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Abstract

Various applications of numerical optimization to
the aerodynamic improvement of transport aircraft are
presented from airfoil to wing design and control of
interference phenomena. The method associates the
CONMIN constrained minimization code with 2D and
3D aerodynamic programs. In 2D, the case of two airfoil
designs in the same operating conditions but with
geometric constraints corresponding to two alternative
wing structures illustrates the usefulness of numerical
optimization when geometrical control is required. In
3D, possibilities of wing drag minimization are shown,
drag being splitted into its basic components to ensure
better reliability of the objective calculations and more
control in the design procedure. Finally, an example is
given of minimization of wing/power plant interference
effects on a four-engined jet aircraft, a problem for which
numerical optimization is a promising approach.

Introduction

Numerical optimization can be useful to the
aerodynamicist at different stages of wing design. In the
first place, it can be applied to the design of the basic
airfoil for the outer part of the wing where the flow is
expected to be quasi-2D. One usually tries to minimize
drag for a given lift value, or drag-to-lift ratio, while
respecting geometric constraints (for structural reasons
mainly) and possibly also aerodynamic constraints.
When the basic airfoil has been defined, numerical
optimization may be used to determine the twist
distribution giving minimum drag, and also to control
3D phenomena which are unavoidable on a wing
operating in transonic conditions ; such phenomena are
liable to deteriorate the intrinsic qualities of the airfoil.
Finally, if the wing is subject to interference from other
components such as the engines, unfaveurable
interference effects ean be minimized by numerical
optimization. The purpose of this paper is to give
examples of these various applications.

A unique constrainted minimization code can be
used for the different applications considered, but the
aerodynamic code obviously depends on the application.
In all cases it ought to be fast and yet able to compute
objective and constraint functions without numerical
noise so as to avoid misleading gradient calculations.
For an airfoil, such requirements can be met by 2D
viscous-inviscid coupling methods using fine grids. For a
wing they imply using coarse meshes and, in the

Copyright © 1990 by ICAS and AIAA. All rights reserved.

example presented in this paper, an inviscid flow
method. Accurate estimation of the aerodynamic
coefficients is thus made more difficult, especially where
drag is concerned. For a multicomponent configuration,
drag cannot reasonably enter into the definition of the
objective or constraint functions, and it is necessary to
resort to simplified procedures such as the one presented
in this paper.

Numerical optimization method

The principles of the method

An aerodynamic numerical optimization method
consists of the association of three elements : a
constrained minimization code, a direct aerodynamic
code and a shape modification technique.

The designer must express the design aim and
requirements in the form of numerical functions. The
constrained minimization code will be used to minimize
one of these functions (the objective) while the others
(the constraints) will be kept below given values.
Constraints are natural expressions of design
requirements, either aerodynamic or geometrical, and
the objective is usually closely related to the overall
aerodynamic efficiency.

The designer must also define basic shape
modifications which efficiently affect the objective and
constraint functions. If (Mod;); = 1, n represent the basic
shape modifications, the designed shape DS}, is derived
from the initial shape IS}, as :

n
DSy =1ISy + by Xj Mod; where (Xj); = 1, n are the design
i=1

variables. The basic modifications define the space in
which the solution will be sought, and must be carefully
chosen. Pleonastic shape functions will needlessly
increase the cost of the optimization, whereas too few
functions will lead to mediocre results.

The task of the minimization code is to calculate
the design variables which minimize the objective
function while respecting the given constraints. .
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The objective and constraint functions of an
aerodynamic nature are calculated by a direct analysis
code. This code must have three qualities :

- it must give theoretically sound estimations of
the objective and constraint functions ;

- it must not introduce numerical noise into the
calculation of the gradients of these functions
which would be dangerously misleading to the
minimization code ;

- it must be fast since an optimization process may
require many direct aerodynamic calculations.

The elements of the method

The method used in the applications presented in
this paper associates one constrained minimization code
with two aerodynamic codes (one for 2D cases, the other
for 3D) and several shape modification techniques
depending on the problem being solved.

The minimization code is the well-known
CONMIN program of Vanderplaats!. In the process of
minimizing the objective OBJ (X) while respecting
constraints Gj (X) < 0, j = 1,..., m, the design variable
vector Xis 1terat1vely calculated via the formula :

Xy = Xq-1 + a* B, B, the search direction, is
determined in the first stage of the iteration. In the
second stage, the modulus a* of the displacement in the
search direction is calculated. How the search direction
is determined depends on the state of the constraints.
The constraint Gj (X) < 0 is said to be active if
-e=Gj(X) =¢ &> 0, violated it ¢ < Gj (X) and non-
active if Gj (X) < - &. When all constraints are non-active,
Sq is calculated by the steepest descent method in the
first iteration. In the following iterations, CONMIN uses
the Fletcher-Reeves conjugate gradient method, but the
possibility of using a quasi-Newton method has been
introduced. Otherwise, i.e. if any constraint must be
considered, the method of feasible directions is used. The
optimum displacement modulus a* is determined using
a polynomial approximation which in most cases
demands three successive calculations. Since the
determination of Sy, regardless of the method used,
requires knowledge of the gradients of the objective and
constraint functions, which are calculated by finite
differences, one iteration generally requires aboutn + 3
direct calculations, n being the number of design
variables.

The optimization method presented in this paper
calls for either an airfoil or a wing aerodynamic analysis
code.

The 2D code models viscous transonic flow around
airfoils. It was developed by J. Bousquet2 at
Acerospatiale by coupling a Garabedian and Korn non-
conservative full potential equation solver and a Michel
integral laminar / turbulent boundary layer method.
Viscous interaction is weak and does not allow accurate
calculation of separated flow configurations, but in

practice constraints can make use of the method
capability for predicting separation. "O" type meshes of
160 X 30 points are used. Drag is determined as the sum
of the skin friction, viscous pressure and wave drag
components.

When optimizing wings, Bredif's convervative full
potential equation solver is used3. The discretisation is
finite element and the algorithm, a fast preconditioned
conjugate gradient method. Viscous effects are not
modelled. Pressure drag is calculated by surface
integration, and wave drag and lift-induced drag by "far
field" momentum integrations. Whereas in 2D it is
possible to get well converged solutions on fine meshes
in little time, this is impossible in 3D. To keep the
computation time within a reasonable limit (around 1'
CPU per direct calculation on CRAY-XMP) one must
give up either full convergence or mesh refinement.
There is no doubt that full convergence is essential for
avoiding numerical noise in the estimation of the
objective and constraint gradients? : coarse grids must
therefore be used (about 13000 points in the present
case). Absolute values of the objective and constraint
functions are necessarily inaccurate on such grids, but if
the gradients are accurate enough this does not preclude
correct optimization5,

To modify airfoils, three classes of shape functions
may be distinguished by their degree of aerodynamic
meaning :

a) analytical functions have no aerodynamic
meaning but they have the advantage of
generality ;

b) some aerodynamic meaning can be obtained by
using airfoil libraries;

¢) however, the most effective aerodynamic
control is provided by aerofunctions, i.e.
functions of pure aerodynamic origin6.

Theoretically the three classes may be used in 3D
as well although in practice the fact that fewer design
variables are necessary with aerofunctions makes these
the most suitable for expensive 3D optimizations. Wing
optimizations presented in this paper use aerofunctions
to modify wing sections and also modifications of the
twist distribution, but not of the the planform.

Supercritical airfoil design by numerical optimization

Aerodynamic studies on basic airfoils for transport
aircraft wing design seek a good compromise between
aerodynamic efficiency (lift-to-drag ratio, drag-rise
limits, etc.) and structural constraints (thickness-to-
chord ratio, thickness at spar locations, etc.).
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For supercritical airfoils, the main features to be
optimized in cruise conditions are the following :

-extent of the supersonic area, and Mach number
upstream of the shock which control wave-drag at
cruise and drag-rise limits ;

- upper surface pressure recovery in order to avoid
boundary-layer separation close to the trailing-
edge;

-intensity of rear-loading in order to adapt the
airfoil to high lift coefficients while controlling
pitching moment,

Among existing methods, numerical optimization
seems well suited to these types of design problems. It
makes it possible to simultaneously control global
coefficients (Cr, Cp, Cm), pressure distributions,
boundary-layer characteristics, and airfoil geometry7.

As an example, the design of two supercritical
airfoils for a transport aircraft wing by numerical
optimization is presented. Design conditions are
M = 0.73, CL, ~ 0.7 and Re = 6.106, transition being
enforced at 7 % of the chord. The two airfoils were
designed with different wing technology options in view.
Airfoil A had to respect three geometrical constraints :
maximum relative thickness e/c = 12.3 % and thickness
at the locations of spars e/c (20 %) = 11.3 %,
elc (65 %) = 7.7 %. In the case of airfoil B, these
constraints were changed : thickness at 20 % of the chord
was not controlled while a more severe constraint was
enforced at 65 % : x/c (65 %) = 8.9 %.

In both cases, the optimization made use of airfoil
libraries. The coordinates of the current airfoil are
defined as : _ _
Y=Y+ X1(V1-Yo) +... + Xn (Yn-Yo)

Y, being the initial airfoil and (Xy,..., X;) the design
variables. Each airfoil of the library thus belongs to the
solution search space.

The elements of the libraries used for these
optimizations were existing supercritical airfoils with
modified thickness distributions so as to respect the
geometrical constraints although the upper surfaces
were unchanged to preserve the supercritical quality.
This allows automatic respect of geometrical constraints
and the optimization problem may be simply formulated
as:

objective ; e Cp(My)
constraints: ® Cp=Cp,

® ICul=<Cp,

® no separation

For each airfoil, several optimization calculations
were performed using different shape libraries and
moving the design conditions around the specified point
M,, Cr,, (0.73 = M, < 0.75,0.60 < Cy, < 0.80). The final
choice between the results of these calculations was
made taking into account the efficiency in cruise
conditions and off-design behaviour : drag-rise and

buffeting limits. Drag rise was determined by the rule
dCp/aM = 0.10 and buffeting onset by the criterion of
Mach number upstream of the shock equal to 1.3.

Pressure distributions calculated by the
aerodynamic code used for the optimization are
presented in Figure 1 for both optimized airfoils ; they
differ mainly on the lower surface. Upper surface
pressure distributions are close, airfoil B having a
slightly weaker shock. Also in Figure 1, Cy, versus Cp
curves calculated by the same code show that for both
airfoils C1/Cp is maximum around Cy, = 0.7.

-Cp A

Aol A —= = =
Airfoil B
Gy
-
4 .
I
!
05
I
0 Co
P

Fig. 1 - Supercritical airfoil design.
Computed aerodynamic characteristics.
M =0.73,Cr, = 0.70,Re = 6.106.
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Aerodynamic characteristics were experimentally
checked in ONERA's S3MA wind-tunnel. The results are
shown in Figure 2. As predicted by the calculations,
maximum lift-to-drag ratio is obtained at Cy, = 0.7 for
both airfoils ; with regard to drag rise, airfoil B is
slightly better. The separation limit was determined by
examining trailing-edge pressure and did not show any
significant difference between the two airfoils. Finally,
Figure 3 compares measured pressure distributions for
the two airfoils at the design point. Globally-speaking, it
reflects the computational predictions, although not
exactly as concerns the shock locations.

CL\

05

M =073
Re = 6.106

Airfoill A —
- Airfoil B

CL\

Dray rise
bouridanes

05

Re = 82 x M x 106

0 Mdd

0,73

Fig.2 - Supercritical airfoil design.
Aerodynamic characteristics measured in SSMA .

-Cp
Aiffoll A - — =
Airfoil B

‘‘‘‘‘

______

Fig. 3 - Supercritical airfoil design.
Pressure distributions measured in SSMA
atM = 0.73,C;, = 0.70, Re = 6.106.

Both airfoils fulfilled the prescribed aerodynamic
requirements, Airfoil B was preferred to airfoil A to
generate a supercritical wing operating at M = 0.82,
CL = 0.47. Apart from a slight aerodynamic advantage
in drag-rise limit, its geometrical characteristics allow
more gain in weight and more space for the outer wing
jacks.

In this example, numerical optimization allowed
fast airfoil design taking into account both aerodynamic
and geometrical requirements. Experimental checking
was satisfactory.

Wing drag reduction by numerical optimization

Drag minimization is all the more difficult since
drag prediction itself is no easy matter8, 9. It is indeed
impossible to compute drag with accuracy on coarse
grids. Although refined meshes are acceptable in 2D
optimization, computation time forbids their use in 3D
problems since one optimization requires seldom less
than 50 direct calculations in realistic cases. In spite of
this dilemma, the optimization technique has been
successfully applied to wing drag minimization by
several authors 4, 5. In fact, one of these authors showed
that successful optimization requires only accuracy of
drag increments, and not necessarily absolute drag
accuracyll,

Estimating drag by "far-field" techniques is
generally acknowledged to be more accurate than "near-
field" integrationsd, 10, It is also more useful because it
distinguishes between the different physical sources of
drag, thus giving more information to the
aerodynamicist and more control to the designer.

The purpose of the following calculations is to show
some of the possibilities of this technique in
optimization. The aerodynamic code solving the full
potential equation, only inviscid drag components will
be considered (lift-induced and wave drag).
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The two optimization cases presented here make
use of the DLR-F4 research wing, An account of this
wing's design may be found in referencel2. This typical
subsonic transport aircraft wing is sketched in Figure 4.

It is defined by only four spanwise sections, the same

supercritical airfoil being used in the outer three
sections with different twist values. The twist
distribution is linear between the definition sections.

Definition section 4
(Nwing = 1)

n section 2

(Dwing = 0.31)

Definition section 3
(Nywing = 0-66)

Definition section 1
(Nwing = O)

Fig. 4 -DLR -F4 wing.

In the first case we first untwisted the wing and
then tried to optimize the twist distribution. There are
four design variables : the twist angles in the four
sections. The reference flow conditions considered are M
= 0.75, C., = 0.67. Optimization calculations were
performed with different objective functions and the
constraint Cr, = 0.67. They are summed up in Table 1.
The objective functions chosen were : 1) lift-induced
drag, 2) wave drag, 3) lift-induced + wave drag, 4)
pressure drag, and 5) an additional unconstrained
calculation was. done aiming at an elliptical load
distribution.

Cp; Cp, |[Cp,+Cp,| Cp
(X 104) [ (X 104)| (X 104) " | (x 184)
F4 wing 199.1 21.3 220.4 255.2
Initial untwisted 203.9 33.3 237.2 267.3
wing
. N Cp, Cp Cp, +C C
1 w D D D
Calculation| Objective (x 164) (X 10%) (>l< 104)w (x 164)
1 Cp, 197.6 241 221.7 256.3
2 Cp, 204.5 21.1 225.6 258.7
3 |[cp,+Cp,| 1979 | 227 | 2206 | 2550
4 C[)p 198.4 22.4 220.8 254.9
5 Elliptical | 197.5 23.8 221.3 255.8
load

TableI - Drag minimization by wing-twist optimization.

Results will first be discussed in terms of load
distributions. Figure 5 shows that minimizing lift-
induced drag (calculation 1), starting from the untwisted
wing heavily loaded in the outer part, brings the load
distribution close to being elliptical as should be
expected. And yet the ellipse is imperfectly obtained. An
exact elliptical distribution was procured in calculation
5 by minimizing the difference between the load
distribution and an ellipse. Table 1 shows that the lift-
induced drag thus obtained is Cp; = 197.5.10-4 to be
compared to Cp, = 197.6.10-4 by minimizing this
coefficient. The conclusion is that calculation 1 stopsin a
relative minimum probably very close to the absolute.

~ Load

Untwisted wing

0.1

Elipse ‘\

CDi minimization

0.5 oy

Fig.5 - Wing twist optimization for lift-induced drag
minimization (M = 0.75,Cy, = 0.67).
Spanwise load distributions.

In calculation 2, wave drag is minimized
regardless of lift-induced drag. Figure 6 shows that the
wing with minimum wave drag is heavily loaded in the
inner part. A very unelliptical load distribution is
obtained, creating muchliftinduced drag as indicated in
Table 1.

Calculation 3 is the minimization of the sum of lift-
induced drag and wave drag. It consistently leads to a
load distribution lying between the two previous ones
(Figure 6). Compared to the real F4 wing, this wing has
less lift-induced drag and more wave drag. The sum of
the two is slightly smaller in the case of F4 (220.4.10-4
versus 220.6.10-4) : the solution cbtained is not strictly
an optimum.
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Load

CDW minimization

Cp, + CDw minimization

CDi minimization

0.5 1

Fig. 6 - Wing twist optimization for drag minimization
(M =0.75,C1, = 0.67).
Spanwise load distributions.

In inviscid flow pressure drag is theoretically equal
to the sum of lift-induced drag and wave drag. Yet the
fact that we do find almost identical solutions by
minimizing these two quantities, as shown in Figure 7,
does not go without saying, owing to the notion that
"near-field” integration is less accurate than "far-field"
techniques. Indeed, in all the cases presented in Table 1,
CDp values are much higher than Cp, + Cp,, . But the
increments are more or less in agreement. No evidence
of a relative minimum is perceptible in this case,
whether we compare to the F4 or to calculation 3.

By minimizing total inviscid drag (calculations 3
and 4), we do not find the twist distribution of the real F4
wing. But one must realize that the result greatly
depends on the operating point chosen for the
optimization. Figure 8 shows that by minimizing
Cp, + Cp, at M = 0.785 instead of M = 0.75, for the
same load coefficient C;, =0.67, one obtains a twist
distribution closer to the F4 (which in fact was designed
for M = 0.78512), When the Mach number is increased,
the balance of wave and lift-induced drag is altered, the
wave component acquiring more weight in the total
which changes the optimal twist distribution.

CDp minimization

CD| + CDw minimization

Untwisted wing

0.5 1
0 L ]

Fig. 7 - Wing twist optimization for total inviscid drag
minimization (M = 0.75,Cy, = 0.67).
Spanwise load distributions.

. Twist angle ¢}

Wing optimized
atM = 0.75

0.5 ~

Fig. 8 - Wave + induced drag minimization at two
operating points. Optimized twist distributions.

The second example shows how 3D numerical
optimization may be used to solve a typical problem
arising in transport aircraft wing design. A basic airfoil
designed by 2D or quasi-2D methods is generally used in
the outer part of the wing where (except close to the tip)
the flow behaviour is quasi-2D. But in the inner part of
the wing, owing to aerodynamic reasons (especially in
transonic conditions) and aircraft design considerations
(space for undercarriage, structural constraints, etc.),
the flow is essentially 3D and the problem cannot be
handled by 2D methods.
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The wing to be optimized was derived from the F4
wing via the following procedure :

a) The three outer defining sections of the F4 wing
were preserved, including their twist angles.

b) The root section was replaced by the basic
airfoil.

¢) The lower surface of this new root section was
modified so that the thickness at 20 % and 65 %
of the chord (typical spar locations) be that of
the real F4 wing.

d) The root section twist angle was determined so
as to give the same lift coefficient at the same
angle of attack.

So this wing is basically defined by a unique airfoil
with only a rough modification at the root to provide as
much space there as in the case of the 4. Figure 9 shows
that, at M = 0.785, C1, = 0.55, root section adaptation is
badly needed. This adaptation was performed by
numerical optimization.

-Cp 4

yl\r]—'r T T 1

1 xe

1

Fig. 9 - Initial wing for root section optimization
(M = 0.785,Cy, = 0.55).

The flow on the initial wing shows an unacceptable
rear shock near the root. Three very simple basic shape
functions were used for the optimization : 1) a
modification of the camber line from 50 % to 100 % of the’
chord to control the rear shock ; 2) a modification of the
camber line from 0 % to 50 % of the chord to likewise
control a possible supersonic shock ; 3) the root section
twist angle. These modifications do not allow to modify
the chordwise thickness distribution. A constraint was
enforced upon the lift coefficient : Cy, = 0.55.

Two optimization calculations were carried out,
calculation A with Cp, + Cp,, as the objective function,
and calculation B with CDp~ Table II shows that
calculation A consistently leads to a wing with lower
Cp; + Cp,, and higher CDp than calculation B.
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Table II - Drag minimization by root-section optimization.

Cp. Cp. Cp: + Cp Cp
(X 104 | (x 109 | (X 104)" | (x 104)
F4 wing 133.9 | 124 1463 | 1742
Initial wing 134.0 17.2 151.2 178.2
Calculation| Objective (ch(iy;) (f 264) C?i-‘-l(&))w (>Sl1)54)
A |Cp,+Cp,| 1336 | 13.0 146.6 | 1747
B Cp, 133.8 | 134 1472 | 1745

The problem is posed in such a way that Cp,is not
allowed to change much since there is a constraint upon
C), and the twist distribution from section 2 to the tip is
not modified. So Cp,, obviously is the drag component
that should be the most reduced by the optimization.

Such is the case in calculation A : wave drag
reduction is dominant. The effect of the optimization on
ressure distributions is shown in Figures 10 and 11.
f{ear shock strength has been greatly reduced in the root
section and the favourable effect extends up to 60 % of
the span although the wing was not modified past n =
0.31. All drag component levels are close to those of the
real F4 wing (Table II) as is the shock strength, as shown
in Figure 12. It must be noted that, contrary to the
previous example, the real root section of the F4 wing
was not in the solution search space and it is not
surprising that a better wing than the F4 is not obtained
considering the very simple basic shape modifications
used.

Initial wing — »—-— .
Optimized wing

T | L

Fig. 10 - Root section optimization. Cp, + Cp,,
minimization (M = 0.785,Cr, = 0.55).



Fig. 11 - Root section optimization. Cp, + Cp,,
minimization (M = 0.785, C1, = 0.55).
Upper surface isobar lines (ACp = 0.05).

F4 wing ~---—
Wing A

Fig. 12 - Root section optimization checking.
Cp, + Cp, minimization (M = 0.785,Cy, = 0.55).

Wing B, obtained by minimizing Cp,, is not as
satisfactory. The comparison with wing A in Figure 13
shows that the shock strength has been insufficiently
reduced. Since there is no evidence in Table II of a
relative minimum having been reached, it must be
concluded that, in this case, pressure drag is not
estimated accurately enough to be used as an objective
function. A similar result in another case in which wave
drag was the key to successful optimization is presented
in referencel3,

It should be noticed in Table II that drag
increments between the different wings are
underestimated, which does not help the minimization.
When calculated on fine meshes they are about four
times higher.

Drag estimated by "far-field" application of the
momentum theorem appears to be a more reliable
objective function in wing optimization than drag
computed from the "near-field". The question of "how
reliable ?" cannot be fully answered by simple examples
such as those presented here. In particular, it may be

questioned whether numerical optimization using coarse
grids would be efficient or even correct when applied to a
nearly optimal wing in order to find the real optimum, a
case in which drag increments would be very smalll4.
Moreover, the difficulty in distinguishing between a
relative and an absolute minimum would be aggravated
in such a problem,

Wing A (objective CDI + CDW)
Wing B (objective Cop)

/
A

Fig. 13 - Root section optimization. Cp, + Cp,, vs CDp
minimization (M = 0.785,C|, = 0.55).

Wing/engine interference reduction
by numerical optimization

On most modern transport jets, the engines are
mounted under the wing. The aerodynamic interference
between these two components of the aircraft has
unfavourable effects on its performance : at a given
operating point (M, Cg), the wing/engine drag is greater
than the sum of the wing drag and the engine drag.
Optimization of a wing/engine configuration should aim
at reducing the drag increment created by the
interference. However, reliable estimation of this drag
increment is still beyond the scope of analysis methods,
let alone such inexpensive methods as might be
incorporated into an optimization procedure.

The example presented here uses the following
simplified methodology : one aims at averting the
aerodynamic effect of the engine on the flow around the
wing by modifying the wing shape in such a way that the
flow on the motorized, optimized wing be as close as
possible to the flow on the clean, original wing. This is
illustrated by Figure 14 : the perturbation created by the
engine is balanced by an opposed perturbation obtained
through wing shape modifications. The perturbation of
the pressure field on the wing to be balanced .is
determined "a priori", from experimental results and
direct calculations of the original wing with and without
engines (Figs. 14, a and b) by an analysis code capable of
handling complex configurations. From there, a target
pressure distribution on the wing alone is defined
(Fig. 14, c) and the 3D optimization method can be used
although it is restricted to wing alone optimization. The
effect of the engine is not accounted for in the calculation
of the objective function, but rather in the definition of
this function. Finally the optimization result is checked
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through direct calculation of the modified motorized
wing using the previously mentioned analysis code
(Fig. 14 d).

(@)

| Motorization

Clean wing

Optimization|

Wing + pylons + nacelles

’ (©)
% Motorization

Optimized wing
+ pylons + nacelles

Madified clean wing

Fig. 14 - Optimization of a four-engined transport
aircraft wing taking into account the effects of the
propulsive system.

The wing adaptation presented here was carried
out for a four-engined aircraft. The effects of the power
plant (pylons + through-flow nacelles) on the wing were
determined in a wind tunnel. Figure 15 shows measured
pressure perturbations on the wing on both sides of each
pylon. The outstanding phenomenon is a severe flow
acceleration on the wing lower surface, on the inner side
of each pylon. This brings about two drawbacks : the
accelerated flow area ends with a shock wave, thus
increasing wave drag, and it causes a lift deficit which
must be made up for by a higher angle of attack, thus
resulting in stronger shocks on the upper surface and
again increased wave drag. The optimization must try to
minimize this perturbation if not suppress it. On the
outer sides of the pylons as well as on the upper surface,
the perturbation is weaker and should be more easily
removed by the optimization.

ACp = Cp (motorized wing) - Cp (clean wing)]

1 -
-ACp M = 0.82) 11-4Cp
et xfc %/c
0 0 g-@’—,—v,—w o= :
1 1
1 ]-ACp  Lower surface ceoeee| 1{-ACp

Upper surface a-e-a-

x/c
01— 0

o 1 e 1

Fig. 15 - Aerodynamic effects of the propulsive system on
the wing of a four-engined transport aircraft measured
in wind tunnel.

The optimization is carried out in a manner which
might be called "quasi-inverse" since the objective is to
cbtain a given pressure distribution, the objective
function being a measure of the difference between the
current pressure distribution and the target pressure
distribution. Available wind tunnel results (Fig. 15) do
not give any information about the spanwise extent of
the perturbation. This has to be deduced from
calculations of the wing with and without the power
plant by means of a panel method. The calculated
perturbation is shown in Figure 16. The objective
functions are defined by target pressure distributions in
the sections of the wing in which the perturbation is
maximum, i.e., those in Figure 15. The spanwise extent
of the phenomenon does not enter into the objective
definition but into that of the shuape functions : the wing
shape is modified in the areas indicated in Figure 16, the
shape alterations being maximum in the engine
sections.

Fig. 16 - Four-engined transport aircraft wing

optimization taking into account the effect of the

propulsive system. Definition of the areas to be modified
after panel calculations.

In so peculiar a problem it is necessary that the
shape functions be defined bearing in mind the target of
the optimization. For example, Figure 17 shows the
shape functions chosen for the wing lower surface.
Functions 1 to 7 are aerofunctions, defined by 2D inverse
calculations so as to give extensive control over the
whole lower surface with emphasis on the area where
the perturbation is maximum (around 20 % of the chord).
Function 8 is an homothetical form of the lower surface
which allows control of the thickness. On the upper
surface, only three shape functions were defined ; local
twist was also used.
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Fig. 17 - Examples of aerofunctions defined
by 2D inverse calculations.

Figure 16 shows that the effect of the two engines
does not overlap. The wing may thus be modified around
each engine by separate optimization calculations.
Moreover, the perturbation created by an engine is not
symmetrical ; owing to the pylon, it is strongly
discontinuous on the lower side of the wing as shown in
Figures 15 and 16. The aerodynamic code used by the 3D
optimization method is restricted to a wing alone and
would thus smooth out the discontinuity. So the
adaptation of the wing around each engine must be
decomposed into two optimization calculations, one
aiming at the target on the inner side, the other on the
outer side. The two shape modifications are then fitted
together inside the pylon thickness. The complete
optimization thus requires four separate optimization
calculations.

Let us consider thefirst and the fourth. of these
calculations. On the inner side of the inner engine, the
prime objective of the adaptation must be to avoid a
shock taking place at 20 % of the chord (Fig. 15) on the
lower surface of the motorized wing. The chosen target
pressure distribution is shown in Figure 18, It is defined
on the lower surface of the wing only. The plateau
around 20 % of the chord is not meant to be reached by

the optimization, but to induce a trend in the right
direction. Six shape functions were used on the lower
surface, none on the upper surface nor the local twist.
Optimization was carried out taking into account the
wing thickness at the front spar location which is a
simplified way of considering a structural constraint.
The geometrical constraint is written so as to keep the
thinning 8 at 20 % of the chord within a prescribed limit.
Several calculations were done with more or less severe
constraints : § < Oi.e., without allowing any.thinning at
the spar ;8 < 5 % ; 8 < 10 % ; and lastly, a calculation
without any geometrical constraint.

Objective function

L

8

No thinning
§<5%
§=<10%
No geometrical constraint ~——)
Initial wing — = — —
Iterations Target  v-ai-eee

Optimized wing

Fig. 18 - Optimization of a four-engined transport
aircraft wing at M = 0.82 using 6 lower surface
shape functions.

Figure 18 shows convergence and results of
calculations with these various constraints. Some of the
convergence graphs show steps : they appear when the
target pressure distribution is reached on one part of the
chord, then another, and so on. The optimized solution
gets closer to the target when the constraint is loosened,
because in this case the geometrical constraint directly
hinders the aerodynamic effect sought through the
objective definition. Only without constraint do we get a
significant adaptation. Therefore the other three
optimizations were made without geometrical
constraints.

For example, the optimization on the outer side of
the outer engine is presented in Figure 19. Here the
target includes both upper and lower pressure
distributions and 12 shape functions were used : 8 on the
lower surface, 3 on the upper surface, and local twist. A
satisfactory result is obtained in about 15 iterations. The
peak on the convergence graph is due to manual
modification of one of the design variables in order to get
out of a relative minimum and accelerate final
convergence. Such a procedure is sometimes used in
practical optimization problems.

Strict checking of the optimization would require
wind tunnel testing of the modified wing equipped with
pylons and nacelles. The verification presented in
Figure 20 is only approximate because it was made by
computational means, whereas the objective of the
optimization was defined using experimental data. The
analysis method is the panel code previously employed
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Objective function

lterations

Initial wing — . . ..
Target vnrees e reons
Optimized wing ____

T T
[ 5 10 15

Fig. 19 - Optimization of a four-engined transport
aircraft wing at M = 0.82 using 12 lower and upper
surface shape functions.

Upper surface

(M = 0.82)

Lower surface

Cp (motorized intial wing)
- Cp (initial clean wing)

Cp (motorized modified wing)
- Cp (initial ciean wing)

Fig. 20 - Four-engined transport aircraft wing

optimization taking into account the aerodynamic

perturbation by the propulsive system. Checking
calculations (panel method).
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to estimate the perturbation extent : neither shock
waves nor viscous effects are taken into account.
Figure 20 shows iso-ACp lines, ACp being the difference
betweenCp on the motorized wing and Cp on the original
clean wing. On the lower surface, the perturbation
around the inner engine has been reduced ; in particular,
there is no risk that a shock should arise at 20 % of the
chord. Around the outer engine, the perturbation has
been entirely suppressed. The upper surface was
modified around the outer engine only. In a consistent
manner, the outer perturbation has been suppressed.

Conclusion

In the application of numerical optimization to
transport aircraft aerodynamic design, the state of the
art at ONERA may be summed up as follows.

- For airfoil design, it has been widely and
successfully used in concurrence with inverse
methods.

- Acquiring the same reliability for wing design is
still work in progress but should be achieved in
not too remote a future.

- For multicomponent problems, simplified
approaches are already possible ; these must be
developed and completed inasmuch as
interference phenomena are typical problems
that should be handled by numerical
optimization rather than other approaches.

As for the approach itself, notwithstanding its
many successes, some inherent limitations and
uncertainties should not be overlooked. Obtaining really
optimal design through a numerical procedure instead of
only improved design (or no improvement at all),
requires three conditions:

- that the basic shape functions be general
enough ;

- that the minimization code be able to find the
absolute minimum in the space defined by the
basic shape functions ;

- that the objective and constraint estimation be
reliable.

The latter condition is the most stringent because
the designer may enrich the shape function basis, or help
the minimization by changing initial design variable
values or perturbing them at some point of the
calculation. But he can only trust the aerodynamic code.
Therefore, progress in optimization greatly depends on
progress in the ability to compute flows both accurately
and economically.
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