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Abstract
This paper describes the development of a
F.E.M. code capable of computing the

propagation of acoustic waves in a ducts having
a pointwise variable mean compressible flow.
The field equations are derived for both the
mean flow and for the perturbation in terms of
the relative velocity potentials by assuming:
steadiness for the mean flow and harmonic
time and azimuthal dependence for the
acoustics.

A Galerkin procedure is used for the acoustic
problem to get the weak residual formulation
of the equation, in order to develop a FEM
procedure based on quadrilateral elements of
the "serendipity family”.

Two codes are developed: one that solves the
basic flow field, the second one that solves the
acoustic field; both codes use the same
geometry and the same discretization; they can
interchange, with the same order of
approximation, field data (geometries and flow
parameter).

The codes are considered as a general purpose
ones apt to have built in capabilities of
accepting (in a friendly manner) boundary
conditions of industrial interest.

This paper documents the preliminary
validation phase and presents results relative
to cases where analytical solutions are
available.

1. INTRODUCTION

The limitations of the acoustic emission of flow
apparatus is one of the main and more
stringent demand of the modern market. To
cope with such demand it is requested the
development of methodologies (of analytical
and numerical nature) to furnish the designer a
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detailed and realistic understanding of such
complex phenomenologies in order to reduce
the source of noise, to study its propagation, to
realize efficient protections.

Examples of fields of interest include both
aeronautical applications (intake and exhaust
of turboengines, propellers, wind tunnels etc. )
and terrestrial applications (internal
combustion engines, turbomachinaries, air
conditioning plants, etc). The acoustic pollution
is of such current interest so that we shall not
go into further detail.

This work is a result of a Research Contract
between ALENIA and the University of Naples
on “Determination of the Acoustic Field in
axisymmetric Duct with Flow". The research
was aimed toward the development of
analytical modelling and numerical codes. This
work, in particular, details the results relative
to the second phase of the research that had
the scope of developing a formulation having
as primary variable the acoustic velocity
potential valid for a pointwise mean
compressible flow.

The work is articulated as follows: in Sect.2 the
field equations are derived; in Sect.3 the
problem is defined with the boundary
condition of interest; in Sect.4 the resolution by
Finite Element Method is detailed; in Sect.5 the
main result of the first validation phase is
presented.

2. DERIVATION OF THE FIELD EQUATIONS

Scope of the analysis is the derivation of the
general equations for the mean flow and for
the propagation of the acoustic waves in terms,
respectively, of the velocity potential and of
the acoustic velocity potential. The motivation
of using scalar potential is based on the hope of




obtaining models and a "numerically robust"

algorithm.

2.1 Basic Mean Flow

Under the assumptions of:

i. non dissipative and irrotational motion

ii. absence of body forces

iii. perfect gas

iv. subsonic mean flow

the general equation of the velocity potential,
relative to a compressible unsteady flow,
writes as:
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where:

is the velocity potential

is the velocity

is the sound speed

is the ratio of specific heats.
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Equation (1), under the assumption of steady
flow simplifies as:
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2.2 Acoustic perturbation

By perturbating in (1) and (2) the
variables

(M, @, c¢) with the relative acoustic contributions
(v, ¢, a), and by subtracting the terms relative
to the base equations, one obtains:
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By recalling:
i) the vectorial identity V [a - bl=(V a) +

(¥ b) - a

ii) the irrotationality of the base flow,

and by duly combining the (4) and (5) it is
possible to obtain the general equation for the
acoustic velocity potential:
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3. PROBLEM FORMUI ATION

We suppose that the acoustic velocity potential
has, in the plane case, a time dependence of the

type:
o(x, ¥, 1) = ¢'(X, y) exp [-iwt] (7

and, in the case of axi-symmetry, a time and
azimuthal dependence of the type:

o(r, 8, z, t) = ¢'(r, z) exp [-i(0wt-m0)] (3)

such notation the
complex

obvious that with
velocity potential is a

It is
acoustic
variable.
In order to have an unitary formulation for
both cases (plane and axisymmetric) we shall
denote with "x" the longitudinal axis (x=z) and
with "y" the radial axis (y=r).

We use the following non-dimensionalization:

X=xD ; y=yD ; ¢ = ¢'(cyD)
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where:

D = reference length (diameter/height)

¢y = speed of sound (constant)
Under the above assumptions, equation (6)
assumes the non-dimensional form:
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By looking to problems of practical interest, the
boundaries conditions are determined as four
kind of boundaries (Fig.1):

C,: assigned acoustic potential; this represents
a Dirichlet condition that is very easily
implemented in a F.E.M. code;

rigid wall, i.e. zero normal acoustic velocity;
it is a Neumann condition, naturally
satisfied in a variational formulation;
assigned normal component of the acoustic
velocity; it is a Neumann condition for the
variational formulation;

Cy: assigned normal acoustic impedance.
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G

Whereas the first three conditions are very
easy to be implemented in a F.E.M. formulation,
the fourth condition on C, deserves some
comments.,

The energy equation for the basic flow, under
the assumptions made above can be written
as:

2
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where P is the pressure.

By making a perturbation of (12) due to sound,
by subtracting the basic contribution, it is
possible to derive the linearized equation:

% p,
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that can be used to compute the acoustic
pressure (p) as :
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Fig.1 : Boundary Conditions

208

that in non-dimensional form looks as:
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so that the condition on C4 can be explicited as:
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where Z, is the acoustic impedance.

4. EEM. SOLUTION

4.1 Basic Mean Flow

The equations that govern such field are:
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subsonic flows, an elliptic
by a non linear partial
coupled with an algebraic

They describes, for
problem composed
differential equation
equation.

By looking toward
level n+1) based on
written as a Poisson

an iterative technique (at
FEM, equation (17) can be
problem of the type:

Vipntl - m (19)
where the source term (f") :
£-[ver. v(ver.vor) J2cn? (20)

is computed at the previous iteration level.

A FEM technique for (19), even if very simple
in principle, is limited to cases where second
order elements are used to allow the
computation of the second derivatives
contained in the source term (20).

An alternative formulation, that does not have
such inconvenience, is based on the continuity
equation written in terms of the velocity
potential:

v-(p"(xo™h) 21)

where the density (p") is computed at the
previous iteration, by assuming the
isentropicity:
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Problem (21) and (22) admits the -classical
variational formulation, i.e. the solution field
(®) must minimize the functional:
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(23)
where @ must belong to the space of functions
that:

{LZ((D) : @ = constant on C3; 0®/on=g on C,} .

4.2 Acoustic_Field

To derive a formulation of the problem defined
by (10-11) with the boundary conditions C,, C2,

C3, C4, apt to be utilized for a F.EM., a Galerkin

technique was used in order to obtain a weak
variational formulation. In this regard the (10)
is multiplied by a weight function W(x,y) > 0
and thereafter integrated on the domain.

By recalling the Gauss theorem and the
generalized gradient theorem (projected on the
"x" axis), by introducing the BC.s on C3 and on

C, one obtains the integral equation:
| {(1+B)Wx®x+C(wy<1>x+wxq>y) N (1+E)Wyd>y}dA

- {F®x+Gd>y+Hq>}WdA+-Zl— f[-im<1>+Uq>x+Vq>y]Wdc
n
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By following the usual procedure of the FEM. ,
the equation (24) is discretized by subdividing
the field in a number (k) of elements. On each

element the field wvariable ~(p (x, y) is
approximate as
n 1
¢= ZNj 9 (25)
J=1
where:

n is the number of nodal points of the element
Nj are the shape functions

(~pj are the values of ¢ in the (k) nodal points.
According to the Galerkin procedure the same

discretization is used for the weight function
W(x,y):
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n
W= NW, (26)
i=1

By substituting, and by integrating on each
element and boundary, summing up on each
element, one obtains a (discretized) functional
that can be minimized by taking its derivative
with respect to the nodal values of the weight
function W; (supposed all different from zero).
It results a system of complex algebraic
equations of the type:

Kij ;= b; (27)
that is afterwards manipulated to impose the
conditions on C,.

It is worthy to note that:

¢ the matrix Kjj is not symmetric (due to
terms deriving from the basic flow)

e the resulting system is defined in a complex
space.

The novelty of the code lies in the fact that it

makes use directly of a complex variable to

represent  the acoustic potential (instead of

dealing with its real and imaginary parts).

Despite the cost of developing new routines, the

resulting code exhibits a very clear and cogent

representation of the equations, of the various

terms in the construction of the matrices

needed to the implementation of the system of

equations.

Once the solution for the acoustic velocity

potential is computed, the other acoustic field

variables are derived as:
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5. RESULTS

The results herein presented are relative to the
first validation phase of the code: simple but
significative cases are analyzed where
analytical solutions are available.

5.1 Type of elements

The elements used in the code belong to the
"serendipity family"2; in particular
quadrilateral elements with four (linear) and
eight nodes (bi-linear) were considered.

The first numerical experiments have been
devoted to the capability of such elements to
describe the sound propagation process.




It was noted that, whereas for planar problems
both elements show good behaviour, in the case
of axisymmetric problems the eight nodes
elements are not able to successfully describe
the physics when the symmetry line is part of
the field or is near to the inner element
(toroidal geometries). Such phenomenon is
present in other structural codes.

For these reasons all the axisymmetric cases
are solved with four nodes quadrilateral
elements.

5.2 Cvlindrical Duct

The geometry considered is a cylindrical cavity,

having radius half of the length, that is
discretized with a regular mesh of 50
quadrangular elements.

The acoustic boundary conditions at the inlet
simulate fixed constant acoustic velocity
potential; anecoical conditions at the exit are
assumed (absence of acoustic reflections).

A constant mean flow is supposed to be present
along the duct.

5.2.1 Discretization limitations

The criteria to determine the finiteness of the
mesh apt to adequately solve the acoustic
problem for various sound frequency was
searched.

Let us define a "discretization parameter" (8) :

§=A7[(c(1-MH2)/(D 1] (29)

where:

¢ 1is the speed of sound

A is the minimum (dimensionless) distance
between nodes of an element

D is the reference length

f is the acoustic frequency

(38) represents the ratio between the minimum
discretized dimension and the acoustic wave
length; its inverse represents the number of
nodes contained in one wave length,

The results of the experimentations show that
for values of 3 up to 0.09 (more than 10 nodes

per wave length) satisfactory results are
obtained.

5.2.2 Results for non-planar spinning waves
Non planar sound waves can exist in

axisymmetric ducts if the sound frequency is
larger than the first critical frequency 1,3.
Being "m" the azimuthal number and "s"

s" the

911

radial number, a waves with a (m,s) mode can
exist only if the sound frequency (f) is larger
than the critical one, fy, ¢ , defined as:

fms = jm,s [ (€(1-M2)V2)]i(x D)

where jn ¢ is the first zero of the Bessel
function J'p, .

Fig.2 shows the fields of the critical frequencies
and the resultant acoustical modes.
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§folo M
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jm,u
plane wave
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0 1.84 3.05 3.83 /£,

Fig.2 : Critical Frequency fields and modes

For a cylindrical square geometry (unitary

diameter equal to length) we report
experimental runs relative to two cases:

a. M=0, f=200 [Hz], mode (1,1)

b. M=0.4, f=168.75 [Hz], mode (1,1)

Fig.3 show the longitudinal profiles of the

acoustical velocity potential at r=0.5 for the
case (a), here the numerical values of the real
and of the imaginary parts of the acoustical
potential are compared with the corresponding
values of the analytical solution. Fig.4 show, for
case (a) the radial profiles of the acoustic
potential (numerical and analytical) at the exit.
In both cases the quality of the numerical data
is satisfactory.

Acoustic Potentials (r=.5)
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Fig.3 : Longitudinal profiles




Acoustic Potential at exit
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Fig.4 Radial profiles

Fig.5 and Fig.6 display for case (a), respectively
the longitudinal and the radial profiles of the
real and imaginary parts of acoustic potential,
acoustic pressure, and acoustic velocity.

Acoustic Data at exit
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Fig.5 : Profiles at exit

Acoustic Data at r=.5
mode (1,1) ; M=0 ; f = 200 Hz
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Fig.6 : Axial Profiles
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Fig.7 and Fig.8 reports, for case (b), the
longitudinal and radial profiles of the computed
acoustic potential against the analytical ones.
When applicable the agreement between
analytical and numerical results is more than
satisfactory.

5.3 Conical Horn

Such problem was identified to test the code
for non uniform geometry.

As well known, small angles conical horns at
low frequency admits as solution a spherical
wave, emanating from an equivalent point
source located at the apex of the cone, whose
amplitude 1is inversely proportional to the
radial distance from the point source.

Fig. 9 shows the geometry used and the BC.s :
solid wall and anecoical termination are
assumed for a horn having 21.5° semi-angle,
starting at 1.36 from the source and having a
length of 2.

Fig. 10 reports the acoustic potential profiles
along the horn for the case of no mean flow
(m=0) and a frequency of 200 [Hz]. Real and
Acoustic Potential (r=.5)
mode (1,1), M=.4 , {=168.756 Hz
polen(ial
0.8
-0.2 — -
-0.4 —
% 02 O.‘A ofe 08 1 12
abscissa z
~— Pr(anal.) —— Pr(num) —*— Pi(anal) —a— Pi{num.)
Fig.7 : Longitudinal Profile
Acoustic Potential (at exit)
mode (1,1) , M=.4 , {=168.75 Hz
potential
o]
-0
0.2 \
-0.8 \
~0.4 \\
-05h S
~08 ) L | \T\\r
&) 01 0.2 0.3 0.4 05 0.8
radius
—— Pr(anal.) —— Pr{num) ~%— Pi(anal.)  —— Pi(num.)
Fig.8 : Profiles at exit




Imaginary parts of the Acoustic Velocity
Potential are plotted together with its modulus,
the latter is compared with the theoretical one.
Fig. 11 reports the acoustic velocity potential at
the exit: the almost constancy of both real and
imaginary parts reveals the performance of the
code.

Finally, Fig. 12 reports the effect of the mean
flow (m=0.5) on the potential profiles.

6. CONCI USIONS

The capability of the modelling and the
resultant code to describe the acoustical
properties of ducts with mean flow, for simple
but significative cases, has been demonstrated.
The code is able to simulate, in a friendly
manner, boundary conditions of industrial
interest, and provides fruitful contributions to
the design of flow systems.

The preliminary validation runs, herein
reported, refer to cases were analytical
solutions are available; in the following of the
research, comparisons with experimental data
are foreseen.
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Fig. 9 Conical Horn

Conical Horn : M=0 , =200 -

Acoustic Potential Profiles

[ 0.5 1
radius
—— Pot.ireann — Pot.limag) —% Potlabs) —*—Potlabs.theory}
i
I
ICAS 92 P 1
Fig. 10 :

913

Conical Horn : M=0 , f=200 &=
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