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Abstract

A computational scheme based on integ-
ral equation approach for the solution of
full potential eguation (FPE) for steady
inviscid transonic flow over three
dimensional configurations, has been
developed. Application of Green's third
identity to the FPE yields an integral
equation for the disturbance potential, in
terms of surface source and doublet
distribution, and nonlinear field source
distribution representing compressibility.
The solution thus constructed automat-
ically satisfies the boundary condition at
infinity. The problem is discretized by
surface panels 1in conjunction with the
field cells, formed by rectangular box of
grid points around the configuration. The
surface panels are used to enforce the
boundary condition on the body surface and
the field cells are used to evaluate the
volume integral. The surface source
distribution is determined by the external
Neumann boundary condition. The Kutta
condition is imposed for the determination
of the doublet distribution, the values of
the surface velocity potential. This gives

rise to an iterative procedure for the
numerical solution of the integral
equation. For supercritical flow with
shocks an artificial viscosity is added
explicitly to produce upwind bias at
supersonic points which enables shock
capture. Results are obtained for the
pressure distribution on finite wings.
I. Introduction
Although a great deal of progress has

been made in solving nonlinear fluid flow

problems by finite difference methods,
these methods have not yet proved to be
easily adaptable to compleéx three

dimensional surfaces.
obgtacle in computing inviscid transonic
flow about complete aircraft is the
difficulty of generating “body conforming'
grids.

Probably the major

have
equation

Recently computational schemes
been developed based on integral

(IE) formulation‘l™10) gor
full potential equation (FPE)
inviscid transonic flow,
the need for body conforming grids.,

solving the

for steady
which obviates
The
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concept of zonal mecdelling, in which a
field metod is coupled with a surface
panel method, as used in these studies
looks attractive for extending the
practical scope of surface panel mwmethods
into transonic regime, via the field
integrals.

In the present work a hybrid computa-
tional scheme is developed for the
analysis of transonic flow over three
dimensional configurations, which is based
on the integral egation formulation and
makes use of the elements from the finite
difference methods.

Application of Green's third identity
to the FPE, for subsonic free stream
values, yields an integral equation for
disturbance velocity potential in terms of
surface source and doublet singularity
distributions, and the nonlinear field
source distribution representing compress-
ibility. The solution thus constructed
automatically satisfies the boundary
condition at infinity. Since the field
sources die rapidly away from the body,
only a small computational domain around
the body would then suffice to solve the
flow problem.

To obtain numerical solution of the
integral equation, surface panels are used
in conjunction with the field volume
elements. The configuration surface and
the wake is represented by a number of
flat guadrilateral panels and the singu-
larity distribution is assumed piecewise
constant over each panel. A rectangular
three dimensional grid is generated within
a finite volume around the configuration
and the wake, which encompasses and
penetrates the body. The cells formed by
the rectangular grid are used as finite
elements, wherein the field source
strengths are assumed to be uniform. Thus
the field grid is independent of the
surface geometry, and the entire problem
of generating a surface conforming grid, a
major obstacle in solving the transonic
flow problem by the finite difference
methods, is avoided.

The surface panels are used to enforce
the boundary condition on the body surface
and the field cells are used to evaluate
the volume integral. The surface source
distribution is determined by the external



Neumann boundary condition and the Kutta
condition is enforced for the deter-
mination of the doublet distribution, the
values of the surface velocity potential,
unknown of the flow problem. Application
of the Kutta condition is simple, and no
extra equation or trailing edge velocity
potential is required.

This gives rise to a Poisson type
iterative procedure for the numerical
solution of the integral equation. To
obtain the surface velocity and hence the
pressure distribution, the surface poten-
tials are differentiated numerically.

For supercritical flow with shocks the
nonlinear source term is augmented by the
addition of artificial viscosity in the
supersonic region which produces an upwind
bias and satisfies the proper domain of
dependence., A mass flux biasing (instead
of the usual density biasing, e.g. Ref. 11
& 12) is used for modelling the artifi-
cial viscosity following Osher, Hafez and

whitlow'13),

First the general formulation of the
integral equation for the FPE, which is
similar to the one given by Erickson and

Strande(4), is presented. This is followed

by the derivation of the integral equation
for the present model, discretization of
the flow problem, evaluation of the
influence coefficients, formulation of the
artificial wviscosity, and finally the
iterative scheme for the solution of non-
linear transonic flow is set up. The
present method differs from that of

Sinclair(S) in the sense that

uses velocity formulation,
methoed is based on velocity potential
formulation. Thus the present method
requires much less storage and computation
of smaller number of influence coefficie~
nteg, and hence low computing cost. This
makes it more suitable for application to
complex configurations at transonic
speeds.

Sinclair
whereas our

As examples of computation, we have
considered RAE Wing C and ONERA M-6 wing.
The resultes are obtained for nonlinear
flow at high subsonic free stream Mach
numbers - sgubcritical, shock free super-
critical, and supercritical flow with
shocks,  and conmpared with the well
established results.

The simplicity of piecewise
singularity panels offers great
bility for application to complex config-
urations; since continuity of singularity
distribution is not enforced from panel to
panel, the assembly of panels representing
a complicated surface is fairly straight
forward. Further the low computing cost of
this method makes it attractive for
applications to nonlinear flow problens
requiring iterative solution.

constant
flexi-

The major advantage of the computa-
tional scheme attempted here is its
inherent capability to treat the complex
configurations with the same ease as a
simple 3-D wing, which otherwise would
require an elaborate body conforming grid
generation, a formidable task in itself.

I1. Formulation

The full potential equation for steady
inviscid compressible flow past three-
dimensional aerodynamic configuration can
be expressed as

P2e(x,y,2) = - %(Vp.v¢) (1)

where ) 1/(-1)
p = [1 + ; (r - 1) M. (1 - V9.98))

Subscript o refers to the undisturbed free
stream conditions. The velocity g = V¢ and

density o have been normalized by their
free stream values. Reading Eqg.(1l) as
Poisson's equation, the application of
Green's third identity yields for the per-
turbation potential at the point P(x.,vy,z)
in the field as

e = jj (o R, +# KP) as + I[f G K, av
s

D
(2)
where ¢ = ¢ - ¢m
K, = -1/ (4nR), Kp = n.VO{— KO}
R=3-B=tr -x,n-y, L - 2)
o = A(dp/8n), p = Ap
and G = (- 1/p) (Vp.99)
Here A represents jump across the surface

8 that bounds D and D', see Fig. 1;

V2¢=G

Figure 1. Fluid Domain and Boundary
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In the surface integral Q, Eq. (2) repre-
sents a variable point of surface S,
whereas in the volume integral Q repre-

sentg a variable point of domain D;

R is the distance from the field point P
to the variable point Q;

n.v._ = 8/8n
Q

normal to the
domain D.

represents the derivative

surface S8, directed into

Equation (2) states that the velocity
potential at a particular point P can be
computed from the source and doublet
distribution on 8 (taken to be the
configuration surface and the wake), and
from the spatial distribution of G,
representing the compressibility in the
domain D around S.

Since G in Eq.(1) is a nonlinear func-
tion of ¢, @(P) cannot be constructed
directly, as is done with the solution of
the linear equation

Vzp = 0

which is represented by

p(P) = [f (o K, +u K“) ds
S
Thus distributrion of plx,y,2) that
satisfies Egqg. (2) and the boundary condi-
tions on S, must be determined by some

iterative procedure. If this is done, it
follows from Egq. (1) that

jjf (V2¢ - G) K dv =0
D

i.e. the full potential equation has been
gsatisfied throughout D.

Boundary Conditions

The boundary condition at infinity is
automatically satisfied by Eq. (2).

On the body surface, the total normal
component of velocity must vanish,i.e.

n.ve = 0 (3)

Setting the perturbation potential in
the interior of the surface S to zero,
i.e.

= 0 in D' (4)
the interior Dirichlet boundary condition,
the source distribution on the body surf-
ace becomes o = 8p/dn, and the doublet
distribution u = ¢, the perturbation
potential on the body surface.

Then using (3), the source distri-
bution on S is determined, a priori, as

o = - ;.V¢m (5)

In addition, the Kutta condition is
specified at the trailing edge.

Integral Equation

With source strength o specified
through Eq. (5), Egq. (2) gives for the
potential at the field point P

B p(P) = ff o(Q) K, ds

5a

+ [ 8@ n.v_(- k) das

S
B-P
+ [f Ap (Q) n .9 (- K_)dS
S
o]
+ Jff ot &, as (6)
D
with E* = 1/2, for points on the body
surface
=1, for points in the domain D

and e =0, for points inside the body,

domain D'.

Here S/ and Sc indicate the body and the

wake surfaces respectively; S._P indicates
that s- does not contain point P;

Ap =@

w u
potential across Sc and n,

- represents Ehe difference in
represents the
unit outward normal drawn to the upper
surface of S,+ Moreover A(;u.Vp) = 0 on S.r

which is assumed to lie in the x-y plane.

Also note that pr i8 constant in the

wake along a streamline and equals to the
value at the trailing edge (te), at any
spanwise location, i.e.

pr = Apte !

since no pressure difference can exist

across the wake.

III. Numerical Solution

Discretization

For the numerical solution of integral
equation (6), the body surface and the
wake is represented by a number of flat
quadrilateral panels , see Fig. 2, and a
constant singularity distribution is
assumed on each panel.
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j-th panel

k-th
wake strip
X
Sec. A~A
Figure 2. Surface Panelling
Although D is the complete domain

external to the configuration, the field
source strengths G decay rapidly away from
the surface, and so in practice only a
limited region around the configuration
would be sufficient to solve the flow
problem. Therefore a region of Bpace
including the configuration and its
immediate neighbourhood is subdivided into
finite volume cells with Cartesian grid,
which penetrates the configuration, Fig.3.
The field source strengths are assumed to
be uniform in each cell.

EENE

x X Sec.A-A
A:
1,2,2 2,2,2
]
W2/ v 2.2
E
y
SR Y
g 2,2,1
(W] 2,1,
A Fleld cell

Figure 3. Field Grid

Thus we have the standard surface
paneiling along with the field grid, and
two set of control points. The surface
control pointg are taken to be the
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centroids of the surface panels, where the
surface sources are specified and thus the
Neumann condition is imposed. The field
control points are defined as the
centroids of the cells, where the field
source distributions are evaluated.

Assigning index i to each control
point at which Eq.(6) is to be satisfied,
we obtain,

Ns Ns
*
E LS T 2 °J Bl] * 2 pj Cij
j=1 j=1
ij
Nw Ng
+ (Ap), Cw,, + E G, D, (7)
k=1 n=1
*
where E = 1/2, for i = 1,2 ... Ns,
surface control points (CP)
=1, for i = 1,2 ... Ng,
field points (GP)
Ns is the total number of surface panels
on the body, Nw is the total number of
streamwise wake columns, and Ng is the

total number of field cells.

AP = fnu T PNI

Bij = ff K, ds, cij = jj ;.vu(- K,) ds
z x4

cwy = ff ;u.va(- K,) as
Tk

Din = III K, & dn &
av

PNu and PNp are taken as the values of the

the
k-th

potential on the panels adjacent to
trailing edge at the start of the
wake column.

B.

ij and Cij represent the potentials indu-

ced at the i-th control point due to a
gsource and a doublet distribution of unit
strength respectively on the j-th surface
panel.

Din i-th

control point due to a uniform unit source
distribution in the n-th field cell.

is the potential induced at the

The surface integrations are indicated on
flat quadrilateral j-th panel Zj, and k-th

wake colunn Zk . and volume integration on
n~th field cell AVn .



Equation (7) with Gn = 0 gives rise to

a low order surface panel method for in-
compressible flow problem. This approach

has been pioneered by Morino‘14), and
forms a subset of general method of

Johnson‘ls) for incompressible flows.

Evaluation of Influence Coefficients

The surface influence coefficients Bij

C.. and Cwik can be evaluated,

i3 (15)
following Johnson in the panel coord-

inate system attached with the influencing
panel j. The summations indicated over the
body surface and the wake in Eq. (7) are
then straightforward, as no further coor-
dinate transformation is required.

easily

The field source influence coefficient
for each of the field cells, external to
the body in domain D, can be evaluated
analytically in terms of the grid points
forming the cell. The resulting express-
ions are presented in the appendix. It may
be observed that the identical field cells
(n = 1,2,..Ng) with their centroids loca-
ted at the same axiswise distance from the
field control point i will have the =same
value of Din' This symmetry property is

exploited in the evaluation of Din’ which

reduces the number of calculations consi-
derably, and more important a saving in
the overall storage can be achieved.

The body surface slices through some
of the field cells, which alters the
finite volume discretization in the
vicinity of the boundary surface. An exact
evaluation of field source integrals for
such cells, which are of trapezoidal
shape, can be easily achieved by the use
of divergence theorem of Gauss. It can be
shown that the field integral for such a
cell is the same as the field integral
over the complete cuboid which partly lies
inside the body, i.e. domain D', with the
source strength evaluated on the body
surface from the external field.

Since ¢(P) = 0 inside the domain D',
the wvalue of the volume integral over the

cells completely 1lying inside the body
will be zero.
The evaluation of the field integral

is thus a simple summation for all the
field sources.

Construction of Artificial Viscosity

The full potential equation in conser-
vative form is written as

2.(pq) = 0 (8)
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with g = ¥¢. 1In the

schemes, the central difference approxim-
ation for this equation 1is unable to
capture shocks for supercritical flows, as
it mimics the behaviour of an elliptic
gystem. In supercritical flows, the hyper-
bolicity of the eguation should be ensured
at supersonic points. To simulate this,
upwind differencing is accomplished by the
addition of artificial viscosity A(P,Q,R).

finite difference

Equation (8) can then be written in con-
gervative form as
Vileg +A) =0 (9)

The term A has been modelled in the

literature in various forms for density
biagsing schemes (see e.g. Ref 11 and 12),

which differ slightly in details giving
almost similar results,

Here we consider modelling the arti-
ficial viscosity following Osher, Hafez
and Whitlow(13), referred to as Hafez-
Osher (H-0) scheme. This scheme uses
upwinding of the mass flux rather than
the density, and vields the following

form for the derivatives of the artificial
viscosity

+
+ (5 _¢) «
-2 X & (pq)_
= Ax éx[ g X ] R 6x¢ >0
* -
« (& @)
_ X & (pq)
= Ax 6x[ 3 ] 6x¢ <0
(10)
« -+
where 6x and‘éx refer to backward and for-
ward differencing respectively, and the
operations
g* = max(g,0), g~ = min(g,0)
The term (pgq)_is expressed as
(pa) - = pq - p*q*, if g > q* <=> M > 1,
»*
(pq)_ =0, q=q <=> M< ]

The guantities p* and q*
sonic condition given by

represent the

2
2 + (y-1) qm

* 2
(q) = _______2__.
(¥+1) M o
p* - (q* Mm)2/(y—l)



On discretization,

@),

Eg. (12) gives

1
ir 1

(0D)541/2

’

1
tqp (P12

> 0

Yi-1/2

1
- —= (D), _
q_, o i-1/2

(D).1/2

’

1
93

<0

Yi+1/2

(11)
where

i+l)—

X

(p; 4 (p.gq.)
_ i+1 171~ u,
(UD)i+l/2 = i+1/2

. - X.
i+l i

and u

@

X

Similar expressions are obtained for 8Q/38y
and 3R/dz.

The H-O scheme admite physically corr-
ect limit solutions to the FPE, and hence

more appropriate to model the artificial
vigcosity. The other advantage of this
scheme is that there is no need for the
user defined parameters to control the
artificial dissipation, as are usually
required for the density biasing
schemes‘ll).

Iteration Scheme

The construction given by Egq. (7)
turned into an iterative procedure.
iteration starts with an initial guess
Gn' The simplest choice would be G: 0.

Equation (7) then corresponds to the
solution of Prandtl Glauert equation, and
gives Ns linear algebraic eqgations for the
values of ¢ at the surface control points
i= 1,2...Ns, i.e. {p"(CP)}

is
The
of

With the surface values of o {p°(CP)}
known and the initial guess of Gn' compute

{°(GP)1 at the field cells
using Eg. (7). The gradients of the
potential, the density and its gradients
are then computed in the field by finite
differences, to provide the first estimate

centroids,

of Gi over all the field cells. Finally
the field integral f(P) is computed as
Ng
tlp) = Y 6, D, (12)
n in
n=1

With {fl(CP)} known, Eq. (7) is again

solved for {pl(CP)} as solution of Ns
linear algebraic egquations for the surface
control points.

Thus ©"(CP) at the mth iteration
obtained by the following steps:

is
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o™ Lgp) = £n 1™ Ticp), ™ 1(p) (13a)
M = fn i o™ Ler)) (13b)
Ng
f™(p) = 2 G_ D. (13c)
n in
n=1

Solve Eq.(7) for #"(CP) using pm_l(CP) and

£™(Gp)
(134)
continued till

The iteration is

@ (CP) converges.

cycle

Puring every iteration we are led to a
set of Ns linear algebraic egations, which
are solved by the Gauss-Siedel iterative
procedure with successive over-relaxation,
providing Ns disturbance potential on the
body surface. The over-relaxation factor
is optimized by numerical experimentation.

To accelerate the convergence for
supercritical cases, one more step may be

introduced in the above cycle, i.e.
modify pm_l(GP) as obtained from step
(13a), before it is made use of in step

(13b), as follows

m1igp) + (1-0)™ 2 (GP)

(14)

)™ Lep) = rp

where ((a)m-'1 represents the modified value
m-1

of ¢ at (m~1)th iteration.

A good choice of A reduces the number of
iterationa considerably. In the present
computations the following choice of A was
made

x = 0.5, M2 1.5
=2 - M, 1.5 >Mmzx 1
-1+ a-w)Hl’2, esmcn
where M is the 1local Mach number. This

choice reduces the number of iterations by
about one third.

The iterative solution yields the Ns
disturbance potential on the body surface.
A local linear distribution of ¢ is then
assumed using values at five panel
centres, that is a central panel and its
four immediate neighbours. The surface
potentials are differentiated using the
least square procedure. This together with
the tangential component of free stream
velocity provides the local total velocity
on the wing surface,

| e, * Ve | (15)
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e being the unit vector in the direction

of the free strean.

The pressure is finally computed using
the isentropic relation

'

o2 ¥y-1 2 . 2 y1

Cp = ——7[{ 1 + = Mm(l gt 11 (16)
*M
)
IV. Results and Discussion

The pressures are computed on ONERA
M-6 wing for subcritical onflow at free
stream Mach number of 0.5 at an incidence

of 3° using 62 x 9 surface panels, 9 wake
strips and 40 x 12 x 20 field cells. The
results at spanwise location 7 (= y/semi-~
gspan) = 0.4313 are presented in Fig. 4,
and compared with an Euler solution of

Salmond(l6), which uses 129 x 17 x 41
grids. A good agreement 1is indicated
considering relatively small number of

field cells in the present computation.

0.80

0.40

—Cp

0.00

—0.40 -v( X  Present
—— Euler Solution(ls)
-0.80 T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Figure 4. Pressure Distribution Comparisgn

ONERA M-~6 Wing: M s 0.5, o« = 3

Next we have considered RAE wing C,
t/c = 0.054 at M_ = 0.95, a = 05 a non-

lifting supercritical shock free case. The
results are obtained with 56 x 9 surface
panels and 40 x 12 x 20 field cells. A
comparison is made with RAE test data and
finite difference TSP solution of Bailey

and Ballhaus(l7), Fig. 5. A good agreement

is indicated in this case, however at y3 =
0.75, our results show a slightly enlarged
supersonic zone and the onset of shock is
perceptible.
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0.20
0.10
o
(I) 0.00
-0.10 X Present
4 [ Experiment RAE(17)
L (17)
TSP, FD Solution
-0.20 1
T T T T
0.00 0.20 0.40 0.60 0.80 1.00
x/c
= 0.73
0207 - 0.75
X X n=0.
X X
0.10
Q.
\'.’ 0.00
-0.10
X Present
1 TSP, FD Solution_(l7)
—0.20 A
T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Figure 5. Pressure Distribution Comparisons
RAE Wing C: t/c = 06054
at Mm = 0.95, o = 0

Finally, we have considered M-6 wing
at M_= 0.84 and a = 3.06°, a

cal case with shocks.

supercriti-

The right half of the wing is defined with
62 x 9 surface panels, 9 wake strips and
40 x 12 x 20 field cells around the wing
in the x, y and z directions respectively,
in a rectangular box bounded by

-0.125 £ x/c £ 1.539, 0 =<7y = 1.333 and
-2.60 £ z/c = 2,60,

with ¢ as the root chord.

The field grid spacing along the x and y
directions is chosen uniform with Ax and
Ay different, whereas a stretched grid
gpacing is employed in the 2z direction.
The results for the pressure distribution
are presented in Fig. 6.
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1.20
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1.20
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Figure 6. Pressure Distribution Comparisons
ONERA M-6 Wing:

M, = 0.84, a = 3.06°
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They compared with the AGARD test

which are solutions of Euler
equations based on a very fine grid exten-
ding to large boundaries around the wing.

are

The computed results at the spanwise loca-
tion % = 0.18 look very promising. The
shock location is predicted well, however
it is smeared over 5~6 field cells. Also
near the leading edge, the pressure peaks
are not resolved fully. The results seem
to deteriorate as one moves away from the
root towards the tip. The number of field
cells along the wing chord in the x-
direction at n = 0.18, 0.44 and 0.80 are
22, 19 and 15 respectively, yielding Ax/c=
0.0452, 0.0515 and 0.064 at these loca-
tions. These values of Ax are obviously
too coarse to either give a sharp shock or
to resolve the pressure peaks near the
leading edge adequately. This observation
is in accord with the trends reported in

the TRANAIR(6’7)results. Further it may be
noted that the computational domain
considered extends only 0.125¢ ahead of
the wing at the root chord which is quite
inadequate. Also no effort was made to
model the wing tip. Limited experimenta-
tion has shown that increasing the field
cell density in the x~direction reduces
the smearing of the shock and shows
improvement in the overall results
including the outboard stations. Further
experiments and improvement are currently
at hand.

The above set of three
took 4, 10 and 28 iterations
to achieve a residual error of 0.0002 in
each of the above computations. The
overall grid size was dictated by the
computational resources of the HP-9000
system available at IIT Kanpur.

computations
respectively

V., Concluding Remarks

The computational scheme presented,
based on IE method, is capable of treating
steady transonic flow past three
dimensional configurations, for subsonic
free stream speeds, successfully. The
formulation is of shock capturing type and
the contribution of shock, as a source of

disturbance, is embedded in the volume
integral term. To obtain good flow
resolution, a finer computational grid

forming the field cells would be needed in
the regions of rapidly varying flow, e.g.
shock regions and pressure peaks.

The IE method has sgseveral advantages
in comparison with the finite difference
(FD) solution. With the IE formulation the
far field boundary condition is automa-—
tically satisfied, and only a small compu—
tational domain is needed around the
source of disturbance. The accuracy of the
method depends on the evaluation of inte—
grals rather than the derivatives, and
hence coarse grids can be adopted.



The computational scheme developed
appears efficient in terms of the overall
iteration count as compared with the other
existing schemes that use finite differ-
ence/finite volume methods - throughout
large computational domain with fine grid.
However the major advantage of the scheme
attempted here is its inherent capability
to treat the complex configurations with
the same ease as a simple 3-D wing, which
would otherwise require an elaborate
procedure for body conforming grid genera-
tion, a formidable task in itself.

Further improvements/refinements of

the method and its extension to complex
configurations are currently being taken

up.

Appendix

Field Source Influence Coefficients

coefficient
grid points

The field source influence
Din in terms of the Cartesian
forming the field cell AVn is given by,

r

-1
J - & an & (A1)
e

Here the integration is indicated over the
grid points (vertices) of the field cells,
and

2, (n_y)2 N (5‘2)2]1/2

R = [(¥~x)
The volume integral

I =448 (- 1/R) d¥ dn 4¢

can be evaluated analytically to yield,

I = AB In{(H+C)/D} + AC ln{(H+B)/E}
+ BC 1ni(H+A)/F}
+ 2 8% tan liBH/ a0y}
+ ¢ tanYicu/(aE)t + A% tan”liam/(BO) 1]
(a2)

with A=x-¥%, B=y-=n, C=2-1¢,

and H" = A" + B + ¢° .

Integral I is evaluated at all the
vertices of the field cell, see Fig. 3, to
obtain the influence coefficient Din' Thus
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Din = 1/(4m) [1(2,2,2) + I(1,1,2)
+ I(1,2,1) + 1(2,1,1)
- I(1,2,2) - 1(2,1,2)

- 1(2,2,1) - I(1,1,1)] (A3)

The computations of field source
coefficients is most time consuming.
However, about 90% of the field source

coefficients may be computed by using the
far field approximation as follows, which
results in considerable efficiency.

Far Field Approximation

For the field cells far away from the
field control point, the uniform source
distribution in the field cell may be
replaced by a point source at its
centroid. In that case

D. = - 1/(4nRin) {DVn} (A4)

in

2 2.1/2

. 2
with Rin = [(xn~x.) +(yn—yi) +(zn-zi) 1

1

which represents the distance between the
control point (xi,yi,zi) and the centroid

of the n-th field cell (xn, Yo zn), and
DVn = (tz— 81) (le' nl) (Cz— (1)

is the volume of the n-th cell, in terms
of the coordinates of the grid points of
the cell.

The numerical experiments show that
the applicability of the far field
approximation is good if Rin/t > 2.5, with

b= 1E,- 2%+ e s - c B2

of the cell
i.e., the length of its diagonal.

the maximum dimension AVn,
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