vary only one parameter ¢ choosing the values of
7"\7 and Ay in the following manner

?»(,),= €oSQ, 0= sing,

Q%+ 2%

0_
Ap= 7

It follows from linear dependence of ajoint
variables on 7\4?/ and Ay and of Hamiltonian on Ay

and 7\4;,. The optimal control then is determined
from condition

min H<0. 19

n,siny
The condition (19) at initial time moment gives
the admissible subrange of ¢ wvalue within 0 to
360°
when £2 = 0. From this condition, it follows that

range. The singular control for siny arises

0 0
0=V % o
*ogloom Cov)

This expression gives the appropriate schedule
in (h,V)-space which depends on optimal value of
M. It is interesting to note that at 1 1 this

schedule corresponds to minimum time energy
climb. This follows from the condition

7 [mn7, 5@, 7] =0

at £ = const.

The example of the extremals field in (h,F)-
space for initial point A is given in Figure 9.
Several regions are shown in this field. For each
region the throttle control has some peculiarities.
The results may be approximated for their usage
for control law synthesis when descending.
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singular solution

Altitude h km
6 +—

A

AN

300 350 400 450
Speed V, m/s
PFigure 10. Extremals in {(h,F)-space.
VI _ _Control Law for Normal Load Factor
Let’s consider the tracking of a given

desirable schedule #2 = hP(Z) at £ # 0 on the
basis of linear equivalent models, that specify the
law of compensation of the difference between
desirable and current values of the flight
parameters., We'll take such models in the form

d d . .
"thh+khAh=0,EAsmy+kyAsm'y=O, Q0

where
A= HD —~ b, Asiny = siny? ~ siny

and &y, ky - parameters.

These models correspond to smooth transition
processes and it is possible to agree the long
period motion quality and short one by choosing
ky, ky. 1t is follows from (20) and (18) that

siny? = nf %’:2 +kpAh
21)

d . .
Y = goosy (EE simyD + hyAsm'y] + cosy .

D

The tangential load factor vy depends on nﬁ?
The system of two equations (21) contains two
unknown parameters sinyD and nP . It is possible
to find the solution of this system presenting the
dependence of 'y upon by means of
appropriate rank in the vicinify of instant value
of m, It is important for on-board implementation.
For usual trajectory computation it is sufficient
to use (21) adopting that n? = Ay,




VII _ Adaptive Control Law for Throttle

If the specific energy varies monotonously

(E > 0 or E < 0) functional (1) may be rewritten
in form

J=[rde,
T
(22)
Qs T A =AY cosy
eV

where I' is the given realized schedule in (A,£)-

space, and My, Ay AJ are constant non negative
Lagrange multipliers that may be computed when
the full optimization problem is solving. Assuming
that dependence I = I'(h, V, ) is known and
monotonous on s, we’ll find the optimal thrust

control from minimum (at £ > 0) or maximum (at

E < 0) on Qg of function f in (22).
The function f in (22) depends on fast O, ny,
and slow. 4, ¥, ¥ variables. Therefore it is posmble

to search desirable value of QS on-line by means
of adaptive procedure like

o

23
50;° @

T Oy~ (signl )z

In such approach we neglect the interrelation
of Qg and Hy related to the necessity of tracking
of the given schedule I

Assuming that the motion proceeds exactly
along the given schedule and #y = (I — DYy/W it
follows from ({23) that the adaptive control law
synthesis for throttle may have, for example, the
form

° ° oT
T =~k {signk )[anx— %, Qs +hg —2V (cosy)™D) O—Q;]’ @49

where kT - positive control law parameter. It is
necessary to introduce additionally to (24) the

limitations on T and T.
The usage of such control law demands the
information about instant values of #y, Og, W, V, ¥

and estimation of the derivative 87/8Q; that may
be introduced by means of its approximation. If

the schedule in (#,E)-space for £ > 0 corresponds
to minimum fuel consumption then }“w =1, Ay = 0,

AJ = 0, the expression (24) may be written as
follows
o or
e bfon B )
aQS/

For minimum time we have Az = 1, Ay = 0,
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1 o7 0

A

and for this reason I = T4y For minimum fuel
consumption when time and range are given or
free this cenirol law provides acceptable resulis.
The results of computations show that for climb
up the usage of such adaptive control law gives
the fuel consumption that does not exceed the
optimal one more then 0.2% when all information is
exact. In more complicated examples this excess
reaches 2%.

Conclugions

The examples described in this paper indicate
that considered technique of flight path
optimization gives the acceptable results for the
extremals fields generation. Since the regularities
of such fields may be understood there are
possibilities for approximation of extremals and
appropriate control synthesis, There are ways of
simplification of the computed schedules without
significant change of results for the worse. But
this topic is not discussed in this paper.
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