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Abstract

The viscous hypersonic flow past an analytically
defined generic transport aircraft forebody is
numerically simulated using a Navier-Stokes code.
The governing eguations are given in general three-
dimensional curvilinear form and the computational
method is outlined. The results are discussed in
detail. Particular emphasis 1is layed upon the
sensitivity of the solutions to variations of
physical parameters. Main point of the investi-
gation is the influence of turbulence, real gas
effects and radiation on the global and local cha-
racter of the flow. As it is expected turbulence
has a significant influence on boundary-layer velo-
city profiles and boundary-layer thickness, while
at the Mach number in consideration real gas ef-
fects and radiation play a minor role for these
features. On the other hand it is found that real
gas effects and radiation reduce the thermal loads
considerably, resulting in less effort for isola-
tion than indicated by predictions neglecting them.

1. Introduction

In the last few years a renewed interest in
hypersonic flow problems could be observed. Large
research programmes have been initiated for both
reentry vehicles and hypersonic transport aircraft.
while for the former a certain basis of experience
is available from the US Space Shuttle [1], the
opposite is true for hypersonic transport aircraft.

For hypersonic cruise flight aerodynamic drag
and heating have to be minimized in order to save
weight due to unnecessary fuel and isolation. 1In
this context turbulence, location of the transition
laminar-turbulent, real gas effects and radiation
play a major role. Unfortunately rather poor expe-
rience is available today concerning the correct
modelling of these physical parameters in hyperso-
nic flow. Most of the turbulence models in use have
been developed for incompressible or low Mach num-
ber flows. Although work is in progress to incorpo-
rate for example density gradients [2], a verifi-
cation on a large scale is still lacking. Also in
predicting transition laminar-turbulent work is in
progress to determine for example the influence of
nosetip bluntness or entropy layer swallowing for
selected simple configurations [3, 4)]. A general
criterion, however, is not available. Furthermore
it is not yet well explored which properties of the
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flow are - influenced to what degree by real gas
effects and radiation.

The present paper tries to alleviate the uncer-
tainties mentioned to a certain extent by variation
of the parameters in consideration within the pos-
sible range. In this way the sensitivity of the
flow to these parameters can be estimated.

The investigations are done numerically by solu-
tion of the Navier-Stokes equations using the code
NSFLEX [5]. In order to concentrate to the physical
problems the calculations are restricted to a
simple analytically given geometry which can be
locked upon as the representation of a generic
hypersonic cruise aircraft forebody. The three-
dimensional problem is solved only for laminar flow
to give a global image of the flow in conside-
ration. For the subsequent parameter variations
two-dimensional calculations are used in order to
minimize the computational effort.

By means of the two-dimensional calculations the
influence of turbulence, real gas effects and radi-
ation on pressure, temperature and skin friction
and on the development of the boundary-layer is
investigated. ’

2. Governing equations

The general governing equations for the present
investigations are the time dependent Reynolds-
averaged compressible Navier-Stokes equations in
conservation law form. In terms of body-fitted

arbitrary coordinates &,n,C using Cartesian
velocity components u,v,w they read

Ut + EE + Fh + GC =0, (1)
where

T

Uus=J (plpulpvlpwle)
is ~the solution vector of the conservative
variables and

E=J (E Ex + F Ey + G Ez) ’ (2)

F=J (E nx + F ny +Gn),

G=J (E Cx + F Cy + G Cz)
are the flux vectors normal to the &=const.,
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and the heat flux vector

qxs—ka, qy‘—‘*kTy, (5)
q, = - k T, -

e.p,T,u,k denote density, pressure, temperature,
coefficient of viscosity and heat conductivity
coefficient. The indices O e Oy e Og i O Oy, 1),
denote partial derivatives with respect to &,n,C or
%x,¥,2 except for the stress tensor o and the heat
flux vector q.

The metric is defined by
& = WpZe = B3y )/3 . & = (%2 -
EZ = (Xnyc = XCYn)/J [
(ZEYC - YEZ()/J ’

xth)/U R

#

ny = (XEZC - ZEXC)/U ,
= (Yazn - ynza)/J ’ S, = (xhzi - znxa)/J ’

"y
hz = (XCY£ - anC)/J ’
cX
- *We (6)

= (xgyn -

where

I=Xg (Y 20 =2 Yo 14Ye (Xg 2y =%y Zg )+25 (X, Yo =% ¥y ) (7)
is the cell volume.

To simulate turbulent flows effective transport
coefficients are introduced with the Boussinesg

approximation. The equations are closed with an
algebraic turbulence model.

3. Numerical method

To reach the steady state solution asymptoti-
cally the governing equations are solved in time-
dependent form by the finite-volume method NSFLEX
[S5, 6, 7]. In order to allow for high CFL numbers
point Gauss-Seidel relaxation is applied to the
unfactored implicit equations.

Time integration.

Wwith the first order in
implicit form of Eg. (1),

time discretized

(U n+l _ U “)/At + E{n+1 + an+1 + Gcn+1 - 0, (8)

a Newton method can be constructed for U »+!. For
this purpose the fluxes of Eq. (8) are linearized
about the known time level n,

Er+l = ER 4+ ARAU, Fo*l = F® + BrAU, (9)

Gl =Gn + CPAU,
leading to

AU/St + (A PAU), + (BRAU), + (C24U), = (10)

—(E{ + F o+ G, )* = RHS .

The Jacobians A, B, C of the flux vectors E, F, G
are defined by

A =23E/HRU, B=23F/3U, C= 3G/U. (11)
AU is the time wvariation of the solution and
therefore the update is

Urtl = UM + AU . (12)

With the divergence of the fluxes on the right-
hand side (RHS), Eq. (10) has to be solved
approximately at every time step. A point Gauss—
Seidel technigue is used, where it is not necessary
to Dbalance the equation perfectly. The terms

(A oU),, (BrAU),, (CAU), on the LHS are dis-
cretized at i,j,k up to second order in space
(5]. For example (A"AU), is discretized along
j,k=const by
(AmAU); = (BA,,"0U)y,, (B ,m00); , ,, +  (13)
(A7) (80, ~20U; +4U; _, )
where
(B " 00)s 1,0 = (TRT L), 5000 L, + (14)
(13V1?1)i+1/2AU'1+1/2 ’
(B P 00); 3, = (TNTL); 000, +
(TAT )i ,2007 5 4,2 -
AU vectors are extrapolated consistently to the
right-hand side up to second order. A,;, is the

thin-layer
directions

viscous Jacobian at i,j,k for all
£,n,0. A is the diagonal matrix of the
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eigenvalues of the Jacobian A. T and T'! are the
matrices which diagonalize A (A = T !AT). The
coefficients of T, A, T-! are found from arithmetic
means of the conservative variables ¢, pu, ov, oW,
e. AN is the diagonal matrix of the positive
eigenvalues of A,,, and A, the matrix of the
negative ones,

N = max(E,A) , KX = min(-E,A) . (15)
The term
= B*SMREL*max(abs()\,),abs()};)) (16)

is zero where B is zero and leads to an additicnal
residual. smoother at non-monotonous flow regions. 8
is zero for smooth flow situations and one for non-
monotonous ones. SMREL is typically set to 0.3.
With these discretisation formulas applied to the
three spatial directions, the equation is reordered
for point Gauss-Seidel iteration,

DIAG,

25,00 5 k¥t = -RHS; j , "+ODIAG;

1,3

YR §))

The iteration count is indicated by an upper index
p. DIAG, | ,» is a 5%5 matrix of the sum of the
elgenvalue splitted inviscid and the viscous thin-
layer Jaccbians together with the inverse of the
time step I/At. The time step is calculated with

the maximum of the eigenvalues of the inviscid
Jacobians ,
= (B*CFLMIN + (1.-B)*CFL)/(max|XN ; ,|) (18)

The CFL number is typically about 150 to 200 for
moderate Mach numbers and may reduce to lower ones
for hypersonic applications in the transient phase.
CFLMIN limits the time step at regions where strong
shocks appear and may need to be set to about 10
for high Mach numbers. The fluxes RHS; n and the
matrix DIAG, . rest at time level n during
u~-iteration, Tﬁe term ODIAG is given by

ODIAG = £(AU,,; 5 ,0U,

i—lvj.k'A
i,3-1,k/’ i,3,k+17

(19)

,3+1, k7
Ul]kl

where the actual AU values of the py-iteration are
taken. Three Gauss—Seidel steps (p=1(1)3) are
typically performed at every time step.

Two features of the scheme are important to
allow high CFL numbers:

— True Jacobians of the fluxes on the RHS must be
used on the LHS.

- In [5, 8] it was found that for high Mach numbers
and/or for high cell aspect ratios the matrix
DIAG; may have zero or even negative diagonal
elemen%s, a fact which was observed by other
authors, too [9, 10]. Here a pre—conditioning of
the matrix DIAG, ; , is done such that diagonal
dominance is forced [5, 8]. The system is solved
for the non-conservative AU" vector by Gauss
elimination and transformed back to a conservative
AU at every point i,j,k ,

(DIAG; ; )" (8U; j ,#*')" = - RHS; ; ," +
ODIRG; ; ,
8U; 4t o= M (8 ettt
with (20)
(DIAG, ; ,")" = DIAG, , ,» M.

M is the matrix to transform U to non-conservative
variables U*=(p,u,v,w,p)T

M=3U/3U"

This transformation does not at all influence the
conservation properties of the scheme [5, 8].

Flux calculation.

Inviscid fluxes. For the
calculation a 1linear locally one-dimensional
Riemann solver for E,F,G is employed at each
finite-volume face. A hybrid 1local characteristic
(LC) [11) and Steger-Warming type (SW) scheme is
employed, which allows the code to work for a wide
range of Mach numbers (.05 < Mach < 100), see also
[12]. For example, the flux at cell face i+l/2 is
found by

inviscid  flux

Ei 1,2 = (B (1-a) + a*Egy, Yis1,2 (21)
with a=SW*s*(M.-M,)2. s is the van Albada sensor
[13] for the density, M, and M, are the Mach num-
bers on the left- and on the right-hand side of the
volume face. SW is an input constant to be
specified greater or equal to zero. To calculate
the 1local characteristic fluxes, the conservative
variables on either side of the volume face are
extrapolated up to third order in space (MUSCL type
extrapolation) by

U = U, +s/4%((1-k*s)b +(1+k*s)4, ), , (22)
U, = U, ,-s/4*((1-k*s)d, +(1+k*s)8_),

i+l 7

[ ]

where k=1/3 for third order upwind biased extra-
polation. The index 1 means state to the left and
the index r state to the right. s is a van Albada
type sensor [13]

s5=(28,8 +2)/( (4, )2+(A ) +€)

with A =U _,-U,, A=U-U_,. (23)
€ is the vector
€ = €'*max(ZERO,U, **2,U, **2), (24)

e’ controls the sensor and is typically set to
e'=5.E-5. The number ZERO is a constant in the code
to avoid division by 0.0 wherever needed
(ZERO=1.E-20). The number B for use on the left-
hand side is p=max(a,s) (a from Egq. (21) and s is
the maximum from Eg. (23)). With the variables U,
and U, an eigenvalue weighted mean value is found
at the volume face by

U

iv12=Tign 2 ¥C NPT BN Ty 50, ), (25)

where the matrixes A’*, A’~ are diagonal matrixes,
N = 5% (Le (0 ) ) /(ZERO+abs( ), J+abs(X )
Ay m=.5%(1-( N +) ) /(ZERO+abs (X, )+abs(X; ,))) .
(26)
The index i here denotes the i-th eigenvalue
(i=1(1)5). wWith the backward Riemann solution
Uy,,,, the inviscid fluxes can be calculated
directly (flux difference splitting),

B = E(U,,,,) .

This scheme guarantees the homogeneous property of
the Euler fluxes, a property which simplifies the
evaluation of the true Jacobians of the fluxes for
use on the left-hand side [5, 8].

(27)
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Because this local characteristic flux is not
diffusive enough to guarantee stability for
hypersonic flow cases especially in the transient

phase, where shocks move, at regions of high
gradients a new hyper-diffusive flux is used
locally. It is a modified Steger-Warming [14] type

flux (flux vector splitting),
Eowis1,z = Ei*+E ;7 = (INTU); +(TAT-U),,, . (28)

The modifications of the original Steger-Warming
fluxes are [15]

ALzt = 05HOG + 0) (29)
1,2,37 = 0.5% (™ + A7),
Energy flux = mass flux * H . , (30)

where H, . is the total enthalpy of the correspon-
ding cell. Eq. (30) gives a better conservation of
the total enthalpy as was also found in [9] for the
van Leer flux vector splitting scheme. Eq. (29)
avoids the unsteadyness of the mass flux in the
original Steger-Warming flux.

Diffusive fluxes. Diffusive fluxes at the cell
faces are calculated with central differences, for
example, at a &=const. cell face

¢=‘%+LjJ - 4,5,k (31)
¢ represents the velocity components u,v,w or the
temperature T. For the cross derivatives, where éy,

and ¢, are needed, conventional differencing is
used:
¢n = (¢i+1/z,j+1,k - ¢i+1/2,j—1,k)/2 ’ (32)
¢c = i+1/2,3,k+1 T Pis1,2,5,k-1 ’

where the ¢—values are found as arithmetic means of
the neighbouring cell center values.

Boundary conditions.

At the outer farfield boundaries non-reflecting
boundary conditions are inherent in the code since
at every cell face a Riemann problem is solved and
therefore the code extracts only such information
from the boundary which is allowed by the
characteristic theory. At outflow boundaries, as
long as the flow is supersonic, the code does not
need information from downstream. 1In the part of
the viscous regime where the flow is subsonic the
solution vector is extrapolated constantly. No
upstream effect of this extrapolation could be
observed as long as the flow streams downstream.

At solid bodies the no-slip condition
(33)
holds.

The following temperature and heat flux boundary
conditions are possible to prescribe:

- adiabtic wall: q, =0, (34a)
- given heat flux : g, , (34b)
- given temperature : T, . (34c)

Radiation of solid bodies can also be taken into
account. In this case the heatflux vector at the
wall, here written for simplicity in Cartesian
coordinates, is calculated with

g = - kT, + €T, * (35)
The second term in Eg. (35) is the radiation term.
o is the Stephan-Boltzmann constant with
0=5.67%10-% W/(m2K!). € 1is the emissivity factor
(0<e<l). T, is the temperature at the wall. For a
systematic study on the Reynols-number effect on
flow simulations with radiation boundary conditions
see [16].

Equilibrium real gas incorporation.

At first the influence of the real gas behaviour
on the inviscid fluxes is described. 1In the Euler
equations the ratio of the specific heats appears
only in the energy equation, written here for sim-
plicity in cartesian coordinates,

(e ), + (ulpre,)), + (vipte,)), +

(w(p+e,)), =0 (36)

with
e, =p/v.-1) + o@®/2 , v, = v (P,e) . (37)
The index r denotes real equilibrium gas. vy, =
v.(p,p) is calculated from a thermodynamic

subroutine. Following EBERLE [12]) we define a new
total energy e with a reference ratio of specific
heats y which is the free stream y

e = p/lv-1) + g /2 . (38)
With
e, =e+Q, (39)
Q =e -e=p(l/y,-1)-1/(y-1))
the energy equation is now
(e)y + (Q)y + (u(p+e)), + (vipt+e)), + (40)

(w(pte)), = — ({u*Q), + (V*Q), + (w*Q),) .

We are just interested in the steady state solution
and therefore we can use a steadiness assumption
for the source term Q,

(@), =0 (41)
This means that the left-hand side of Eq. (40) is
the perfect gas energy equation and the real gas
influence 1is separated on the right-hand side as a
source term. This pseudo-unsteady approach now
offers the big advantage that neither the Riemann
solver nor the implicit part of the NSFLEX solver
has to be changed. Also the static pressure can be
calculated as usual directly from the flow variab-
les with p=(y-1)*(e-.5*%pg?). Note that vy is the
free stream ratio of specific heats and that in the
code only a few 1lines are necessary to calculate
the source terms, This approach is restricted to
steady flow simulations.

To account for the effects of deviation from
perfect gas assumption in the viscous fluxes some
more thermodynamic subroutines for the temperature
and the transport coefficients have to be used,

T=T (p/p) s M =M (P,p) s k=k (P:P) (42)
New vectorized spline representations of the
thermodynamic equilibrium properties [17, 18] are
used, such that a real gas calculation costs only

about eight percent more than a perfect gas calcu-
lation.
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4. Results

Since for the present investigations the
physical problems are of primary interest, a simple
generic geometry was analytically defined for the
calculations to represent a hypersonic transport
aircraft forebody. A three-dimensional laminar
calculation was performed to get a general image of
the flow in considertion. The influence of the
parameters mentioned in Chapter 1 was subsequently
studied by means of two-dimensional calculations in
order to minimize the computational effort.

The surface of the body is defined by

Y2 ZZ
+ = = 1, (42)
a2 b2
where
a=-0.0533 /x - 0.0912 x - 0.1790 x? +
0.1990 x3 - 0.0632 x4 , (43a)
b=-0.0271 vx - 0.0110 x - 0.1270 %2 +
0.1730 x3 - 0.0640 x4 . (43b)

This geometry is characterized by a blunt nose and
elliptical cross sections. It is symmetrical with
respect to the planes y=0 and z=0. The nosetip
bluntness is relatively small compared to the total
body length and the metric of the surface is very
smooth.

The grid wused for the three-dimensional
calculations is shown in Fig. 1. Depicted are the
surface grid, the plane of symmetry and an i=const
cut. The grid contains 75 cells in streanwise,
70 cells - in circumferential and 64 cells in wall
normal direction, respectively. The i=const. lines
of the surface grid are situated in x=const. cuts,
the =x-stations being defined by a simple cubic
function. The circumferential point distribution
is characterized by a constant increment of the
angle between the centerline and two points (i,J)
and (i,j+1). Particular emphasis was layed upon a
proper resolution of the blunt nosetip.

The space.grid was generated in two steps. First
-an inner wall-normal mesh was obtained from simple
algebraic relations. This mesh extends to about
about 10 percent of the distance between the wall
and the outer boundary, which was adapted to the
flow conditions by estimation of the shock
position. The outer region was then covered with
points by solving a system of elliptic differential
equations [19), wusing the wall-normal mesh as
boundary condition. For the two-dimensional
calculations a cut of the three-dimensional grid at
y=0 was used.

On the grid described a laminar three-dimensi-
onal calculation was performed. The flow was
characterized by free stream Mach number M,=6.8,
Reynolds number referenced to the total body length
Re=122 000 000, angle of attack o=6°, free stream
temperature T,=227K and adiabatic wall.

The isobars and Mach-isolines for this calcula-
tion are presented in Fig. 2 and 3, respectively.
The pressure distribution is quite smooth along the
surface, steep gradients exist only in the nose
region. Note that the spatial representation of the
bow shock could be improved significantly by a
better adaption of the grid in the shock region. It

was found, however, that this has almost no influ-
ence on the results near the body surface, which
are of primary interest here. Fig. 4 shows the
isotherms calculated.

In Fig. 5 isobars are given for the laminar two-
dimensional calculation. Note that in Fig. 2 and 5
the same levels were used for the isolines in order
to allow a comparison. As expected, the shock is
further away from the body and the pressure along
the body is higher for the two-dimensional case.

In Figs. 6 to 10 two-dimensional computations
for

- laminar flow, perfect gas,

— turbulent flow, perfect gas,

- turbulent flow, real gas,

-~ turbulent flow, real gas, radiation,

are compared. For all turbulent cases transition
was fixed at 10 per cent of the body length. For
case 4 the emissivity factor in the radiation
boundary condition was set to €=0.85.

In Fig. 6 the computed ¢ —distributions along
the upper and lower surface are given for the four
test cases. As it is expected only 1little
differences are discernable.

Fig. 7 shows the tangential velocity components
at various stations along the lower side of the
body. While the profiles are almost identical at a
station wupstream of transition laminar-turbulent
(Fig.7a), the usual significant differences are
found between the laminar profile and the turbulent
ones in the turbulent flow (Fig. 7b,c). No evident
influence of real gas effects or radiation on the
turbulent velocity profiles gets obvious from
Fig. 7. As a consequence from this it can be stated
that real gas effects and radiation do not
significantly influence the boundary-layer
thickness for the present case. Note that for Fig.
7 the profiles have not been normalized with
respect to the boundary-layer thickness.

Fig. 8 gives the temperature distributions along
the lower and upper side for the four test cases.
Compared to the laminar flow the turbulent case
without real gas and radiation yields somewhat
higher temperatures. If real gas effects are inclu-
ded a significant reduction of the overall wall
temperature can be found. The application of radi-
ation boundary conditions finally reduces the tem—
peratures again considerably. Note that the
indentations at x=0.1 in the temperature distribu-
tions of the turbulent cases are due to the fact
that no transitional region is modelled. The turbu~-
lent viscosity is switched on there abruptly.

When comparing the temperature profiles along
the lower side (Fig. 9) the expected differences
are found between laminar and turbulent flow, that
is the temperature gradients near the wall are much
steeper for the turbulent cases (Fig. 9b,c). The
influence of real gas and radiation is confined to
the immediate neighbourhood of the wall.

Finally the distribution of the skin friction
coefficient ¢, (Fig. 10) shows the usual behaviour
for laminar and turbulent flow. The location of the
transition at x,.,=0.1 is clearly discernable.
Compared to the differences between turbulent and
laminar flow the variation within the turbulent
results is relatively small.
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5. Conclusions

A Navier—Stokes code was used to simulate the
hypersonic flow past an analytically given generic
forebody of a hypersonic transport aircraft. The
governing equations were given in general coordina-
tes and the numerical method was described. Results
were presented and compared for laminar and turbu-
lent flow. For the turbulent case both perfect gas
and equilibrium real gas assumption with radiation
boundary condition were used optionally.

The pressure distribution was found to be
relatively insensitive to changes in the above
conditions. The development of the boundary-layer

velocity profiles and the boundary-layer thickness
are influenced, of course, by the 1location of the
transition laminar-turbulent but are relatively
insensitive to the choice of perfect or real gas
assumption and radiation. The opposite was found
for the surface temperature distribution, where
considerable reductions of the thermal loads were
found using real gas assumption and radiation
boundary conditions.

Presently work is under progress to incorporate
nonequilibrium real gas assumptions into the code.
Furthermore due to the multitude of parameter
variations and sensitivity studies necessary to
obtain insight in the behaviour of flow at
hypersonic speed it turned out to be imperative to
reduce the computational effort as far as possible.
Therefore a space marching option is introduced
currently into the NSFLEX code using line
relaxation and bow shock fitting. In this modified
code block- or plane-marching will be available
using the parabolized Navier-Stokes equations
whereever possible.

In addition the experience gained from the
development of the 2zonal solution technique [20,
21} will be implemented to a coupled Euler/second-
order boundary-layer code [5]/[22] designed
especially for hypersonic flow problems. The
comparison of the different types of modelling
flow should help to verify the numerical results.
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