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Abstract

BUAA  Inertial Terrain—Aided  Navigation
(BITAN) algorithm is presented in this paper, which is
based on Sandia Inertial Terrain—Aided Navigation
(SITAN) algorithm, but several improvements from the-
oretic and algorithmic aspects are made as follows: (1)
local observability concept is firstly presented and used;
(2) square root Kalman filtering technique is adopted;
(3) a new adaptive terrain stochastic linearization tech-
nique is developed; (4) both acquisition and track modes
are investigated, in which the system models are
different. BITAN system simulation are completed by
Monte Carlo method. The position accuracy after
updating is 50.3m. It has been shown that the BITAN
algorithm presented in this paper is successful.

1. Introduction

Sandia Inertial Terrain—Aided Navigation (SITAN)
algorithm is a typical Terrain—Aided Navigation (TAN)
algorthm, which uses an extended Kalman filter (EKF)
and a local linerization technique to implement a
recursive algorithm.”” BUAA (Beijing University of
Aeronautics and Astronautics) Inertial Terrain—Aided
Navigation (BITAN) algorithm is a new—developed one
by BUAA. The principal mechanism and applicable
extent for BITAN is analogous to SITAN, but several
significant improvements from theoretic and algorithmic
aspects are made as follows. (1) Local observability
concept are firstly presented and used in BITAN to de-
termine the terrain—aided effectiveness qualitatively and
quantitatively. (2) Square root Kalman filtering tech-
nique is adopted, which is more efficacious for one di-
mension (1—D) measurement case, such as TAN applica-
tion. (3) A new developed Terrain Stochastic
Linearization (TSL) technique, namely, Two—Subgroup
Fit (TSF) technique is developed in track mode to
achieve excellent performance, in addition, an adaptive
TSL technique to position errors is used . (4) Both acqui-
Copyright © 1992 by ICAS and ATAA. All rights reserved.

sition and track modes are used in BITAN, in which the
Kalman filter models, TSL techniques, system error
models are different.

Based on BITAN algorithm the Monte Carlo meth-
od has been used in system simulations to determine the
effect of BITAN algorithm.

II Constitution and Model of BITAN System

System Constitution

The constitution of BITAN system is shown in Fig-
ure 1.  An Inertial Navigation System (INS) aided by
baro—altimeter is used to measure the navigation state
vector ¥, Kalman filtering is the main tool used to fuse
together the data from INS, radar altimeter, and Digital
Elevation Map (DEM) to generate the optimal estima-
tion of error state vector X for X. Thus X is updated
by 6X , then the optimal estimation of navigation state
vector X is obtained.

In order to implement Kalman filtering 1-D
measurement m is needed, which is the difference be-

tween estimated relative height £ , and measured relative
height ﬁ,. l'{r comes from the measurement of radar

altimeter, /i , is the difference between estimated height
above sea level of # from INS and terrain height of
h 4 from DEM based on the estimated position of (¥,)

from INS.
are needed for Kalman filter, which is obtained by Ter-
rain Stochastic Linearization (TSL) technique. TSL is
realized in the local fit area Q, which is a varying rectan-
gular area. The centre of Q is (X,5), and the size of Q
is adaptive to o¢_and g, where ¢ and o are the

In addition to m, terrain slopes A _ and hy

standard deviation of the position errors dx and dy,
which comes from the Kalman filter. As shown in

'Figure 1, BITAN system is constituted by two main
dash—line blockes, namely, sensorsand computer.
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Figure 1 Block diagram of BITAN system
System Model m=h —Fh, &)
The true state vector X is Tet
T %, 7, h— estimated horizontal position and the

X=(Ixyhv vy] 1

Where x, y, and . denote the aircraft position in a 3—D
orthogonal coordinate system with three axes pointed,
eastward, nothward, and vertically upward, respectively,
and v_and v, are velocities along x and y directions

respectively. The error vector X of X is

0X= [ox oy 6z dv_ 5vy] ’ )

Therefore for a sampling period 7 the error state vector’

equation is as

0X(k+1)= F(x)oX({k)+ W(k) (3)

where F is the transition matrix, and W(k) the process
noise vector, and

_ - [ k) ]

1000 W, (k)

0100+ w, (k)
Fo)=|0 01 0 0] wWky=| w,k) “4)

00010 w”(k)

[0 00 0 1] v, ® |

For a fixed 7, F(r) is a constant matrix.
With the help of Figure 1 m is expressed as

height above sea level respectively
h,(%,9)— true terrain height above sea level or ele-
vation at position (%, 7)
h (%, y)—elevation checked from DEM
Thus

h, (%5 P=h(x D+, (6

where y  is the mapping noise of DEM. Therefore / ,

is expressed as

h,=h—h,% 0
However A , from radar altimeter is
B (xy)=h (xy)+7, (8)

where
(x,y)—true horizontal position of the aircraft

h, —true relative height
y, —measurement noise of radar altimeter
Substituting above equations into Eq. (5) m is given by
m=h—h,(% §-h (x5
=h+0h— C(h,(x+dx, y+dy)+y,]

—(h +9,) ©)
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Obviously, #,(x,y) is an arbitrary curved surface func-

tion of (x,y). To realize terrain stochastic linearization
means to replace the curved surface by a plane. For

example, to develop 4 , (x1+0x, y+8y) by one order Taylor
expansion method at point (x,y), therefore

oh (x,y)
h,(x +6x, y+dy) =h,(x,y)———F—dx
Ox
ok, (%,7)
vty (10)
where 7, is the linearization noise and
_5ht(x,y) _ah'(x:y)
x 5x 2 y - 5y (1 1)

are the terrain slopes along the directions of x and
y respectively.  Substituting Eq. (10) and (11) into
Eqgs.(9), and considering h—h — h t(x,y) =0 , then
m=h—h, —ht(x,y)-—hxéx —hyéy
+oh—y, —7v, =7,

= —h 0x—h 8y +5h+y (12)
where
Y=—%,—7 =7, (13)
—h (k) —hE) 1
—h(k+1) —h (k+1) 1
M=| —h,(k+2) —h k+2) 1

—h (k+3) —h(k+3) 1

k4 —h (+4) 1

is the measurement noise, which consists of mapping
Vs —,, and

linearization noise Thus the measurement is

ncise radar measurement noise
¥, -
given by

m= U—h_

—h, 10 0] X+ (14)

Then the discrete measurement equation is defined as

mk) = H(k)o X (k) + y(k) (15)
where the measurement matrix is
H(k) = E—hx(k) —hy(k) 100] (16)

The implementation of Kalman filtering is based on Eds.
(3), (4) and (15) (16).

. Effectiveness Analysis of TAN

So far, it is known that the effectiveness of TAN
depends on the roughness of the terrain over which the
aircraft has just flown. However none of the research

workers gives a qualitative and quantitative description
about the effectiveness of TAN. Local observability
concept are firstly presented and used in BITAN
algorithm to solve this issue.® It is explained as fol-
lows.

Based on Egs. (3) and (15), if five measurement val-
uwes,i. e. m(k), m{k+1,) «--, m(k+4) areinvolved, then

m(k) H{k)
mik + 1) H(k + DHF
mk+2) |= | HE+2F" | xk) an
m(k + 3) H(k + 3)F’
Lmk+91 | gee+ aF*
Define
H{k)
H(k + 1)F
M=| Hk+2)F (18)
H(k +3)F’
| Hik + 4)F* |

as local observability matrix, which is a square matrix,

Substituting Eqs.? and (16) into Eq.(18), therefore
0 0 T
—h (k+ D) —hy(k+l)1:

—2h (k+2)t —2h (k+2) 19)

—3h (k+3) —3h (k+3)

—4h (k+4)y7 —4h (k+4) |

It is obvious that the system is locally observable in
the time period k to kt+4, if only if the matrix M is
nonsingular. Eq. (19) shows that the observability of
TAN system is highly dependent on terrain slopes /
and hy .
tive analysis of the effectiveness of TAN is revealed as
follows.

(1) To have good local observability , terrain slopes
That is,
rain cannot be too flat, such as plains and sea.

(2) To be observable, & _ (k) and hy(k) must not be
equal to each other. That is, the slopes along x and
y directions are not the same.

(3) To be observable, & _(k) and hy(k) must not be
equal to each other. That is,
y directions are not the same.

(4) From Eq. (16) one sees that when the error state-
0X is locally observable, the observability degree for all

By examining the elements of M, the qualita-

h_ and hy cannot be too small, local ter-

the slopes along x and
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the state variables is different. For example, A has
the strongest observability, since the height of the air-
‘craft is directly measured by the radar altimeter. State
variables dx and J§y are observable through the terrain
slope variation. ~ State variables §v_ and 6vy have the

weakest observability since they are not directly involved
in the measurement matrix H(k), but are coupled to
other state variables through the system matrix F, as
shown in the results of covariance analysis in Reference
).

) The quantitative description of the observability de-
gree of TAN can be made by the condition number ¢ of
the square matrix M as

c=max|m [ - | |

(20)

where m ; is the j—th column vector of M, n’1j is the j—th

column vector of M ', and |l Il denotes vector
norm, If the condition number is large, the matrix is
close to singular. The condition number of a unity ma-
trix is 1, and that of any matrix is greater or equal to 1.
Thus the larger the condition number is, the worse the
observability is, and vice versa.

The condition number curves for Path 1 and Path 2
are compared in Figure 2, where Path 2 has stronger ter-
rain roughness than Path 1. From Figure 2 following
aspects are depicted.

Condition number ¢

may be used to choose the terrain updating area.

IV. Square Root Kalman Filtering

For the EKF techniques of TAN in BITAN, the
dimension number of state variables is five, and that of
the measurement is only one. It is very effective to
adopt square root Kalman filtering technique to increase
the convergence of Kalman filtering, tc minimize the
roundoff errors, and to improve the accuracy of terrain
updating. This technique is applied in BITAN
algorithm.

Let the mean value and variance of process noise
W(k), or abbreviated W, are

EW,J =0
EWw, W) =U,U,

@n
(22)

wher U, is the square root of the variance of W, .

Let the mean value and variance of y(k), or abb. y, , are
E(,) =0 (23)
E(y,] =R, (24)

where R, is the variance of y, .

Therefore the algorithm of square root Kalman fil-
tering is obtained as follows.

14000 ' ‘ ' ' ' ]
12000 Path 1 4
10000 - / ]
8000 - Path 2 7
6000 i
| l
4000 |- I‘l// .
Lol -
0 - . g ¢ Rl LY L —

0 10 20 30 40 50 60
Time Point k
Figure 2. Two condition number curves
for Path 1 and Path 2

(1) Different flight pathes can be compared by
means of condition number from the point of view of
observability degree, namely, the updating effectiveness
of TAN.

(2) Even in the same flight path from section to sec-
tion, the observability degree is different, one may
choose suitable flight section to implement terrain updat-
ing.

(3) Results from a good many computations indi-
cate that the condition number of ¢= 1000 may be con-
sidered as the threshold between the strong and weak
observabilities for TAN application.  This threshold

Time Updating
0X jpoy =F 0K, 25)
S:/k SZ“‘FT
-1
= L ; (26)
0 U,
where

0 . —estimated value of error state vector

X

4y —the first step predictive value of error

state vector
S, —he square root of error covariance of X,

S —the square root of error covariance of

k/k—1
5Xk/k—l
L—orthogonal matrix
Measurement Updating
X, =X, t K, tm,-H.X,,_,] @n
S,=S,,,_,—rK,B, (28)
K, ZHS:/k—lBk 29
B, =S,, H, (0
%=B:Bk+Rk @1)
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1
= e—— (32)
(1+Ju-R,)
where
K , —the optimal gain of Kalman filter
Computing Steps ofS:/k_1
Eq. (26) is expressed as
W ina
Led= .
o | (33)
L=r" " Purp® (34

where L® is an orthogonal matrix with the order of 2n
X 2n, i is the order of matrix F. Then

L® =1-8,u"4"" (35)
2
B, = ®T & (36)
Uu u
Let
AP =4

A® =the jth column of 4 @
4®

i

— the element of the i—th row and the j—th

column in A ®
Fork=1, 2, 3, =«=,n following recursion formula is used:
qEY _ @ @ 37)
At the k—th step, the elements below the diagonal ele-

. (k)
ments for the first (k—1) columns in 4~ are zcro, so
that when k=n, thereis

A(n+1) =[W] n
0 n

whereas 4%*" can be determined by the following
recursion formulas for k=1, 2, 3, «*+, N

(38)

N
4y = | LA sen4 ) (39)
i=k
1
SR S (40)
(k)
* ak(ak +Akk)
0 i<k
WP ={o + A i=k @1
A® i>k
0 i<k
y® = {1 i=k (42)
p U 4Y  isk
A(k+1) — A(k) . U(k) V(k)T (43)

Thus matrix S is obtained.

k/k—1

From Eqs. (25) to (32) and Egs. (39) to (43) the

square root Kalman filtering algorithm  is
implemented. Its effect may be shown in part VI of this
paper.

'V : Adaptive Terrain Stochastic Linearization

As has been explained before that the effect of TSL,
technique is to derive a plane function f(x,y) to replace
an arbitrary curved surface function A (x,y) where

h,(x,y) is the terrain elevation profile above sea level at

position point (x,y). Obviously 4 (x,y) is a nonlinear
function of x and y. f(x,p) is the linearized profile
near the position (%,y), which is related to h(x,y) at the

fit area Q via
fxy=a+h (x—%+h (-3

where a is an estimated elevation at (%,y), £ and hy

are the slopes of this plane along directions x and
y respectively,

In BITAN algorithm two improvements about TSL
technique are involved. The one is to choose fit areca Q
adaptively to the standard deviation of the position er-
rors, the other is to adopt a new TSL technique for
TAN.

Adaptively Choosing Fit Area Q)

TSL is realized at the local fit area Q, whose centre
is the estimated position (X,§). Then the local fit area Q

is chosen as a rectangular patch of 50 % 50’y

adaptively, where ¢ and o, are the standard devia-

tion of the position errors déx and dy. As shown in

Figure 10 and g, are come from the covariance ana-

lysis of Kalman filtering. € is shown in Figure 3,
where P is the position point for (X,7).

2.50,
N
l2>.
pP=
“P 2
Figure 3 Ground patch geometry

for local fit area Q

The reasons to make the choice in Figure 3 is as fol-
lows.
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(1) As shown in Eq.(11) that one has to determine
the slopes 4 and h, at the true position (x,y) of the
aircraft, other than (£,7). Unfortunately true position
is unknown, only (X,) is the optimum estimation for
(x,y). Thus one turns to determine the local fit area Q,
to make (x,)) in it with very high probability.
Because o and o, are the standard deviations
which are the standard deviations of

The area Q for (X —2.5¢6 _,x+ 2.5¢ )

of dx and dy,
X and ¥ too .
and (ﬁ—2.50y,}7+ 2.Say) is the possible area for the
true aircraft position.

(2) At the begining of Kalman filtering o and
o, are much larger, but as time goes on, they become

smaller. Q is varied with o, and g, Q is chosen

adaptively as shown in Figure 3.

(3) Consider Q is the possible area for true
position, the mean weight principle in area Q is used for
implementing TSL, other than the Gaussian weight
principle as shown in Reference (3).

Two—Subgroup Fit (TSF) Technique

Two—Subgroup Fit (TSF) technique is firstly pres-
ented and used in BITAN algorithms, which is ex-
plained in brief as follows (for further details see
Reference (4)).

At first consider fitting a straight—line into a set of
data points on a plane. Dividing the points in Q into
two subgroups, each contains half of total data points.
Assuming each point carries a unity weight, locate the
centre of masses for each subgroup. The line con-
necting the two centres of masses is the desired
straight—line fit to the data set.

Extending this concept to the fitting of a plane into
a set of data points two slopes for the profile are
needed. Use the same geometry patch as shown in
Figure 3. Divide the patch into left and right

half—patches for computing slopes 4, and into upper

and lower half—patches for computing slope hy. The
set of computaion equations with discrete type are
1
_— ho(k_k 44
TN+ DM+ 1) k’_,_z,,ﬁ,, alkok,) “9)
k'-l—Al,1+M
1
- B (k_k
b= R DEM D C, 5, ek
k’-l—MJ-tM
- Y hk k)] (45)
k, =i-Ni-1
k,-l—)l.1+)l
1
- h (k_k
h}' M(M+ l)(2N+ 1) [k’.q;,nu d( * y)
kx-l—N,l+N
— % hyk k)] (46)
I:’-]"M.I»l
k =I-NI+N

where &£ and ky are the sequence numbers of the grid
points of DEM in fit area Q, i and j are the sequence num-
bers of point coordinates ¥ and j.

Eqs. (44) to (46) involves 12MN+4(M+N) —2 addi-
tions and 8 multiplications.

Compared with other five TSL techniques given in
Reference (4). TSF technique is attractive in all measure,
including good accuracy, fast convergence, short computer
time, and good normality, etc.  Therefore this technique
is recommended for both acquisition and track modes, al-
though Nine—Point—Plane Fit (NPF) technique is some-
times used in track mode.

VI. Acquisition and Track Modes

Both acquisition and track modes are used in BITAN
algorithm. Several aspects are discussed as follows.

Kalman Filter Models

The Kalman filter model for track mode is shown by
Egs. (3), (4) and (15), (16). Whereas the one for acquisi-
tion mode is shown as

ox 100
5y “lo10] +wm, @)
0y beyrsy LO O 11,
ox
m,= Ch, h, 1] 3y +7v, (48)
oh 1, ,,

where jis the number of the parellel filter.
TSL Techniques

The TSL technique used in track mode is TSF tech-
nique as shown by Eqs. (44) to (46). However the one
used in acquisition mode may be either the same as TSF
technique or NPF technique.

NPF technique evaluates the slopes at position P(i,j)
using DEM data at nine points of P, to P, asshownin
Figure 4, for which the patch areais 3o x 3(;y . Thefit

l 1.50, l

1.50, N
I ! !

P, P, AR

1.50y

" B

PS P9
Ground patch geometry for NPF technique

Figrue 4
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principle is to make the quadratic sum of the fit errors at 9:

points minimum. The set of computation equations with

discret type are®™

1
a=§(hl+h2+---+h9) (49)
1
b= gy +hothy—h, —h, —h) (50)
1
hy=a(h7+hs+h9—h1_h2_h3) (51)

where h, to h are the values of elevation A g at points P .
to P, . Eqgs (49) to (51) involves 18 additiens and 4 mul-
tiplications.  Compared with the computing amount in-
volved in TSF technique, NPF technique has much less
computing amount, almost one third of computing time
as TSF technique. That is why the NPF technique is
sometimes used in acquisition mode.

System Error Models

The system error models for acquisition and track
modes are different, For acquisition mode 3—D process
noises for §x, dy and 1-D measurement noise y are taken
into account, and all of them are considered as white
noises. However, for track mode two cases are consid-
ered in BITAN algorithm,

(1) If the accuracy requirement is not very high for
TAN, 5—-D process noises for dx, Jy, oh, 5vx,5vy and
1-D measurement noise y are taken into account and all of
them are considered as white noises.

(2) If the accuracy requirement is considerable high,
some process noise or measurement noise are considered as
one—order Marcov process noises. They are determined
by the results of all-state simulation of BITAN system.
‘For a given TAN applications two kinds of systems are
modelled and simulated. One is seven—order TAN sys-
tem, in which the two horizontal position noises are con-
sidered as one—order Marcov process noises. Another is
six—order TAN system, in which measurement noise is
augmented. The simulation results are shown in Figure
5, where N is filtering number.

1000  (meter) . ’ :

500 r -
0t 4
~500 | ;
—1000 1 2 b N

0 5 10 15 20

(a) Five—order TAN system

(meter)
500

0
—500

—1000

—1500 1 1 | N
0 5 10 15 20

(meter)
400
300t
200 -
100F

0 F

-100

(c) Six—order TAN system

Figure 5 Comparisons of the updating

for TAN systems

Compared with five—order system, the seven—order system
may improve the system accuracy to a large extent.
However, the improvement made by the six—order system
is not so encouraging. Therefore it may reasonable to
consider the measurement noise as white one for TAN ap-
plication.®

VI. Simulation Results of BITAN System

Monte Carlo method is used to the simulation of
BITAN system

Simulation Conditions

The simulation conditions for a given TAN system
are considered as follows.

(1) Sub—optimal Kalman filtering with 3—D posi-
tion errors, which are decorrelated, is adopted.

(2) The weight coefficient of measurement noise is 1.

(3) TSF linearization technigue is adopted for both
acquisition and track modes to obtain hx and hy, the

size of Q) is 50 X 50y.

(4) 25 parallel Kalman filters are used in acquisition
mode.

(5) 12 initial position errors for two flight Pathes A
and B are simulated, which are shown in Table 1. The
initial horizontal position error is expressed by Average
Error Radius (AER), which is defined by

653




Table 1

The 12 initial position errors for two flight Pathes A and B

Initial error No. 1 2 3 4 5 6 7 8 9 10 | 11 | 12
ox(m) |—33./—84.1—40./-33.|—51.]—66.|—41,]—70.]—43.|-32.]-59.|—44.
Path A
dy(m) |—31.|—-36./—30.|-30.(—33.|—34.|—30.]—35.|—31,|—3%.]—33. | -31.
ox(m) —5.8104 (0.7 | 3.7 |-17..—6.7|—91.|—43.| 6.4 | 4.7 | 0.3 |-45.
Path B
Sy(m) |—6.3]-42.|-21.1-19.1-32.|-11.|-131|—65.|-15.|-31.|—21.|—69.
1 .
AER = - e, (52) VlI. Conclusions
i=1 -
where The BITAN algorithm firstly presented in this paper
e, = \/ (xi _ fi)z N (yi _)7?) (53) has made several signi?‘xcant improvements, such as to
choose terrain updating zone by means of local
and observability analysis, to adopt square root Kalman fil-

x ,y,—true position of aircraft

X ,,y,—error position of BITAN system

m—simulation number

The two flight pathes are taken from a DEM in
Liaoning Province, China, Thus 24 error cases are
simulated. The AER of initial position errors before
terrain updating is 934.9m,

(6) The initial velocity errors along the x, y direc-
tions are 0.5m /s and —0.4 m / s respectively.

(7) Sampling time is 2.5s.

Simulation Results

The distribution of position error for 24 navigation
end points is shown in Figure 6. From this figure it has
been shown that the CEP of navigation end points is
50.3m, and the AER of them is 51.9m. OQbviously, the
position accuracy is improved by more than one order of
magnitude. It is higher than the accuray made by
traditionary TAN algorithms.

-T

r T 1
60 | dy(m) CEP=50.3m

~~R,,, = 159.5m

ma.

40.

i ~0x(m
—60 —40 20 0 20 40 60 (m)

Figure 6 Position error distribution of 24
navigation end points for BITAN system

tering, to implement a new adaptive TSL technique, to
use different models in different system modes, etc.. The
simulation resutls given in this paper shows that the po-
sition accuracy given by BITAN system is 50.3m
(CEP). By means of terrain updating the system accu-
racy is increased by more than one order of
magnitude. That means BITAN algorithm is effective
and successful.

Refferences

(1) L. D. Hostetler and R, D. Andreas, ” Nonlinear
Kalman filtering techniques for terrain aided naviga-
tion, ” IEEE Trans. Automat. Contr., Vol. AC 28,
no.3, pp.315-323, 1983,

(2) Z. Chen, ” Local observability and its application to
multiple measurement estimation,” IEEE Trans,
Industr. Electr.,, Vol. 1E38,no.6, pp.491-496.

(3) R. D. Andreas, I.. D. Hostetler, and R. C.
Beckmann, ” Continuous Kalman updating of an
inertial  navigation  system  using terrain
measurement,” NAECON Rec., pp. 1263-1270,
1978.

(4) P. J. Yu, Z. Chen, and J. C. Hung, ” Performance
evaluation of six terrain stochastic linearization
techniques for TAN , ” NAECON Rec., pp.
382388, 1991.

(5) Z.chen and P.J. Yu, ” Model study for terrain aided
navigation system,” Proceedings of IEEE Interna-
tional Symposium on Industrial Electronics, May
1992,

654




