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ABSTRACT

Navier-Stokes simulations of
transonic flows are carried out for
complete configurations of two kinds of
test models which were designed to
investigate the aerodynamic
characteristics of the developing
airplanes using the transonic wind
tunnel.

An 0-0 grid system for the
computation is constructed by the
automatic procedure based on the
electro-static theory. The Reynolds-
averaged Navier-Stokes equations are
solved on a supercomputer, FACOM VP~
400,using an 1implicit finite volume,

upwind TVD scheme.

Computed pressure distributions
well as force coefficients are
compared with the experimental data.

as
also

1. Introduction

In recent years, great progress has
been made in the development of
numerical methods of computing
potential, Euler, and Navier-Stokes
equations for complex three-dimensional
flows. The existing computer codes based
on the Navier-Stokes equations, however,
require not only large CPU time, but
also laborious, time-consuming grid
generation procedure, as far as complex
configuration concerned. In order to
make computer codes useful, just as wind
tunnel itself, substantial improvements
have to be made.

In view of this
numerical wind tunnel
developed at the National Aerospace
Laboratory in order to efficiently
obtain the numerical aerodynamic design
data for practical aircraft
configurations in the development stage.
The numerical wind tunnel consists of a

situation , a
was newly

number of computer programs which are
running on a Japanese supercomputer,
FACOM VP-400, having ability of one

giga FLOPS and one giga BYTE memory.
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Most important parts of the
programs are the Navier-Stokes solver
and the grid generator. The Reynolds-
averaged thin-layer Navier-Stokes
equations are numerically solved by a
TVD upwind scheme [1] which is presently

considered as one of the most reliable
and accurate schemes, especially for the
flow with strong shock waves. A new

method of automatic grid generation for
block-structured grids is developed,
which 1is based on the elector-static
theory.

Major objectives of this paper are
(1) to describe the automatic grid
generation procedure, (2) to present the
latest results computed using the newly
obtained grids, and (3) to demonstrate
the reliability and accuracy of the
numerical wind tunnel comparing with the
experimental data.

2. Automatic Grid Generation

The advent of high-speed and large
memory supercomputers has made it
possible to numerically simulate the
compressible viscous flows about
complex geometries. These numerical
solutions are all obtained by firstly-
generating high-quality grids around
the bodies to discretize the Navier-
Stokes equations.

In the 1last decade, a number of
different methods of grid generation
have been proposed by many researchers
[ 2,3 1. Every method, however, seems to
have its own  strength as well as
weakness. Consequently, a CFD researcher
has chosen the most appropriate one
among them, taking into account the
geometrical complexity, computing cost
for generation, grid topology, or
other factors.
of the powerful and

boundary
based on
generation
category
[4]
author([5].

most
methods is a
method which is
Laplace equation. The grid
procedures belonging to this
have been developed by Sikora et al.
and also by the present

One
promising
element



Although both smoothness and
orthogonality of such kind of grid are
certainly excellent in the whole
flowfield, an essential limitation lies
on the large computer time required for
the calculation of the influence
coefficients including several
elementary functions such as 'arcsinh'.
This approach -will become prohibitive as
the total number of grid points exceeds
a million.

The objective of this section is to
propose an alternative approach to the
generation of a structured grid without
loss of the excellent properties
inherent 1in Laplace equation, and also
to show the great reduction of CPU time,
by which it became possible to
generate a block-structured grid for a
nearly-complete aircraft configuration. (
Although the almost same grid generation
algorithm has been proposed by the
present author in Ref.6, more detailed
description will be given in this paper.)

To generate an 0-0 grid inside the
region between a body and an arbitrary
closed outer boundary, e.g. an
infinitely large sphere, we first
consider the electro-static field
produced by the point charges
distributed on the boundaries.
Following Coulomb's law, the electric
force vector, F, can be expressed as

qj T;
F=2 (1)
Iori® ry

where rj is the vector drawn from the j-
th boundary point to an arbitrary point
in space, r; 1is the 1length of the
vector, and q; is the amount of point
charge at the j-th point.

The charge 4 can be determined by
an appropriate boundary condition.
Assuming that the total amount of
charges on each boundary is fixed at a
specified value, the electro-static
vector field is uniquely determined. as
will Dbe shown later. Therefore we can
draw the electric force line starting at
each inner Dboundary point and going
toward the outer boundary. Next, placing
grid points regularly along the electric
force lines, an 0-0 grid system is
obtained in space. The determination of
charge distribution can be reduced to a
non~-linear minimization problem with a
linear constraint.

Let n; Dbe a specified normal unit
vector at the i-th boundary point and
be the electric force vector at the
point located at a very small distance,
in the direction of n; , from the i-th
boundary point. Stipulating that the
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direction of the vector F; coincides
with that of mi , i.e.n;xF;=0., the
problem is equivalently to minimize the
functional G defined by

I

G=S(lInxF|)?2 (2)

with the constraint defined by

§QJ = T for inner boundary
and (3)
§QJ =—-T for outer boundary

where T is an arbitrary constant.

Although several techniques have
been developed to solve such an
optimization problem [7], we adopt here
a simple iteration method suitable for a
big system of linear equations to
determine the charge distribution.

The functional G is a quadratic
function of qj, i.e.

2
G =c¢1191 +c120192t +c1nd1dn
2
+cz2192q1t+ 2202 T tcanlzln
. . . (4)
2
+ en1Ang1 H CnzUNG2 T * + ennaN

where N is the total number of boundary
points, and ¢im (1,m = 1,...,N) are the
coefficients depending only on both the
coordinates of the boundary points and
the directions of the specified wunit
vectors.

a G

Since =0 (j= 1,...,N) at the
6(1_,'

minimum of G, the following linear

equations are obtained.

ag1q1+ aq2q2t -
az1q1t apgpqa2t -

c tainin= 0
+ tagnin= 0

(5)

an1q1+ an2dat - * +tannin= 0

where aim=cim* Cmi This linear system
can be solved subjiect to the constraint
using the point relaxation technique.

Firstly assuming that the initial
values of q; to be

[{e3)] .

9 = 1 /Ninner LOr inner boundary
and ]

J?’: — 1 /Nouter LfOr outer boundary
where Nipner and N.,ier are the total
numbers of the inner and outer boundary
points, respectively, we get the
intemediate 'Point Jacobian' solution g’

g



as (0)

~Zaimim
, [35) mn¥*j
o= (1-w)q +to(——)
J aii
JJ

(6)

where w 1s a relaxation parameter which
is chosen to be less than unity. These
newly obtained wvalues have to be
adjusted to satisfy the constraint as
well as an additional condition that the
charges are positive for the inner
boundary and negative for the outer
boundary. More precisely, the first
approximation of the optimum charge
distrubution is written as

1 T
q; = q¢” for inner boundary
” J
inner J (7)
¢ for g’ >0
H J
with - = ¢ X
d e for 9, =0
and
1) =T
q; = q” for outer boundary
2 ”
outer J ) (8)
¢ for ¢ <0
. ” H W
with ¢ = 3 ;
J -¢ for 9 20
where T=1 and ¢ is a small positive
constant. The same process is 1iterated
until some user-specified convergence

criterion is satisfied.

As long as the density of boundary
points 1is sufficiently 1large, it is
expected that the solution is unique and
the functional very small, because a
set of dense discrete points at each
boudary can be regarded as a continuous
surface of conductor which yields an
unique electro-static vector field for
specified amounts of boundary charges.

The computer program for the force
vector F includes only one 'SQRT' and
also only several statements of simple
arithmetic operations. In addition, all
the variables relating to the
boundaries can be completely vectorized
in one dimension. As a result this
method 1s much more efficient than the
conventional boudary element methods. In
fact it takes only 50 minutes to
generate one million grid points in
space without any interpolation when a
FACOM VP-400 is used.

To 1illustrate the capability of
present method, two simple examples are
given 1in Figs.1l and 2. Fig.1 shows an
0-0 grid about an axisymmetric concave-

the
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mixed body surrounded by a
which satisfies orthogonality

on both inner and outer
boundaries. The grid points along each
electric force 1line are exponetially
clustered near the body surface as in
the most typical technique for the
Navier-Stokes Computation. In Fig.2 1is
demonstrated the flexibility of the
present method The concentration of
grid lines near the concave part of the
body can be considerably 1lessened by
imposing, as the new boundary condition,
the use of the inclined vector instead
of the original normal vector used in
the first example. As seen in the second
example, the direction of unit vector
specified at the boundaries can
effectively control the grid 1lines in
space. Special emphasis is put on the
fact that the orthogonalization of grid
lines near the body surface can be
automatically realized even for the non-
orthogonality condition imposed, as in
the second example, as long as the first
grid point is chosen to be on the 1line

convex
sphere,
condition

normal to the bedy surface(see
Fig.2(d)).
It should be noted that the present

method can not generate 0-0 grid for the

singular configuration which is not
homeomorphic to a sphere. The body
having a hole like the flow-through
nacelle 1is the case. This difficulty,
however, can be overcome by making the
configuration homeomorphic, i.e. closing
the hole with an infinitely thin film.

Therefore the present method may be said
to be applicable to a wide range of
configurations including a complex
combination of fuselage, wing, tail,
strut, engine-nacelle, pylon, strake,
canard, winglet, and other elements.

3. Navier-Stokes Computation

The first application of the 0-0 grid
generated by the present method has been
made to Navier-Stokes simulation for a
Mini-Shuttle 'HOPE' configuration which
is under development at the National
Space Development Agency of Japan
[8].The surface grid of HOPE consists of
six blocks, each of which has a
different number of surface grid points
( I,J ) as shown in detail in Figs.3(a)
and 3(b). Correspondingly the flowfield
itself 1is also divided into six blocks
(Figs.3(c) and 3(d)). The total number
of space grid points ( I,J,K ) 1in one
half of the whole space is approximately
0.9 million.All the grid points at the
block interfaces are set to be common
with each other. As a result the Navier-
Stokes computation proceeds without any
unfavorable numerical instability,



because an excess interpolation of
physical quantities can be avoided with
this grid system.

The flow simulation for HOPE was
carried out wusing the Navier-Stokes
solver developed by M. Tachibana ([9],
which employs an implicit finite volume
method based on a TVD upwind scheme

similar to that of Chacravathy
Baldwin-Lomax turbulence model 1is
in this computation In spite of
use of a block-structured grid,
computational efficiency is comparable
to that for a single-block topology.
This encouraging result greatly owes to
the fact that the vector variables 1in
the computer program have, as a whole,
long 1lengths of data. The computation
time required on a FACOM VP-400 is
approximately 12 hours for the 0.9
million grid points used in the
symmetrical flow computation for HOPE.
Fig.4 shows the surface pressure
contours at a Mach number of 0.9 , an
angle of attack of 5°,a yaw angle of ¢ °,
and a Reynolds number of 107

[11.
used
the

The comparisons of the computed
force coefficients with the experimental
data obtained from the Transonic Wind
Tunnel of National Aerospace Laboratory
are shown in Fig.5. Except for the drag
coefficients the agreement is excellent
even for the side force coefficient 1in
the a-symmetrical flow at a yaw angle of
5° The discrepancy in the drag has
twofold reasons. One 1is the large
aerodynamic interaction due to the
existence of the sting behind the base
of the model used in the wind tunnel
test. The other 1is the turbulence
modeling of the base flow in the
computation.

The second example
transonic aircraft configuration
developed by the Japan Alrcraft
Developmant Cooperation. Figs.68(f) and
6(b) show the surface grid which
consists six Dblocks as the
previous In Figs.6(c) to 6(f)
various views of the space grid are
depicted. It should be noted that we
used 86 points in the normal direction
enough to resolve the boundary shear
layers. The total number of grid points
is approximately 1.2 million. The flow
computation at a Mach number of 0.82, an
angle of attack of 2° , 'and Reynolds
number of 10% could be carried out using

is for a

of
case.

in

the same Navier-Stokes Solver without
any modification, since the grid
topology 1itself is the same as that of
the first example. Figs.7(a) and 7(b)

show the computed pressure contours on
the aircraft surface and at the plane of
symmetry, respectively. 0il flow pattern
is shown in Fig.7(c). Detailed
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comparison of the computed pressure
distributions with experimental data
obtained from the Transonic Wind

Tunnel of National Aerospace Laboratory

is shown 1in Figs.8(a) to 8(c). As a
whole the greement may be said to be
good. However, large discrepancies are

noticed in the pressure distributions on
the horizontal wing. The sting suporting
the model at the tail of the fuselage
affects Tflowfield strongly near the
horizontal tail. This effect produces a
fairly large amount of upwash, which can
be virtually canceled by making the
twist angle of the horizontal tail minus
three degrees 1n the experiment[10].
However, the cancelation is imperfect as
seen in Fig.8(c).

4. Conclusions

Automatic grid generation procedure
for complex aircraft configurations
was proposed.

(1)

The numerical wind tunnel based on
the present grid generation can be
utilized, as a black box, by the
general users unfamiliar to special

(2)

knowledge of computational fluid
dynamics.

(3) Acutual applications to Navier-
Stokes simulations were made for
two typical configurations, i.e.
aerospace plane and transonic
aircraft configurations.

(4) Those computed results were also
compared with experimental data,

which show a good applicability and
reliability of the numerical wind
tunnel.

5. Acknowledgements

The author would 1like to thank Mr. M.
Tachibana for his permission of the use
of the Navier-Stokes solver, and to
thank both National Space Development
Agency of Japan and Japan Aircraft
Development Cooperation for their
cooperative suport in the present study.
He would also 1like to thank Ms. T.
Munemura, Ms. H. Kamata, and Ms. T.
Sugaya for their help in preparing the
manuscript of this paper.

References

1. S. R. Chacravathy, 'The Versatility



10.

and Reliability of Euler Solvers
Based on High-Accuracy TVD
Formulations,' AIAA Paper No.86-
0424 (19886).

J. F. Thompson, Z. U. A. Warsi and
C. w. Mastin, 'Numerical Grid
Generation,' North-Holland (1985).

S.Sengupta, J.Hauser, P. R.
Eiseman, and J. F. Thompson,
'Numerical Grid Generation in
Computational Fluid Mechanics '88,’
Pineridge Press (1988).

J. S. Sikora and L.. R. Miranda,
'Boundary Integral Grid Generation,'
ATAA Paper 85-4088 (1985).

S§. Takanashi, 'Grid Generation

Procedure Using the Integral
Equation Method (I),' National
Aerospace Laboratory, TR-1009 (1988)

S.Takanashi, 'A simple Algorithm of
Structured-Grid Generation and Its

Application to Efficient Navier-

Stokes Computation, ' the

Proceedings of the International

Symposium on Computational Fluild

Dynamics-NAGOYA, Nagoya, Japan

(1989).

G. N. Vanderplaats, 'Numerical
Optimization Techniques for
Engineering Design,’ McGraw-Hill
Book Co. (1983).

M.Tachibana, S.Takanashi, and T.
Akimoto, 'Navier-Stokes Simulation
for a Winged Space Vehicle "HOPE"

at Subsonic, Transonic, and
Supersonic Regimes, ' the
Proceedings of the 17th
International Symposium on Space
Technology and Sciences, Tokyo,

Japan {(to appear).

M. Tachibana and 8. Takanashi,

. '"Numerical Simulation of Flow

Fields around an Airplane of
Complex Geometry, ' National
Aerospace Laboratory, SP-10 (1989).

T. Kaiden, J. Miyakawa, M.
Yanagisawa, and K. Amano,
'Comparison with Computation Using
Panel Method and Wind Tunnel Test
Around Transonic Complete Aircraft,
'National Aerospace Laboratory, SP-
9 (1988).

1419



.
I

i Hl///l/////////// )
N § f-';‘///;///% 4

S

(a) Overall View

Ll fl 1 L7
I

! Ry

S |
il
!

gl
::::,:«-.ana-::n-.,:,:,,.','m,' I
e
’::':"" 4
4!

T
|

it
(] "’“f | R

]

i

TN il
N IRIHIE
il S
0""',",}" :‘l“‘\“‘ 58
LRSS

ShL
"\\“\\“‘\t‘ Iyl
‘t‘\\‘\\\ & Il"lg'l 2
A i
8 ‘i'l lll m’,,'"’,""'...'.'l HITH R0

Recsi ! HERIK

(b) Closeap View

Fig.1l 0-0 Grid for Axisymmetric
Convex-Concave Mixed Body
Orthogonality Condition
Imposed

(a) Specified Vectors on
Body Surface

1420

N
N \\\\\\\\\\ i /////////
‘\:\‘1‘3&&@ i

WII!WW%

7
iy /,/'

I ;
%
%

n

\
TR
7N

|
N\

|

(b) Overall View

‘\\\\\\\“‘\\\‘\\\“\‘\‘“

iy
iy

Hi
i

(c) Closeup View

(d) Automatically orthogonalized
Grid
Fig.2 0-0 Grid for Axisymmetric
Convex-Concave Mixed Body
Non-Orthogonality Condition
Imposed



(a)

Surface Grid

Fig.4 Surface Pressure Contours for
HOPE M=0.9 #=5 °R&=107
® 101x41

103x71 @ 15%x21
11x11
(b)

(a) Drag Coefficients
Number of Grid Points at Each
Black

. 0. 6. B= N
\ iy
SR i il

A\

%,
i)

N

\\\\\\\\\\\\\\\\&
Ihiuk
\\\\\\\\\\\\\\\\

N
W
A

\

N
<

7 '.;';'.'.':’.;':'.:'unr
LA

)

TSR R T R
T TR RIS

f'l’l'ulungl“;““““\\\{\\\\\@\\\\\\\\

Illlll‘lllgl““‘“\\\

///’/
il
4
7
i

.
W
4@
”l

N
il M
N

U
W
N

_
0

7

e
10 15

o (deg.)
RO (b) Normal Force Coefficients
Side View of Grid at Plane of
Symmetry

cYy M=0.9 eNS
0. 1 3=5° oEX
{ o
0 5 T0 T5

-0. 1 6%&e«refysﬁygxfexls%%e*>e
o (deg.)
(d) Grid Surf {(c¢) Side Force Coefficients
. r1. urface at K=40'60. Fig.5 Comparisons of Computed Force
Fig.3 0%0 grldlfor Hog% ﬁonsi;§1ng Coefficients with Experimental
o uselage, rake, Wing, ta for HOPE M=0.9 Re=107
Tip-Fin, and Body-Flap Data for °

1421



.,
o5

Surface Grid

2 L7
QQg%@%%%£Zauzziﬁz
55550
ﬁ%zz?gﬂnnzdl'

7 A
s AL ALt
) e
o
oL ’p"‘,f,,‘-_

o
S e
RN R
HITHRA T
1t iy
R

<::) 141x21

141x20
Number of Surface Grid

(b) The
Points at Each Block

Station

|
N Lo iR I H s
i s
%& F@ 7

\
N
W B
“mm“mm

N
‘mwwm

[ANATENT]

RN,
RITLT B

LRGN
At
ST

AR

it

% it R

o, ! g ““\{{:&3{&3&‘}‘\&\\\\\\\\\\\.\

<3 7 / ’Illlulllll';;'(g‘egl!{l\ \\{&&\\\\\&‘\\&\\\\\\Q\\\\&\\‘\\\\\
7 i A

$C7 TN

2t 2y i, Ut WN%NW&@&

X
3
s
77y57 e
S S

> ¥
Y
25555

S i
oK

e

(e)

Side View of Grid at Mid-Span
Station

1422



R
R
SRR
RIS
R

W
W X \‘\\\\

PR
23S0
SRR
RN
R
\\\\\\\\ QR t‘\\\‘; o
R 3
!

Wit
R
Whatisly
sy
3

T
ANk
Saisas MR

ZEEE R

YN N

(a) Surface Pressure Contours

7
L Tareaey
s

) )
R
R
s R
IR N
TR NI
AR
=
P W RS

) a e SRt NI N
AN S

% 4

ol

X
A

I AR Lo R
e S S e e
R R

RIKIBLEARIS

X 4

¥
3
D
2
0
XA
XX
A
7

%

22
R ATy
AR

L
b
#,.'
,

'S,

¥,
o,
o,

¥,
AR
£
eny, 'l'l','"
K
1!
st
R
e
%

7%
2
745

R
:I'l].’
I
i
{11
1,
0

(b) Pressure Contours at Plane

Symmetry

of

i
il
Gyl

7

)
U
U

iy
AN
A
o
7
7

7
7
%
.
7
7

.
7%

%

R
TR
s
Q R

7

R N
R R rn_ ieS
R
RIS
RIS
\\\\\\\\ RS
LB
ALl
L PSSO
N
X "3”:’,’"”:{"‘;"‘:’:‘:‘:\“\‘-‘.\‘
R RN
T SN
W
4 s
e
ik
R

oL
A

) Wilres,
\ YO

e I

sy I

\\\\\mm,",.‘ ) i

e

!

&3
s

e

e
ive s,

4

s o
s
T

113 »

2
2
4,
i1

(c)

0il Flow Pattern on Aircraft
Surface

Fig.7 Computed Results for Transonic

K = 86

(f) Grid Surfaces at K=50,65,86

Fig.6 0-0

Grid

for

Transonic

Aircraft Configuration

1423

M

0.

Aircraft Configuration

8 2

a=2°

Re=1.

1 X 108



® EX

i

L

0. 00 ' ' \/7/.\'.\\‘/ -\\’/\X/

(a) Upper and Lower Surface of Fuselage at
Plan of Symmetry

1424



_1u0"
0- 0"
L
1. 0 1. ot
NS
—Upper
----- Lower
EX
@ Upper
A Lower
cp CP
-1. 0- -1, O
0. 0+t 0. 0F
f L
1. 0+ 1. 0t

(b) Wing Surfaces at Four Different Spawise
Stations

1425




: —— X/L

6. OF . — X/L l . . -
( \‘\\\‘ 0.0 Y'“ “?\\\\

EX
® Upper
A Lower

(¢c) Horizontal and Vertical Tails

Fig.8 Comparison of Computed Pressure
Distributions with Experimental Data
for Transonic Aircraft Configuration

M=0., 82 a=2° Rg=1. 1x108

1426



