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Abstract

The development and numerical validation of a
solid-wall boundary condition is presented for the
numerical.solution of the Euler equations with a
cell-centered central-difference scheme. This
solid-wall boundary condition was obtained from the
theory of characteristics, and was also formulated
for a cell-centered central-difference scheme. The
boundary condition was developed to clarify the
question what the effect is of various
boundary-condition algorithms on the accuracy of
the 3D numerical solution of the Euler equations.

The numerical validation of the solid-wall boundary
condition consists of a comparison of results
obtained with the conventional- and the new
solid-wall boundary condition. Also discretization
and convergence errors as well as grid dependency
of the solution were investigated.

As a test case, the NLR 7301 airfoil was chosen.
Calculations were performed for the supercritical,
shock-free flow at M =0.721, a = -0.194°, and for
a flow with a strong shock at M_ = 0.70, a = 2.0".

1l. Introduction

The main subject of this paper is a study into the
effects of the solid-wall boundary condition on the
accuracy of the numerical solution of the 3D Euler
equations around aerodynamic configurations. The
motivation of this study lies in the application of
the Euler equations to the flow around delta
wings™. Here accuracy plays an important role in
the simulation of the vortical flow due to
separation from sharp edges.
In Euler methods, the conventional boundary
condition along a solid wall is the prescription of
a normal velocity component of zero and a second
order accurate extrapolation of the static pressure
towards the wall. This leads to a false, numerical,
entropy layer along the surface. This entropy layer
can affect the accuracy of the inviscid-flow
solution and could render future extensions to
viscous-flow simulations useless. Also the false
entropy layers can have a large effect on the flow
separation from sharp edges, i.e. at the trailing
edge and at the leading edge of a delta wing with
leading edge vortices.
The foIlowing items, that have effect on the
accuracy of the numerical solution, will be
discussed:

- solid-wall boundary condition algorithm,

- grid-quality and grid-resolution,

- location of the far-field boundary,

- (boundary conditions of the) artificial

dissipation operator.

The solid-wall boundary condition presented in this
paper, called characteristic solid-wall boundary

condition, is obtained from the theory of
characteristics.

In Ref. 2. , a theoretical analysis of the
consistency, well-posedness and stability of the
characteristic boundary condition is described.
Here we will focus on the numerical analysis of
this boundary condition. The results and
conclusions, presented in this paper, are obtained
from two-dimensional airfoil flow.

As a test case we use the NLR 7301 airfoil, for the
so-called supercritical shock-free flow (design
condition) at M = 0.721, a = -0.194°. Also
calculations have been carried out for a flow at

M =0.70, a = 2.0°. For this latter case a strong
shock is present at the upper side of the airfoil.

The Euler equations for conservation of momentum,
mass and energy, are discretized by a fully
conservative cell-centered central-difference
scheme, and solved numerically using,a 4-stage
Runge-Kutta time integration scheme ~. The
characteristic solid-wall boundary condition is
also formulated with a cell-centered
central-difference scheme.
The NLR information system fgrstge73D Euler method
has been used for this study "7’ 7’ It consists of
(c.f. Fig. 1):
- subsystems for geometry processing, grid
generation, flow calculation,
flow visualization and data processing,
- subsystems for method management and data
management.

2. Governing equations

2.1 Discretization of the conservation equations

The governing equations form a set of five coupled
non-linear first-order hyperbolic partial
differential equations describing the conservation
of mass, of momentum, and of energy for the
inviscid flow of an ideal gas, i.e. in a Cartesian
coordinate system:

Ut+Fx+Gy+Hz=o’ (2.1)
where U is the flow state vector,
T
U=1[p, pu, pv, pw, pEl" , (2.2)
and F,G,H are the flux vectors, in Cartesian
coordinates:
T
pu pv pw
T pu3+ p  puv puw
[F,G,H]" = | puv pvi+p  pvw , (2.3)
puw pvw pwit p
uH vH wH
with

*) This research was partly performed under contract with the Netherlands
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T :
(u,v,w) = the velocity vector,

p = the density,
P = the static pressure,
E = the total energy,
1 2
E=-=-=-L2 4+
v-1p d
H = the total enthalpy,

2
H=E+p= SRS + % q

V-1 p
The equations are solved numerically with a
cell-centered central-difference scheme. Artificial
dissipative terms are added to the discretized
conservation equations. They consist of a
second-order term that should be active in shocks
in order to create steep shocks, and a fourth-order
term, active away from shocks to eliminate
decoupling of the solution at odd and even grid
points. A switch factor dependent on the
second-order derivative of the pressure is used as
sensor to detect shocks where the second-order
dissipative term is switched on and thE §ourth
order dissipative term is switched off™’'".
The time integration of the discrete equations is
performed with a 4-stage Runge-Kutta scheme. For
each grid cell, the discrete conservation equations
are written as

U§m+1) n (m) n

ik~ Uiget 9% CQpqp - Dyg ) (2.4)
where
U,., = the state vector at cell ijk at
ijk .
time 1evelﬁn s
(m) = stage in Runge-Kutta schemne,
- 0) _4n (4) _ o+l
m=0..3, Uy = Uise Yigk = Vijke
n = time level,
Qé?i = convective divergence at cell ijk at
J stage (m),
D?jk = dissipative divergence at cell ijk at

time level n ,

dt = Runge-Kutta time-stepz.

2.2 Boundary conditions

The discretization of the conservation equations
with a cell-centered central-difference scheme
requires the value of the flow gtate vector at each
cell-centre of an extra layer of cells along the
boundary, just outside the flow domain. The state
vector in these so-called halo cells has to be
determined from the boundary conditions. Here we

will describe the solid-wall and far-field boundary.

conditions as implemented in the present Euler
method.

2.2.1 Solid-wall boundary

Along the solid wall, the velocity vector
tangential to the solid wall, the pressure and the
total enthalpy are extrapolated linearly from the
two cells adjacent to the wall towards the solid
wall. The normal component of the velocity vector
at the solid wall is set to zero. From this
velocity vector, the pressure and the total
enthalpy, the density along the solid wall can be
calculated. The flow state vector in the centres of
the halo cells is detgrmined using an linear
extrapolation formula™.

2.2.2 Far-field boundary

At the far-field boundary, a boundary condition
based on Riemann invariants for a one-dimensional
flow normal to the boundary is used. Using the
component of the velocity vector normal to the
far-field boundary u_ and the speed of sound c,
Riemann invariants corresponding to inflow and
outflow can be determined. The incoming and
outgoing Riemann invariants are respectively

. 2¢c
Ri=u - 5oy (2.5)
2¢
Ro = uw + 51 (2.§)

Combining these Riemann invariants gives a
description of the normal component of the velocity
vector and speed of sound at the far-field
boundary:

u = (Ri+Ro) /2, (2.7.a)

c =(V-1) (Ri-Ro) /4. (2.7.b)
Depending on inflow or outflow, the state vector at
the far-field boundary can be determined. For flow
entering the flow domain (u_ > 0.), the tangential
velocity components and the entropy (or more
precise a measure for the entropy S = pp ') are set
to the free-stream values, Ro to the value obtained
through extrapolation from the interior of the flow
domain to the boundary; for flow leaving the flow
domain (u_ < 0.), the tangential velocity
components and entropy are set to the extrapolated
values at the boundary, Ri to its free-stream
value. In this way, the flow state vector at the
far-field boundary is calculated. The flow state in
the centre of the halo cell ousside the flow domain
is determined by extrapolation”.

3. Characteristic solid-wall boundary condition

Along a solid-wall boundary, a layer of auxiliary
cells of half a mesh height above the surface in
the flow domain is introduced (Fig. 2). For each
auxiliary cell a set of five semi-discrete
conservation equations is defined,

U

n n
)14k + Qij%(U ) - Di %(U )y =0. (3.1

A
where
(Ut)"h = the time derivative of the state
H vector at the solid-wall ijk,

Qij%(Un) = the divergence of the convective
fluxes, at the cell centre ij% of
the auxiliary cell, at time
level n,

Dij%(Un) = the divergence of the dissipative
fluxes at the cell centre ij% of
the auxiliary cell, at time
level n.

These equations are transformed into characteristic
form. This transformation is performed by
premultiplying the equations by the 5*%5 matrix

-1
Tipe = Roapy Cajy Sign -
The 5x5 matrix S introduces a transformation from
the (x,y,z) coordinate system to a local coordinate

(3.2)
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system (n,s,t), with n the unit normal to the cell
face ij% on the boundary, and (s,t) tangential to
the surface along the boundary. C is a scaling
matrix, scaling eigenvalues (velocities) t
dimensionless quantities (Mach number). R™~ is the
transformation of flow-state changes in primitive
variables to flow-state changes in Riemann
variables. This leads to

n
Oy * Tign [ Gy

n
: S DU 1 =0, 3.3

a set of five comservation equations. Here ¢t is
the vector of time-derivatives of the
Riemann-variables,

S tl t2 -
¢, = Lrg, rl, 0, 5 ], (3.4)
where

o= pu_ +

t pPuc + & Pe o

S o

Te cS St '
rtl = pv

t P t’

rt2 = pw

t P o
. = pi -1

t Pue = o P

These time derivatives correspond to the
eigenvalues A, = U+c, ) = =4,

= A
and 5 = u-c, respectivegy. Farthermore,

U = velocity component in n direction
(normal to the boundary, positive if U is
directed into the flow domain),

V,Ww = velocity components tangential to the
boundary,

¢ = speed of sound,

S = p/py , & variable depending on the

entropy.

Time derivatives of the Riemann variables
representing information entering the flow domain
through the boundary can now be replaced by
boundary conditions. They can be recognized by a
negative sign of the corresponding eigenvalue.

At the solid wall, a boundary condition has to be
prescribed for r_ .The boundary condition is : the
normal component of the velocity vector must tend
to zero, when time goes to infinity.

For the Riemann variables with the zero eigenvalues
( 12 = AS =1, =0 ), it is permitted to prescribe
boundary condétions but it is not necessary.
Physically the §hre%1corgﬁsponding conservation
equations for r_, r =, , describe the transport
of entropy and momentum fn a direction tangential
to the solid wall.

From numerical experiments with transonic
shock-free flows around airfoils, it was concluded
that it is useful to apply also a bogndary
condition for the Riemann variable r. The boundary
condition chosen in the present work is that the
entropy gradient in the direction normal to the
solid wall vanishes at the solid wall, when time
goes to infinity (steady state).

These two boundary conditions can be expressed as:

r)p -
s
(rog = - ds(%)s( Sp = Sop ) / Aty

( - dp pg( iy - F ) /Aty - (r:)B (3.5.a)

(3.5.b)

where subscript B denotes the multi-index on the
solid-wall boundary,

B = .ij% .
Using ri + r. = 2P (V) and giving prescriptions

that drEve %ﬁt) andt(gt)B to zero, gives the
desired boundary conditions,

GB = actual value of normal velocity at
cell-face centre B,
u = desired value of normal velocity at
oB
cell-face centre B,
SB = actual value of entropy at cell-face
centre B,
SoB = desired value of entropy at cell-face
centre B, S =85,..,
oB ij1
duB , ds scaling parameters (> 0), specifying
how fast U _, and § _ are driven to
their desired values U S

’ B
when t—>=. oB °

These boundary conditions may be written in the
general form,
n
(¢t)B + fB(U )y =0. (3.6)
This is a set of five equations, two of them are
the boundéry conditions (3.5), the remaining three
can be arbitrarily defined, because they are
eliminated, see below.
Of the five conservation equations (3.3), two
equations have been replaced by boundary
conditions. The remaining three equations are also
required to obtain a total of five difference
equations for the flow-state vector at each halo
cell centre. They are called auxiliary equations.
These auxiliary equations are thus semi-discretized
conservation equations.
The boundary-condition equations (3.6) and the
remaining auxiliary equations are combined to a set
of five new equations, by a so-called incidence
matrix I . It is defined as a diagonal matrix whose
elements are 0 for Riemann variables which
corresponding conservation equation has been
replaced by a boundary condition, and 1 for the
other Riemann variables. In our case
1, = diag(1,0,1,1,0).
Now the boundary conditions and conservation
equations can be combined using the incidence
matrix,
n n
(9 0p + Iy Ty [ Q5 (U7) - Dy (U) 1+

ij% ij%

n
+ (I-IB) fB(U ) = 0. (3.7)
This set of equations is mapped back into equations
for the primitive state vector U,,, at the,solid

wall by pre-multiplying with the Atrix Té%

4. Numerical analysis of boundary conditions

4.1 Description of test cases

As a test case the NLR 7301 airfoil was chosen. It
was designed for the free-stream flow condition
M= 0.721, a = -0.194", to have a so-called
super-critical shock-free flow, i.e. the flow has
supersonic and subsonic regions but no shock. This
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is a widely used and critical test case for the
numerical validation of Euler codes.

Also calculations were performed for the
free-stream condition M_ = 0.7, a = 2.0°, for which
the flow features a strong shock on the upper side
of the airfoil.

For the calculations two grids were used. All are
1-block O-type grids, and can be characterized by
the number of grid points along the surface, the
number of grid points in the direction normal to
the surface, the cell-aspect ratio at the

solid wall, the cell-aspect ratio at the far-field
boundary, and the location of the far-field
boundary. The cell aspect ratio is defined as the
height of the cell (normal to the boundary) divided
by the cell length (along the boundary).Table 1
provides a list of the grids.

Grid A (depicted in Fig. 3) has 256x160 cells on
its finest level (256 cells along the airfoil, 160
in the direction normal to the surface), and a
cell-aspect ratio of 1.0 at the solid wall, 2.0 at
the far-field boundary, located 100 chords from the
airfoil.

Grid B is similar to grid A, but with the far-field
boundary located 40 chords from the airfoil,
requiring 128 cells in direction normal to the
surface.

Unless otherwise stated, each computation result is
fully converged, i.e starting from a uniform flow
condition as initial solution, the residue was
decreased at least four orders of magnitude.

4.2 Results NILR 7301 airfoil, M =0.721, o=-0.194"

For this super-critical shock-free flow condition
the results with the Euler method obtained on

grid A are discussed.

Results calculated with the characteristic
solid-wall boundary condition were compared to
results obtained with the conventional solid-wall
boundary condition of a zero normal velocity
component and extrapolation of .the pressure.

In Fig. 4. the Mach number distribution in the flow
field around the airfoil is given. As can be seen,
there is a sonic line (Mach=1.), a subsonic region
and a supersonic region but no shock. Comparison of
the Mach number distribution along the surface
obtained with the characteristic solid-wall
boundagy condition, and with that from hodograph
theory , figure 5, shows an exellent agreement,
except at the upper side of the airfoil where there
is a slight difference. This is near the point of
the highest curvature of the airfoil, where small
inaccuracies due to the artificial dissipative
terms in the Euler method are locally largest.

The result for the Euler method with conventional
solid-wall boundary condition is quite similar to
the result shown in Fig. 4. This is clear from
figure 6, which shows the Mach number distribution
on the surface for the Euler method with the
characteristic solid-wall boundary condition, for
the one with the conventional solid-wa}l boundary
condition and for the hodograph theory . Only
slight differences can be observed.

For inviscid shock-free flow, the flow should be
isentropic and any production of entropy or total
pressure is a numerical, non-physical artifact.The
increase in entropy, here defined as

S-58, =c¢ 1og((p/pV)*(pm/pz)), at the surface of
the airfoil of both calculations are compared to
each other in Fig. 7. In case of the characteristic
solid-wall boundary condition, the numerical
entropy layer has been reduced by a factor of

approximately two compared to the result for the
conventional boundary condition. In this case, the
entropy increase is negligable at the lower side,
and small and almost constant at the upper side.
Only near the stagnation point an increase of
entropy can be observed. A study into the source of
this entropy 'bubble’ led to the conclusion that it
is due to discretization errors.

It was not possible to obtain a shock-free solution
on grid B, while the only difference between grid A
and grid B is the location of the far-field
boundary. We therefore conclude that, for the
spatial discretization techniques in the Euler
method applied here, there is insufficient
resolution to describe the shock-free flow solution
accurately.

4.3 Results NLR 7301 airfoil, M =0.70, a=2.0"

For this test case with a strong shock on the upper
side of the airfoil, very similar solutions were
obtained on grid A and grid B.

In figure 8, the Mach number distribution in the
flow field around the airfoil is given, as
calculated on grid A using the Euler method with
the characteristic solid-wall boundary condition.In
figure 9 the Mach number distribution along the
surface is given as computed on both grids using
the Euler method with the characteristic solid-wall
boundary condition. The effect of the grid on the
position of the shock is negligable, only a slight
shift can be observed. Also the strength of the
shock is not influenced.

The reason that it is possible to arrive at a
converged satisfactory solution on grid B in case
of a strong shock, while it was not possible in
case of the shock-free super-critical flow, can be
explained by observing that shock-free
super-critical airfoil flows are extremely
sensitive to numerical errors of all kinds, as
follows. At the downstream side of a supersonic
pocket, the flow decellerates smoothly through a
sonic line from supersonic to subsonic flow. This
decelleration is thus not discontinuously through a
shock, as is usually the case. Now small
disturbances generated anywhere in the supersonic
field or at its boundary, are propagated along
characteristics, and reflected repeatedly against
the airfoil and at the sonic line. These reflected
disturbances pile up near the downstream foot of
the sonic line on the airfoil, and tend to destroy
there the shock-free character of the flow. When
these disturbances (numerical approximation errors
generated everywhere in the supersonic pocket) are
small, their combined effect will thus become
visible as a change of the shock-free flow at the
foot of the sonic line, often to a flow with a
small shock.

Here we will discuss the results as obtained on
grid A using the Euler method with the
characteristic and the conventional solid-wall
boundary condition. In figure 10 the Mach number
distributions along the surface of both
calculations are compared to each other. They
coincide within plotting accuracy. In figure 11 the
increase in entropy along the surface of both
boundary -conditions are compared to each other. It
is seen that, in case of the characteristic
solid-wall boundary condition, along the lower
surface, the flow is nearly isentropic for both
boundary conditions ,except near the stagnation
point. At the upper surface, errors in the entropy
have been approximately halved,compared to the errors
with the conventional solid-wall boundary condition.
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5. Concluding remarks.

The characteristic solid-wall boundary condition
leads, in terms of the numerical entropy layer, to
a more accurate numerical solution of the Euler
method than the frequently used standard boundary
condition involving the zero normal velocity
component and extrapolation of the pressure towards
the solid wall.

For the very sensitive test case with the
shock-free flow, the location of the far field
boundary appeared to be of importance. Further
study of the grid dependence of the solution is
required.

It appeared that the rate of convergence is not
influenced when the conventional solid-wall
boundary condition is replaced by the
characteristic solid-wall boundary condition.

The concept of the characteristic solid-wall
boundary condition offers, at least in principle,
through utilizing the possibility to impose
additional boundary conditions, the opportunity to
simulate smooth body separation such as secondary
flow separation in delta wing vortex flow
simulations.

6. References,

{1} JACOBS,J.M.J.W. ,HOEIJMAKERS,H.W.M. : "Aspects
of the application of an Euler-equation method
to the simulation of leading edge vortex

flow .", NLR TP 89272 L ;

also Proceedings Eighth GAMM Conference on
Numerical Methods in Fluid Mechanics,

27-29 september 1989, Delft, The Netherlands.
VAN DEN BERG,J.I. ,BOERSTOEL,J.W. :"Theoretical
and numerical investigation of characteristic
boundary conditions for cell-centered

Euler flow calculations.”, NLR TR 88124 L.
JAMESON,A. ,SCHMIDT,W. :"Recent developments in
numerical methods for transonic flows.",
Computer Methods in Applied Mechanies and
Engineering 51, (1985), pp. 407-463.
BOERSTOEL,J.W. :"Progress report of the
development of a system for the

numerical simulation of Euler flows, with
results of preliminary 3D
propellor-slipstream/exhaust-jet
calculations.", NLR TR 88008 L.

BOERSTOEL,J.W. et al.:"Design and testing of a
multiblock grid-generation procedure for
aircraft design and research.",

NLR TP 89146 L.

BUYSEN,F.A. :"Flow visualisation at NLR :
VISU3D ", NLR TP 89317.

SCHUURMAN,J.J. ,KASSIES,A, ,MEELKER,J.H.
"Method Management for the benefit of large
software packages for analyses in GAE.",

NLR TP 89027.

YOSHIHARA ,H. , SACHER,P. (ed.)
inviscid flow field methods.",
Advisitory Report 211, AGARD-AR-211, 1985,

(2]

(3]

[4]

[5]

{71

[8]

:"Test cases for

GRIDS A B

o number of cells along airfoil | 256 | 256
o number of cells in normal

direction 160 | 128
o cell-aspect ratio at

solid-wall 1.0 1.0
o cell-aspect ratio at

outer boundary 2.0 | 2.0
o location of outer boundary 100c | 40c

Table 1. Characteristics of the grids used.

METHOD i
MANAGER
T
USER handling data
INTER-
FACE orid
=
fa—nd
flow flow simulation
EXECUTIVE pa— data
Dodt- DATA aerodynarmic
i MANAGE- jcharacteristics.
MENT
INSTALLED DATA FILES/
PROGRAMS SYSTEM DATABASE

Fig. 1. Conceptual design of an information system

for flow simulation.

—i

boundary

1 3 1 cell-centre (i, 3/4)

2 face-centre (i, 1/2)
3 face-centre (i + 1/2, 3/4)

Fig. 2. Auxiliary cell (2D) along the boundary of

the computational domain.
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e
-
1

Fig. 3. Grid A around
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NLR 7301 1.5

MACH
Moo =0.721,-cx = 0.194 -s—s—s— Chacteristic s.w. b.c.

Euler, characteristic b.c. P —— conventional s.w. b.c.
Grid A : 256 x 160 hodograph solution
AM=0.05 |

NLR 7301, M _, =0.721,-c¢ = 0.194
grid A : 256 x 160

x/c

0.0 T L

0.0 0.5 1.0

Fig. 6. Comparison of surface Mach number
distribution with hodograph solution.

Fig. 4. Flow field Mach number contours.

2.

-
NLR 7301, M , = 0.721,-cx = 0.194
- . Entro| (oo '
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MACH x  hodograph solution
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conventional s.w. b.c.
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NLR 7301, M _, = 0.721,~c¢ = 0.194
grid A : 256 x 160 U.S. : upper side
L.S. :lower side
x/c
0.0 1 - 4L
0.0 05 1.0
Fig. 5. Comparison of surface Mach number Fig. 7. Comparison of entropy increase along
distribution. the surface.

1831



NLR 7301
M =07 =20
characteristic s.w. b.c.

grid A : 256 x 160

- AM=0.10

Fig. 8. Flow field Mach number contours.

1.0+

0.5——F

0.0

N-+—e—e— grid A : 256 x 160

NLR 7301, M, =0.70, «x=2.0
Euler, characteristic s.w. b.c.

[
05

Fig. 9. Comparison of surface Mach number

distribution.

-—e—e— characteristic s.w. b.c.
----- conventional s.w. b.c.

1.57—
MACH
1.0
0.5
NLR 7301,M , =0.70, =20
grid A : 256 x 160
x/c
0.0- | — -
0.5 1.0
Fig. 10. Comparison of surface Mach number
distribution.
NLR 7301, M _, =0.70, x=2.0
grid A : 256 x 160
12.T : :
Entropy !
Increase i
8.
characteristic s.w. b.c.
4.1 -

conventional s.w. b.c.
e st DT, A

-2,

i us.: upper side 1.
L.S. : lower side

0. ‘& U Y —iLS.
L

Fig. 11. Comparison of entropy increase along
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