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Abstract

The flow field around a complete Hermes configuration has
been computed by combining a time-marching and a space-
marching Euler code. The computations have been done for
hypersonic Mach numbers and high angles of attack with spe-
cial focus on the leeside flow patterns. The combination of ti-
me— and space—marching technique for the Euler equartions is
very cost-effective, because the time—marching solver, which
is the most time—-consuming, is applied only in the nose region
where a subsonic pocket exists.

Results are presented for grids with more than 10 million
points, and a comparison is also made between a coarse grid
time—marching solution around a larger part of Hermes and a
space—marching solution.

I Introduction

In the process of designing the European space shuttle Her-
mes alarge amount of computational work is done to investiga-
te the flow field and especially the pressure and heat flux loads
on the configuration during the reentry phase. Because of the
difficulties to simulate the reentry aerothermodynamics expe-
rimentally, there is a great need for efficient computational to-
ols. These should include codes of various types: Euler, boun-
dary layer and Navier Stokes codes with different levels of high
temperature gas dynamics including chemical nonequilibrium.

In the present work only the inviscid problem is studied, ie
the Euler equations are solved. This is a logical step before go-
ing to the Navier Stokes equations. The Euler codes applied ha-
ve previously been used in transonic and supersonic cases and
for geometries quite different from the Hermes shape. The
time—marching code uses an explicit multistep scheme in finite
volume formulation based on Jameson’s FLOS57 . Also in the
space—marching code an explicit finite volume scheme is app-

lied %

Ref | gives a good overview of the most used time—-march-
ing Euler solvers of explicit type, and further references. A
number of space—marching Euler solvers are reviewed in Ref 3,
with an emphasis on their application to flow around missiles.
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One reason for choosing explicit flow solvers is the easi-
ness with which they can be applied to different grid topologi-
es. Thus, for the Hermes geometry varying grid types had to be
used to get good grid resolution, especially around the Hermes
feeside.

Features of interest to investigate in applications to hyper-
sonic flow cases are the shock capturing approach, suitable
forms and levels of the -artificial viscosity terms, stability and
convergence properties, etc.

For the high angles of attack that are of interest here the lee-
side flow is expected to be quite complex, containing vortices,
cross flow shock waves, etc. The effects on this flow field of
neglecting the physical viscosity will be clarified in subsequent
computations based on Navier Stokes equations. An interesting
comparison between the Euler and Navier Stokes approach for
a slightly earlier Hermes geometry version has already been
done, with preliminary results shown in Ref 4.

In the present computations perfect gas relations are used
throughout, although the results for M = 10 should be influen-
ced by vibrational excitation effects.

I M tic

The Euler equations expressing conservation of mass, mo-
mentum and energy may be written

op ) _

3; + div(pV) = 0 (la)
vV

_a_%_ + div(pVV + pI) = 0 (1b)

de .

E + div (pYH) = 0 (lc)

where p, p and t denote density, pressure and time, V is the ve-
locity vector, e is the total energy per volume and H the total
enthalpy defined by
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The time—dependent Egs (1) have to be used whenever the flow
contains subsonic regions, in which case the numerical scheme
is marched in time until steady state is achieved with sufficient
accuracy. In contrast to this procedure, which requires a great
nunber of updatings of the whole flow field, amuch more effi-
cient solution algorithm can be used in purely supersonic flow.
This is based on the fact that for supersonic flow the equations
are hyperbolic in space. The steady version of the equations is
then used to obtain the solution in a single downstream space~
marching sweep.

The approach taken in the present work, is to apply the
time—dependent solver only where it is needed, i e in the nose
region of Hermes, where a subsonic pocket exists for all free
stream Mach numbers. The downstream boundary for these
calculations is chosen at a plane normal to the flow, located in
purely supersonic flow, where boundary conditions of extrapo-
lation type are applied. After the solution has converged, the
downstream boundary plane becomes the initial field for a
single space—marching sweep over the remaining purely super-
sonic field around Hennes.

II The Time-Marching Euler Code

w Solv

The time marching flow solver is essentially the finite vol-
ume FLOS57 method by A Jameson. Its characteristics are well
known and described in detail, for instance in Ref 1. The funda-
mental ingredients in the solver are the use of multi-stage time
integration of the descritized (in space) Eqns (1), the use of lo-
cal time steps to advance the overall approximate solutions to-
wards steady state as quickly as possible, the combination of a
second order shock capturing artificial dissipation and a forth
order backgrund filtering to prevent oscillatory errors. The

code has also a residual smoothing option, which usually fur-

ther accelerates the convergence.

The Saab version of the code has several extended features,
as block structured grid handling with a versatile block inter-
face and boundary condition treatment. In order to tune the
method for hypersonic computations on grids of the polar type
structure to be described below, the use of dummy cells to ac-
curately monitor the boundary and interface conditions was
further elaborated to achieve robust computations. Similarly,
the end conditions for artificial dissipation and residual
smoothing had to be improved.

Prior to the Hermes computations the shock capturing abil-
ity of the code was demonstrated in order to ensure correct
shock stand off distance on spherical bodies in high supersonic
flow and in order to demonstrate robust convergence.

tational Gri
The blunt shape of the Hermes nose motivates a C-O type

grid for the forebody calculation. A special grid generation
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program was written, using as input the intersection curves of
the vehicle with vertical planes.

The resulting grid is characterized by a singular line from
the nose in the upstream direction. All streamwise coordinate
lines emanate from this singular axis. The downstream bound-
ary on the other hand, is placed aft enough to guarantee purely
supersonic velocities, and this boundary is part of a plane, ort-
hogonal to the principal axis of the space craft. This is where all
the streamwise coordinate lines end.

In between, the mesh is built from 2-D surfaces, which in
the early nose region are bent forward. The detailed subdivi-
sion of these surfaces into quadrilaterals is guided by first a se-
quence of conformal mappings to render the transformed body
curve a more convex shape. Then we construct a field of nor-
mals to the boundary, which is smoothed and then used as
germs for outgoing coordinate lines. The outgoing coordinate
curves end at a limiting far field surface, consisting of a cone
and a sperical cap.

Before carrying out the inverse transformation a few

smoothing sweeps are taken. See Fig 1 for the general features
of the resulting grid.

IV The Space-Marching Euler Code
Flow Solver

The time—independent version of Egs. 1 can be written

JE oF G
g oL o 4
x Tyt e =0 (4)
with E, F and G defined as
pu pv pw
2
u“+ pvu u
E = p P = 2 G= pw (5 )
puv pv P pwv
puw pvw p“F +p

The energy equation is here reduced to H = constant.

The solver is essentially the same as in the program SUMA?
developed for supersonic marching computations at Saab. The
equations are discretized on a grid around Hermes based on
planes cutting the space shuttle normal to its length direction.
An explicit marching operator of MacCormack type is used to
advance the solution from one plane to the next. Because of the
explicit formulation a stability condition has to be satisfied,
which determines the marching step length from plane.to pla-
ne. After the step to the next plane is computed, the 2D grid is
automatically generated in that plane.

The marching algorithm is written in fully conservative
form in a finite volume formulation. The shocks are captured as
in the time—dependent approach, but because they always are



weak in a purely supersonic field, they do not create a problem
even for high hypersonic free stream cases.

Artificial viscosity terms are used to damp numerically ge-
perated oscillations. With the finite volume marching scheme
formally written as

E 85, =E ASi—-E(E,F,G)-ASk + D

the artificial viscosity is denoted by D. ASi stands for the cell
endfacein theconstantx plane with index i, and the summation
is madeover the four cell side faces with the area vector AS,

The viscosity term D, evaluated at station i, is of a type analo-
gous to that used in the time—marching code. The algorithms
used are
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with corresponding expressions for djy+12. Ax is the marching
step and Ay and Az are constants for the whole field related to
the cell dimensions in trangversal direction. The constants c;
and ¢4 are prescribed and control the artificial viscosity level.

. ional Grid

A 2D grid is automatically generated in each new cross sec-
tion plane through Hermes as the marching goes on. Two types
of grid can be generated in these planes: body type and body—
wing type grids, see Fig 2. Both tend to a Cartesian, or skewed
Cartesian, type grid in the far field. The body-wing type grid
was chosen to avoid a singular point at the upper wing body
cross section and to have good resolution at the wing leading
edge.

The grid varies smoothly from plane to plane, except at a
number of prescibed x stations where jumps in grid type or
number of grid cells are permitted. At these stations the solu-
tion variables are interpolated from the previous grid to the
next, before the marching proceeds. Typically 4 to 5 such sta-
tions were used in the Hermes computations in order to get a
good resolution along the whole configuration.
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The cross section grids are generated by algebraic techni-
que. For the body type grids transfinite interpolation is used,
but for the body—wing type grid a more geometrically oriented
method had to be used to get good results.

Both generators start by computing a suitable grid point dis-
tribution along the centerline and body contours. The point
spacing on the body is essentially controlled by a given nyini-
murn cell width, so the number of cells on the body varies as the
perimeter does. For the body—wing type grid the number of po-
ints on the wing upper and lower surface is a prescribed cons-
tant, that is set in each of the intervals between the grid jump
stations. The distribution of these wing surface points is cont-
rolled by an exponential expression.

Next, an approximately horizontal and two vertical grid li-
nes are generated for the body-wing type grid, all leaving the
wing leading edge point, see Fig 3. These lines are changing
smoothly from plane to plane and their slopes at the leading
edge are controlled to give a good H type grid there. The grid
points along these curves and the grid outer boundaries are
computed, taking into account the denser point distribution
close to the leading edge. The grids are then generated in the
four areas defined by the three curves and the Hermes contour.
The generation starts from the horizontal contours and proce-
eds up— or downwards by adding proper normal distances to
the horizontal type contours. A couple of smoothing sweeps
over the complete grid ends the generation.

V' Computational Results
Time— and S marching C .

To validate the coupling between the two Euler solvers and
to compare results on different grids, a time—marching solution
was computed for a major portion of Hermes 94, a pre~version
to Hermes 0.0, and then a coupled solution was computed. The
flow case chosen was M =7 and o = 15 °. A grid containing
81x33x65 points was used for the time—marching cases, while
the space—marching grid in the cross section planes had almost
5 times as many points, and also was much denser in the stre-
amwise direction.

A general view of the grid and results in the symmetry plane
from the time—marching solution over the major Hermes por-
tion is seen in Fig 4. In the coupled solution the space-march-
ing procedure was started in the canopy region and proceeded
to the end of the configuration. To compare results from the
two solvers, Fig 5 shows grids and Mach number distributions
in a cross section near the start of the winglets. Although the
grid topologies and densities are seen to differ clearly between
the time— and space~-marching solutions, the Mach contours
are quite similar. The bow shocks are sensitive to both grid re-
solution and smoothness.

Coupled Solutions

The configuration studied was Hermes 0.0, for which coup-



led time— and space-marching solutions were computed at M =
64, 0=30°, M=10.0,x=15° and M = 100, . = 30 °.

The time~marching solutions were computed over the first
3.3 meters of Hermes, to include also the canopy shock waves
in those solutions, and then the space—marching solutions were

" computed for 9.2 meters up to the end of the configuration. The
grid for the first part contained 81x33x65 points in the spanwi-
se, normal and circumferential directions ( only one side of the
symmetric configuration computed ). In the space-marching
part the grids had 85x176 points per plane. The number of
marching planes varied between 550 and 865 depending on the
case, because of the stability requirements of the explicit marc-
hing operator.

A number of results with combined grids and Mach con-
tours are presented next for the M = 6.4 case. In Fig 6 a pers-
pective view is shown of the nose portion, and in Fig 7 a cross
section result is illustrated at the x station 5.0 meters ( nose po-
int is at 2.5 m ), still within the time-marching solution region.
The figures show a well resolved bow and canopy shock. The
space—marching results in Fig 8 a— c illustrate a few cross sec-
tion grids and Mach contour patterns. Besides the bow shock,
two other Mach number discontinuities are seen: one starting
on the wing close to the body side, moving outwards and up on
the winglet, and the other a cross flow shock wave on the upper
part of the fuselage. The lower and oblique part of the first dis-
continuity seems, at the last station, to be a contact discontinui-
ty rather than a shock wave. At the earlier stations, however,
this part is a cross flow normal discontinuity, i € a shock wave.

The sensitivity of shock waves to local grid types is illustra-
ted by comparing the bow shocks in Figs 7 and 8a. Effects on
the shape and crispness of the shock wave are seen both due to
grid resolution, alignment and skewness.

Computed Mach contours for the two cases at M = 10 are
given in Figs 9 to 12. The grids were the same as in the previous
case, except for variations in the marching step size. A strong
effect of the angle of attack is seen in the cross flow patterns.
For the lower o the bow shock comes closer to the winglets,
and the cross flow discontinuities are weaker, as would be ex-
pected. Thus, the fuselage shock wave does not appear in the
flow at oo = 15 °, and the wing cross flow shock wave is seen to
be weaker and moves out only to half of the wing span.

In Fig 13 the cross flow velocities are shown in the last sec-
tion for M = 10 and « = 30°. Two vortices are seen, one on top
of the fuselage, inboard of the body cross flow shock wave, and
the other above the wing, below the contact discontinuity. Al-
so, the extensions of the cross flow shock waves can be recog-
nized, as discussed above.

Recently performed calculations using Navier Stokes equa-
tions ( not published yet ) also show the vortices mentioned
above, although their form and location is slightly different. In
Ref 4 both Euler and Navier Stokes results are shown for an
early Hermes geometry, illustrating the differences in form and
extension of vortices and discontinuities.
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A good overview of the surface Mach number pattem over
the whole upper side of Hermes is provided by Figs 14 and 15.
A slight disturbance in the contour pattem at the coupling sec-
tion between titne— and space~marching solution could be due
to local grid type differences.

A comparison between the computed Mach contours for ca-
ses with different Mach number but the same o shows a high
degree of similarity, iHustrating the Mach number independen-
ce principle in hypersonic flow. This can be seen, for instance,
from Figs 8c and 12¢ for o =30 ° and M= 6.4 and 10 respecti-
vely.

To illustrate the computed flow characteristics in the leeside
flow region, Mach contours are preferred instead of pressures.
This is due to the very low pressure levels on the leeside com-
pared to the dynamic pressure, which nommally makes C, con-
tour plots void of any information there. As an example of this
and of a situation with some noticeable pressure disturbance
unrelated to the bow shock, Figs 16 and 17 show pressure con-
tours and Mach contours for a section through the rising wing-
lets. For the lower o case, the winglet leading edge has a suffi-
ciently low sweep angle to cause an embedded shock wave
around it, which gives a local pressure rise of significance.

The required computer times are of the order of 2 hours on a
CRAY-1 for the time—marching part, and 1 to 2 hours on a
VAX 8700 for the space—marching Euler solution.

VI Concluding Remarks

Combined time— and space—marching solutions of the Euler
equations are presented for the European space shuttle project
Hermes in hypersonic flow and at large angles of attack. Using
the space-marching approach for the large supersonic part of
the flow field is very cost—effective, and detailed flow field re-
sults are presented for grids with more than 10 million cells.

The Euler codes are written in a finite volurne, shock cap-
turing form with artificial viscosity terms of the Jameson type.
The grid in the space—marching part was abruptly changed at a
number of x stations to keep a good resolution above the whole
wing.

A logical continuation of the present work is to do Navier
Stokes computions on the Hermes geometry. Wether a space
marching approach, i e a PNS solution, can be made to give
correct results for a high incidence case, is, however, doubtful.
Results so far with a global time—marching approach for the
Navier Stokes equations indicate the large differences in com-
puter time required in comparison to the work presented here.
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b) Body-wing type grid

Fig 2. Cross section grid types for space marching solution
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b) Sectionx=11lm

¢) Sectionx=15m

Fig 10. Mach contours at sections through Hermes 0.0 at M =
10 and o = 15°. Space~marching Euler solution. AM = (.25 .

Fig 11. Mach contours on Hermes 0.0 forebody at M = 10 and
o = 30°. Time-marching Euler solution. AM = 0.25 .
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¢) Sectionx=15m

Fig 12. Mach contours at sections through Hermes 0.0 at M =
10 and o = 30°. Space-marching Euler solution. AM = 0.25 .
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Fig 13. Cross flow velocities in sectionx=15mforM = 10 and
o =30°



b) Mach contours, AM = 0.25

Fig 16. Pressure and Mach contours in sectionx =13 mforM =
10 and o = 15°,

Fig 14. Surface Mach contours on Hermes 0.0 atM = 10and o

=15° AM =0.25.

Fig 15. Surface Mach contours on Hermes 0.0 at M= 10 and o

=30°. AM = 0.25 .

a) Pressure contours, AC, = 0.02

a) Pressure contours, AC, = 0.02

b) Mach contours, AM = 0.25

Fig 17. Pressure and Mach contours insectionx = 13 mforM =
10 and o = 30°.
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