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Abstract

It is shown that one of the reasons
for a relatively slow iteration grocess
convergence during transonic  potential
flow calculations by relaxation methods is
the calculation in "the vicinity of the
infinit¥ point. The exclusion of this
domain from the calculation region and
using of the Dirichlet type condition on
its “boundary leads to an appreciable
convergence acceleration and computational
time reduction. The analogous method can
be wutilized for the calculations of
axisymmetrical bodies and wings.

The second question involved deals
with the determination of the wave drag in
the potential airfoil flow calculations.
The drag values were corrected for the
nonconservativit{ of the finite-difference
scheme and potential model errors and the
result agrees well with the Euler equation
solutions.

I. INTRODUCTION

The ideal gas flows are governed by
the Euler equations. A numerical solution
of these equations requires a great deal
of compututer time. Thus in practice the
potential flow model is often used which
gives satisfactory results in case of weak
shocks.  The potential flows are
successfully calculated by relaxation
methods. ‘

The present work deals with two
Froblems connected with potential airfoil
lows as an example. In the first part of
the work the method of the convergence
rate acceleration in the solution of the
Eotential equation by _the relaxation
echnique is considered., It is known that
the relaxation techniques are
characterized by a rather slow
convergence. When Solving such problems as

the aerod¥namic form optimization, taking
account of the viscosity effects by the
boundary  layer approach, repeated
calculations of the flow about different
conf igurations are required, This
stimulates the computational time
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reduction escpeciallK in connection with
the application of the mini- and personal
computers.

Lately various methods of transonic
problems convergence acceleration are
explored. To do it extrapolation methods',
direct  Poisson solvers®,  ADI- and
AF-methods®~*, multigrid methods®, schemes
for the .vectorized “computers® and some
others are used. In several cases such
methods makes it possible to reduce the
computer time by an order of magnitude as
compared with® the successive line
overrelaxation (SLOR) methods. However, as
a rule, such methods are considerably more
complex from the Erogramming point of view
than the SLOR methods, and the last of the
above pointed methods requires special
vectored grocessor computers.

In the present paper it is shown that
the slow convergence of the SLOR-methods
is to a significant extent connected, with
the need of calculation in the vicinity of
the infinity point. The exclusion of "the
far- field "domain from the calculation

region and using the Dirichlet tyge
condition for the potential on 1iis
boundary taken from the «crude mesh

calculations ?ives an apgreciable
convergence acceleration. This method can
be used with other acceleration methods
for a further computer time reduction. It
can be also utilized for three-dimensional
calculations.

Another problem involved is connected
with the wave drag calculation in the
potential . airfoil  flow, Various
finite-difference schemes are developed for
the solution of the gotential equation.
They may be divided into conssrvative and
nonconservative ones. In the conservative
schemes, the mass conservation on shocks
is maintained. In the nonconservative
schemes, shocks are sources of mass. For
weak shocks the nonconservative schemes
give a good agreement with the Euler
equation = solutions and experimental
results, and this agreement 1is often
better than for the conservative schemes.
The examples illustrating this fact ma{ be
found in”~®. An apparent”™ reason is that
the shock mass sources model the entropy
changes on shocks, which also gives rise
to mass sources in the potential flow
model® ®.

One of the drawbacks of the
nonconservative schemes is that shock wave
mass sources give additional drag. This
fact was pointed out in®.

The second reason for the divergence



between the wave drag values calculated by
the solution of the potential equation and
the Euler equations is that the conditions
on shocks and the sources of the wave drag
rise in these cases are different'’. This
remark is common for both the conservative
and the_nonconservative schemes.

In® it is suggested to take into
account the effect of the scheme
nonconservativity on wave drag by
subtraction of "the drag due to  masS
sources. In'' some corrections for the
potential flow wave drag values are
suggested with the aim of a?proaching to
the Euler equation results. In the present
paper both of these corrections are used
in the airfoil calculations and it is
shown that taking account of these
corrections gives ?ood agreement with the
Euler equation solutions for wave drag
values in weak shock cases.

II. CONVERGENCE ACCELERATION OF RELAXATION
METHODS

CONVERGENCE ANALISYS IN THE VICINITY OF
THE INFINITY POINT

In airfoil calculations a conformal
mapping of the flow region onto a circle
as a method of grid generation is often
used. The infinlt{ point in such cases
corresponds to the circle centre. The
velocity potential equation in the polar
?oordinates (r,8) in this circle takes the

orm

gg (2q) + rgF [re2.) = 0 )

where & is the potential, p - the density.
Let us consider an incompressible fluld
flow for simplicity. The equation (1)
becomes the Laplace equation

g
tgg + rg(r 3] = 0 &)
or
§88 + r2§rr +r §r =0 (3
Consider the finite-difference
a?proximation of this equatign by the use
of difference scheme from” where the

derivatives in (3)

are approximated as
follows

o 2 2
(A8)%8gg = B yy = o @k,J—[a - T]Qk'f
+
ey
2 _ &+ _ oxt +
(Ard®@p. = & j4q ~ 28 5 + {4 )
ZAI‘Qr = §k1J+1 - @k'J_l

where the plus sign means a potential
value from the = current iteration,
otherwise it is taken from the previous
iteration, w - relaxation parameter (which
is equal to 1.4 in”).
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Accordinﬂ to the von Neumann
difference scheme stability method let us

consider the behaviour of the Fourier
harmonics= eiABGtBr
k. )

szj = Mg, |
The neéessar¥ scheme stability condition
is Jx] £ 1. The substitution of (5) in (4)

and then in (3) and neglecting the terms
of the order of 0C Ar®”) gives

. 2 2 .
o _ _ - -l 2.2
e - A EE - ; e "TA +r
[ZisinBArk’ —4sin2-2~x]+ )

+1iryAMsinpg =90
where o = A A3, B =B Ar, y = A8 / Ar.
If sin f # 0 then at r =+ 0 which
corresponds to the infinity point, one can
obtain the following differential equation
for the determination of A

rex’ +Gx+H=0

2
-la _
€ o
where G = ,
2t Arar2 sin (3
et - o~ &
= . Its scolution is
21 ArHr2 sin 8 ,
sin «
A=Ce®T - =, Re G =- <0
2 Ar y? sin .3
for all harmonics 0 C a < m, 0 < # < 1 and
consequently
9 la
ko 1o 2-e
A= B T ia
1- e
z

It mﬁy be shown that the maximum value of

-5 = 1 is attained at a = 0. If a = 0,

# = m, which corresponds to high frequency
oscilations along r coordinate, the
expression for X 1n accordance with (B)
takes the form

A= (7

— -1

®
which at r + 0 (0 < 0 < 2) tends to unity
and, hence, high frequency oscillations
along r coordinate decay most slowly in
the vicinity of the infint¥ point. ‘

Thus the presense of "the infinity
point in the calculation region is the
reason for a slow convergence of



relaxation methods. Such a conclusion ma
also be drawn for other types o
difference schemes, for example for the
conservative scheme of the form

- -~ + +
(A8)2 ®g9° §k+1,j 2 {)k,j * Qk“lyj
a + +
(Ar)® a}—[r Qr] =rj+1 /2 [Qky\]'*'l - Qkuj]—

" Tjmie [§E,J B éE.J-l] 8

In this case the expression for A at o =
0, B = m coincides with (7) for w = 1.

The solution in the vicinity of the
infinity point may be evaluated “from the
well-known asymthotic behavicur of the
potential or from the potential solution
obtained on a crude grid. The potential
“"freezing” in the vicinity of the point r
=0 (at r < ro) and the application of the

Dirichlet type condition on its boundary,
that is fixing the potential values at
r=ro, substantially increase the value of

residual convergence, as this show the
numerical resulis given below.

NUMERICAL RESULTS

The calculations were carried out for
NACAOQ1Z2 airfoil for subceritical CMm=O.6,

a = 2°) and supercritical (M=0.8, a =17

cases. The polar grid was wused with the
number of nodes 80x16 (80 points on the
airfoil). The preliminary calculations
were carried out on a crude grid with the
number of nodes 40x8. Then the potential
values were "freezed" in the circle of
radius ro and at the boundary of this

circle the Dirichlet type condition were
imposed. This "freezing" did not touch the
circulation ternm, that has been
recalculated after each iteration.

Fig.1 shows the convergence of the
maximum residual logarithm for the
NACAOO12 airfoil calculation at M=0.6,

o=2". The calculations were carried out
with the aid of the code” (nonconservative
scheme (4)). The numbers on the curves
mean the amount of "freezed" grid layers
along r-coordinate. noticeable
convergence acceleration is observed which
increases with the “freesing" reglon
growth., To illustrate the fact "that this
acceleration is not connected with the

decrease in the node number along
r-coordinate, the results of the
calculations on the 80x8 grid are

presented in the same figure. In this case
no convergence acceleration is observed.
In Fig.2 analogous results are
presented which were obtained wusing
conservative scheme (8). The convergence
rate is practically the same as in the
previous case. Similar variations of the
convergence rate are observed in  the
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supercritical flow case (Fig.3).

20 40 60 80 100 120 140 160 180 200
0 +———t——tp——rt + —r—t
NACA0012

Mo=0.6 o=2°
Grid 8016

P
¥ +

| leg Res max

Figl Convergence history,
Nonconservotive scheme,

20 40 60 80 100 120 140 160 180 200

0 ~+——+ +———t + +— .
NACAD012 Iter
Meo=0.6 a=2°
1T Grid 8016
-€ + \\\U
._3 -+
- N\ T 4
\\.\
-4 \ \\‘
-5 - \\\
.
-6+ \\
] AN
.
-7+ \\\
AN
N
-8 8
log Res mox '\\\
P N

Fig.2 Convergence history.
Conservotive scheme,

The potential "freezing” even in a
large region does not T lead to a
substantial accuracy deterioration in the
calculations of distributed and total
aerodynamic characteristics. The changes
in 1ift Cy and wave drag Cx coefficients
(determined from the preSsure integration)
with the number of "freezed" grid layers N
are presented in Fig.4. The variation of N



om 0 to 8 leads to a maximum variation
7 Cy and Cx of about 2%.
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Thus the exclusion of the vicinity of
the 1nfin1tg Eoint from the calculation
region substantially accelerates the
convergence of the iteration process for

transonic calculations by relaxation
methods both for the nonconservative and
for the conservative schemes without any
visible deterioration of the calculations
accuracy. This method was successfull{
used for calculations of  axisymmetrica

and three-dimensional flows'?Z.

IIT WAVE DRAG CALCULATION

‘ Let us consider an isoenergetic and
isentropic ideal gas flow. This flow is
potential in accordance with the Crocco
equation. In this case the changes of the
momentum I = p + pV® and mass flow q=pV on
the normal shock take the form

1 o .
{I} = V* [Q] -3 Pse v I* [CAV®] +

+ 0 ((AN* 4°))
1 M
[q] = - o Py av—l* [CAV)Z] +
1 2 af P ]
* 5 Px [T A le m el LAV
+ 0CCAV*®)
where is the pressure, subscript

denotes critical values, square brackets
denote value jump on the shock, AV=V-V_.

If mass conserves on the shock then [ql=0
and momentum change has the third order of
magnitude (relative to AV, or Msh_l where

Msh is the local Mach number before the

shock on the airfoil surface). Using the
momentum conservation law, drag may be
expressed as follows

X = f{I1 cos pdl - Q

sh
where Q is the total source intensity in
the flow field.Because the main “~mass
source in the nonconservative schemes is

the shock, Q = flql dl and, hence
sh

X = f[[I} cos y - [q]] dl

sh
Since for the airfoil flow the shock is
nearlg normal and ? is small enough it is
Eossi le taking (9) into account, to write
he drag in the following form

1 e .
X =(V, -1 Q- —3—f{p* a7 e [CAD®T +
sh

+ 0CCan 9} dl (10
For the conservative scheme [gl = Q@ = 0
and only the third order value is

integrated. When the Hugoniot conditions
for the Euler equations are used then the
wave drag can also be expressed as an
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integral along the shock from the function
Eroportional to the entrogK jump across

he shock which has the ird order of
magnitude’ Hence the conservative
scheme drag has the right order. It can be
shown that the length of the shock is
Eroportional to AV i.e. it is the value of

he first order of magnitude.In this
connection the wave drag calculated with
the aid of the conservative scheme, as by
the Euler equations solution must be the
forth order of magnitude. As for the
nonconservative schemes in accordance with
the last line of (9 the [q)] value has
second order and the wave drag itself the
third order just like the value. To
obtain the wave drag with a right order it
was suggested in® to subtract the value
(V,-1DQ from the drag obtained by the

pressure integration, The Q value was
obtained by 1nte%rating the mass flow
along the circle of a large radius. Such a
correction to wave drag values obtained
with the nonconservative scheme gives hoge
to get a value close to that obtained with
the conservative scheme only if the
position and the strength of ‘the shocks
are close in case of both schemes.

Below are given the results of the
investigation of the applicability of this
correctlion for the scheme
nonconservativity for symmetrical flow
about NACAQO12 airfoil as”an example. The
calculations are carried out with the aid
of the nonconservative” and conservative
schemes. Fig.5 shows the results of the

wave drag coefficient calculations
depending on Mp - The results are
given in logarithmic scales for the

nonconservative and conservative schemes.
The computed data were approximated by
straight lines using the least square
method. The slope of such line for the
nonconservative scheme is equal to 3.0
which is consistent with the theoretical
considerations concerning a  cubical
dependence of the wave drag on the shock

strength given above. So the drag in this
case is mainlg' due to a growth of the
source intensity Q with the growth of the

shock strength.” The slope o l%? Q (log
(Msh- 1)) dependence equals to 2.8 whic

is close to the theoretical value 3.0. The
Q value was calculated by integratln% the
mass flow along the circle of a arge
radius and was made dimensionless with
respect to freestream parameters and
airfoil chord. For the conservative
scheme, a slope of line approximating log
Cx (log(l, - 12D dependence is equal to

4.0 what is also consistent with the
theoretical considerations given above.
Comparison of wave drag values for the
nonconservative and conservative schemes
is given in Fig.6. It is seen that the
presence of the shock mass source in the
nonconservative scheme substantially
overpredicts wave drag. Supposin

closeness of the shock wave to the norma

one and taking (10) into account one can
insert the following correction for the
mass source

X=fpdy-(v,-1Q (11)

Here integral is taken along the airfoil
contour. As a result drag will be of the
fourth order with regard to the shock
strength. The results with this correction
are also shown in Fig.6. Up to M =0.81 the

results of the wave drag calculations by
the conservative and corrected
nonconservative schemes agree well. At
greater M, numbers there is a divergence

which can be explained by the fact that
different schemes give different results
for pressure distribution, in particular,
for “shock position and strength. An
example 1is given 1in Fig.7 where the
dependences of the Mach number upstream of
the shock on the airfoil surface I, and

shock position Xy (sonic point) on the M

~-15 -1 . -0.5
. h )

logMsh-1)
NACAQ012 a=0

log Cx, log @

-4
0 O Cx, nonconservotive scheme

o b Cx, conservative scheme

5 & [, conservative scheme

Fig.5 Dependence of Cx and
source intensity on shock
strength,

number are shown. Up to M= 0.8 both

values are close for different schemes but
at M,> 0.8 the conservative scheme gives a

more aft shock position, which explains a
more rapid drag rise.

When the Euler equations with the
shock wave Hugoniot = conditions are
considered, the drag is the result of an
entrop{. jumE on shocks ®. This entropy
jump like the momentum jump across an

1823



isentropis shock is of the third order of

magnitude. Hence, the calculation of
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Fig.6 Dependence of Cx on M.
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Fig.7 Dependence of shock strength
and position on Mq.

isentropic flows with the conservative
schemes or nonconservative ones with the
correction for the mass source presence

gives the wave drag with right order of
magnitude. But the ratio of coefficients

at leading terms of the least order in
these both cases differs from unity and is
equal to

Xe 1

Xi ®-1 1/2
My (1 05 - D)

where Xe is the Euler flow drag and Xi -
the isentropic flow drag. This formula was
obtained in'* in the assumptions that the
shock is normal for both flow models, the
Mach number values upstream of the shock
and its position are identical. This
equation allows us to correct the
otential flow results for the lack of the
ugoniot shock conditions. So the
solution of the potential equation with
the nonconservative scheme and following
taking into account the corrections for
the mass source and shock conditions
allows us to approach to the wave drag
values obtained by the Euler equation
solutions. Here the shock waves must be
weak, and their Rosition and strength must
be close for both solutions. The “results
of the intoduction of these corrections
are shown in Fig.8. Also shown are the
results . of = the Euler equation
-c&lculations and the results of
calculatin? of the wave drag by the
fellowing formula

Mgh - n*e - Msh?

0.243, 1+0.2 M; 3
O [ Mo ] (1 +0.2 M)
Mon 2 Mgy
U
from*®, where k is the airfoil surface
curvature at the foot of the shock. This
formula was obtained for normal shocks

assuming a linear velocity variation alon
shocks and the fulfilment of the Hugonio
conditions on them. It may be seen from

Fig.8 that at moderate supercritical Mach
number values the wave drag is
overpredicted by the nonconservative

scheme and the corrections made provide a
good agreement with the Euler equation
solutions and the results obtained from
(12) up to M=0.8. A later disagreement

may be explained by a violation of the
assumptions of shock., wave position and
strength closeness and by the influence of
higher order of magnitude terms in wave
drag expansions. Il should be noted that
in the design of airfoils for civil and
transport aircraft wings it is the region
of the wave drag origin that represents
the most interest because when strong
shocks occur aerodynamic characteristics
are quite unsatisfactory. Thus using the
above corrections to the wave drag values
obtained by the solutions of the potential
equation ~with the aid of the
nonconservative scheme allows us to obtain
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wave drag values which are close Lo the
Euler equation calculation results for
weak shocks.
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Fig.8 Dependence of Cx on Mg
IV CONCLUSION

An analysis of the difference scheme
stability for the potential equation
solution in subsonic and transonic airfoil
flow calculations shows that high
frequency harmonics in the solution decay
most slowly in the vicinity of the
infinity point. This fact is one of the
reasons for a relatively slow convergence
of the relaxation schemes. The exception
of this vicinity from the calculation
region and imposition of the Dirichlet
tyge conditions on its boundary leads to a
substantial convergence acceleration and
considerable time reduction without any
essential accuracy _deterioration. The
Eotential values at this boundary may be

aken for example from a  preliminary

calculation on a crude grid. An analogous
method may be used for axisymmetrical and
three-dimensional calculations of wings
and bodies.

The wave drag calculated in the
potential flow model by the
nonconservative schemes contains two

sources of errors. The first one is
connected with the fact that the shock
waves are sources of additional mass and

drag that is of the third order of
magnitude with respect to the shock
strength. The subtraction of this

additional drag allows to obtain a dra
with the right (fourth) order o
magnitude. The second source of errors is
connected with different conditions on
shocks in the potential and the Euler flow
models. The ratio of lecading terms in the

expansions of the wave drag in the shock
strength depends solely on the free stream
Mach number. The introduction of the
corrections to the results of wave dra

calculations from the potential flow mode

by the nonconservative scheme allows one
to apEroach to the results obtained from

the Fuler flow model when the shock

position and strength are close in both

models and shocks themselves are weak.
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