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Abstract

A spatial marching method called SCRAM has been
developed to numerically solve the Euler equations for su-
personic and hypersonic flow. The equations are formu-
lated in terms of Riemann-type variables using a local
streamline coordinate system. Expressed in this way, the
equations model wave propagation in a very physical man-
ner with no high Mach number restrictions. High compu-
tational efficiency ig achieved on a vector processor such
as a CRAY or CONVEX. The procedure has been coupled
with a versatile grid generation method which automat-
ically sections complex cross-sectional grids into simpler
domains on the basis of singular geometry points, such as
sharp internal or external corners. SCRAM predictions
have been validated by comparison with test data for sev-
eral realistic aircraft configurations, including cases hav-
ing non-zero sideslip. The comparisons include force and
moment data and surface pressure data. A fully-iterative
procedure has been implemented to start the SCRAM
code for arbitrary blunt-nosed configurations and also to
handle embedded subsonic regions. An efficient procedure
for predicting the effect of control surface deflections has
been incorporated and validated against test data. Real
gas results for a cone are compared with the analytic so-
lution.

Introduction

A method has been developed for accurate, efficient
prediction of supersonic and hypersonic inviscid flowflelds.
It uses a spatial marching procedure to numerically ap-
proximate the solution of the QAZ1D form of the Eu-
ler equations presented in Reference 1. This formulation
is unique in that the equations are written in terms of
Riemann-type variables using a natural streamline coor-
dinate system. Because of this, the equations model wave
propagation in a very physical manner with no Mach num-
ber limitations. Equally important is the ease with which
the associated numerical solution procedure can be coded
and the high efficiency which can be achieved on a vector
processor such as the CRAY XMP or CONVEX C1/C2.

Because the QAZ1D Euler formulation describes the
physical process of wave propagation and has no inher-
ent Mach number restrictions, it lends itself readily to
supersonic and hypersonic flowfield analysis. A computer
program called SCRAM (Streamline Coordinate Riemann
Axial Marching) has been developed (References 2 and 3)
based upon the QAZ1D formulation. For fully supersonic
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inviscid flow, 3D flowfield analysis can be reduced to a
sequence of 2D problems by using a spatial marching so-
lution procedure.

Many existing marching procedures use the longi-
tudinal body axis as the primary direction of informa-
tion propagation. This requires the velocity in the body
axis direction to be supersonic. The QAZ1D formula-
tion uses a local streamline-oriented coordinate system at
each grid point in the flowfield to propagate information
downstream in a much more physically accurate manner.
As a result, flowfields about configurations having wings,
tails, fins, etc., can be accurately predicted using relatively
coarse computational grids. Supersonic flow is required,
but the velocity in the marching direction is only required
to be positive.

Results from the SCRAM code are presented for
several aircraft configurations, including cases with a non-
zero yaw angle. Predicted force and moment coefficients
and surface pressures are compared with available test
data. Included are flowfields having embedded subsonic
regions which are handled by local application of a fully-
iterative method. Predictions of control surface effective-
ness are also presented. A real gas version of SCRAM has
been developed for analysis at hypersonic Mach numbers.
For validation purposes, comparisons of surface density
and shock wave angle are made with analytic solutions
for a circular cone.

Governing Equations

The fluid dynamic equations on which the SCRAM
code is based are the three-dimensional Euler equations
which describe inviscid flow. In terms of {characteristic-
type) extended Riemann variables in natural streamline
coordinates (s,n,m), these equations are (Reference 1)
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The extended Riemann variables are defined as
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where ¢ is the velocity magnitude and a is the speed of
sound. Time is denoted by ¢. The modified entropy S is
defined in terms of pressure p, density p, and the ratio of
specific heats v by the relation
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The above relationships assume that the gas is perfect.
The flow angles § and ¢ are defined as shown in
Figure 1. Also shown is the natural streamline coordinate
system (s,n,m) with respect to a fixed rectangular Carte-
sian system (z,y,2). The natural system is orthogonal in
that ’s’ is measured in the direction of flow, ’n’ lies in the
plane defined by the y-axis and the s-coordinate direction,
and ’m’ is normal to the (s,n) plane. At each point in the
computational grid, the system of equations is expressed
in the streamline coordinate system local to that point.

y Streamline

Fig. 1 Definition of Flow Angles and
Streamline Coordinates

At hypersonic speeds, high temperature effects such
as ionization, dissociation and recombination of the vari-
ous gas species can strongly influence the flowfield. Under
these conditions the perfect gas law must be replaced with
a model which accounts for high temperature effects. In
the SCRAM code an equilibrium air model is used based
on the following three relationships

B = fun(k,S)
Ve =:f1'l(h,S) (4)
z = fn(k,S)

where

The variable R is the gas constant, T is temperature, Ak is
enthalpy, and e is internal energy. Using this model, the
Euler equations (1) become
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The quantity v i8 the ratio of specific heats for a perfect
gas. To provide consistency with the perfect gas system
(1), the modified entropy S is defined by the relation
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where 8 is the specific entropy. At low temperatures where
the perfect gas assumption is valid, equation set (8) is
equivalent to equation set (1).

Solution Methodology

The various elements of the solution methodology
used in the SCRAM code are described below.

Numerical Solution Algorithm

At each successive cross-sectional plane, the QAZ1D
Euler equations (1) or (6) are relaxed to steady-state using
explicit time integration, Streamwise spatial derivatives
are approximated by three-point one-sided (upstream) fi-
nite differences to properly model the wave propagation.
Derivatives normal to the streamline direction are decom-
posed and approximated with three-point one-sided dif-
ferences determined by the local direction of wave propa-
gation. The characteristic analysis for the decomposition
can be outlined simply for the case of isentropic 2D flow.
In matrix notation the QAZ1D equations under these as-
sumptions have the form

{F}e + [A[{F}, + [B]{F}» = 0 ()

where {F} is the column vector of dependent variables
and [A] is the diagonal matrix of characteristic velocities.
Subscripts s and n refer to derivatives along and normal
to the local streamline direction. In order to distinguish
directions of propagation normal to the local streamline
direction, the B matrix is transformed according to

(B} = [X]\[x]™ (10)
This provides the rule for splitting the B matrix into
[B] = [B] + [B7] (11)

where [B1] and [B~] each have a unique direction of prop-
agation based on the eigenvalue sign. Splitting the B ma-
trix allows numerical differencing normal to the streamline
direction which is consistent with the physical direction of
wave propagation. It acts to inhibit any odd-even decou-
pling of the solution (saw-tooth pattern) sometimes ob-
served with central-difference approximations. Although
it produces a dissipative truncation error similar to “arti-
ficial viscosity”, it is not artificial because the coefficients
of the dissipative terms are not arbitrary. A more detailed
description of the characteristic analysis may be found in
Reference 4. ‘

To accelerate the convergence to steady state in each
cross-plane, local maximum time steps are used along with
a checkerboard (odd-even) scheme. The resulting formu-
lation is almost completely vectorizable on CRAY XMP
and CONVEX computers., Nonphysical input parameters
are not used in the solution algorithm.

Grid Generation

Accurate calculation of flowfield quantities is highly
dependent on the quality of the computational grid re-
gardless of the flowfield solution procedure. The grid must

accurately resolve the body shape in addition to being
nearly orthogonal and smoothly varying, particularly near
the body surface.

The surface-conforming grid generation method that
was developed for the SCRAM code evolved from the
method presented in Reference 5. The grid is generated by
solving an elliptic system of partial differential equations.
Forcing functions of the type described in Reference 6 al-
low strong localized control of node spacing and grid or-
thogonality on and near grid boundaries. Moreover, this
grid control near boundaries allows multiple grid blocks
to be generated independently and matched smoothly at
their common boundaries. This feature is particularly use-
ful for the geometries characteristic of hypersonic vehicle
¢oncepts.

For the H-O topology used within the SCRAM code
marching procedure, the entire 3D grid is constructed by
successive generation of 2D grids at each longitudinal sta-
tion of interest. For most cases symmetry boundary condi-
tions are imposed at the center-plane so that only one-half
of the 2D cross-section (half-plane) is used. For unsym-
metrical cross-sections or cases with sideslip, the entire
cross-section (full-plane) is used. The 2D grid code au-
tomatically sections a complex domain into a number of
simpler domains on the basis of singular geometry points
such as sharp internal or external corners. A high quality
grid is then generated for each of the simpler sections. The
sections are matched smoothly at their common bound-
aries due to the nearly complete control of the grid in the
vicinity of boundaries. The procedure is automatic, not
user interactive,

Starting Solution

A supersonic starting-plane solution is required to
initiate the downstream marching procedure. For sharp-
nosed configurations it is assumed that a small region
about the nose may be modeled by conical flow. The
local conical flowfield solution is obtained by guessing a
starting plane solution and shock geometry. An iterative
“step-back” procedure is then used. A downstream step is
taken assuming the geometry is conical, and the solution
is converged in this plane. This solution is transferred
back to the original starting plane location under the as-
sumption of conical flow. This process is repeated until
the solution and shock geometry being transferred back to
the starting plane are unchanged from the previous cycle.
This starting plane solution is then used to continue the
solution downstream for the actual geometry. Procedures
for other shapes {e.g., blunt nose) are described in detail
below.

Surface Boundary Conditions

During the transient solution process in each cross-
plane, a local velocity vector tangent to a solid boundary
surface will respond to the local pressure gradient on the
surface. Since the streamlines are constrained to the body
surface, the velocity vector can only rotate in the local
tangency plane. Because of this, the flow angles § and ¢
are algebraically related. With the QAZ1D formulation,
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the surface boundary calculation is reduced locally to a
two-dimensional problem on the tangent plane at a given
surface grid point. The pressure gradient normal to the
streamline in the tangent plane dictates the deflection re-
quired of the local velocity vector. Once the new velocity
vector orientation is known, the corresponding changes to
§ and ¢ are easily determined.

Shock Wave Treatment

Bow shock waves can be fitted within the SCRAM
formulation using the Rankine-Hugoniot relations to ob-
tain flow conditions behind the shock. As the solution is
converged in each cross plane, the grid outer boundary is
adjusted along radial grid lines to conform to the shock
shape. The grid is then rescaled within SCRAM to the
new outer boundary shape. Secondary shock waves are
captured isentropically. These waves tend to be weaker
than the bow wave and can usually be approximated as
isentropic. An option also exists to capture the bow shock
isentropically. An evaluation of isentropic shock capturing
error using this option is given in Reference 2. Within the
typical supersonic operating envelope of fighter aircraft,
a bow shock wave captured isentropically results in local
pressure errors of well below 1 percent. Although more
calculations are required for bow shock fitting, the overall
number of grid points is reduced because the grid need not
extend beyond the shock wave. Because the shock fitting
calculations vectorize, there is only a slight increase in
computational cost when the shock fitting option is used.

Capabilities and Applications

Numerical solutions have been computed for many
different geometries in order to demonstrate the ability of
SCRAM to predict flowfields about realistic aircraft con-
figurations. Comparisons with test data have been made
whenever possible. Representative examples are presented
below.

Cambered Shapes

Flowfield predictions were made for the cambered
fighter forebody of Reference 7, This geometry has a
highly cambered strake and a sharp wing leading edge.
The surface grid is shown in Figure 2. The grid is com-
posed of three sections with half-plane dimensions 61x19x6,
85x35x11, and 85x41x21, respectively. Longitudinal patch-
ing allowed a smooth transfer of flowfield data between

grids while maintaining adequate grid definition of the
surface. At the bow shock the shock fitting boundary
condition was used. Force and moment predictions are
shown in Figure 3 for a free stream Mach number of 1.8.
An estimate of the skin friction drag has been added to the
SCRAM results. The agreement with test data is good,
especially for inviscid supersonic drag. Predicted spanwise
surface pressure distributions compared with test data at
three axial stations are shown in Figure 4 along with the
corresponding off-body pressure contours. The SCRAM
predictions agree well with test data although the inviscid
cross-flow shock location is slightly in error at this rela-
tively large angle of attack. Predicted centerline pressures
are also compared with test data.

Half-Plane Grid Dimensions

|1-61x19x6
H-85x35x 11
It -85 x 41 x 21

Fig. 2 Surface Grid for Cambered Fighter Forebody
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(skin friction drag added)
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Fig. 3 Force and Moment Predictions
for Cambered Fighter Forebody
Me = 1.8
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Fig. 4 Pressure Predictions for Cambered Fighter Forebody
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Sideslip Capability
Most SCRAM computations can be carried out us-

ing a half-plane grid with symmetry boundary conditions « =0 = SCRAM Prediction

t . . —  Test Data (Ref. § a=40
o reduce computer time. Because of its low CPU and o8 ats
computer memory requirements, SCRAM can efficiently ol Sids Force ool
run full-plane grids for non-symmetric vehicles or sideslip
conditions. The hypersonic research vehicle of Reference 008 1= 005 1=
8 provides a good wind tunnel data base for validating the S \\ oy o -\-\
sideslip capability of SCRAM. Figure 5 shows the surface oos b ok \\
grid which had full-plane dimensions 121x15%25. Flow- \ R
field predictions were made at a free stream Mach number onf v wr §
of 3.46 and sideslip angle 8 between -4.0 to 11.0 degrees. ol L1111 e ——
The solutions were obtained using the shock fitting op- % Vawing Moment o
tion in SCRAM. Lateral force and moment predictions 004t o
are shown in Figure 6 for 0.0 and 4.0 degrees angle of 002l J— ooz T
attack. The comparison with test data is very good for 6r of e T ca ol /r/
both angles of attack throughout the range of sideslip an- 7 o
gle. The SCRAM side force prediction begins to depart oo e
slightly from test data at the largest sideslip angle. This is 00 004~
probably due to the onset of separation on the tail surface. oot 1 111 ool 1111
Computer run times for the different cases were between 005 008
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Fig. 6 Lateral Force and Moment Predictions
for Hypersonic Research Vehicle
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Fig. 5 Surface Grid for Hypersonic Research Vehicle
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Arbitrary Nose Shapes

Anoption isincluded in SCRAM to generate a start-
ing plane solution for wedge-type forebodies. The ap-
proach assumes that the forebody leading edge region is
a two-dimensional wedge and the bow shock angle and
flow quantities on the upper and lower leading edge sur-
faces are obtained using oblique shock and expansion wave
theory. The downstream marching procedure is then ini-
tiated from this “slit” of double valued initial conditions.
Force and moment predictions for a wedge-type forebody
are presented in Figure 7. A half-plane grid of 49x15x9
was used. The SCRAM predictions compare well with the
test data of Reference 9. An adjustment for skin friction
drag was not made to the SCRAM predictions.

s SCRAM Prediction
(No Skin Friction Drag)
49 x 15 x 9 Grid (Half-Plane) 4 Test Data (Ref. 9)

0.16

0.12 -
0.08 r

0.04
at

[v] pom

-0.04 = ‘5.*
| 1 1 | A 1
_0'080 4 8 12001 0 -0.01 -0.020 0.01
a (deg) CM CD

Fig. T Force and Moment Predictions
for Wedge Forebody
Mo = 5.0

For blunt-nosed configurations a subsonic flow re-
gion exists between the bow shock and the body. A start-
ing plane solution for SCRAM must be provided at a loca-
tion where the flow has become fully supersonic. An op-
tion in SCRAM computes a three-dimensional blunt nose
flow solution with a fully iterative procedure. The H-O
grid near the front of the configuration is converted to a
C-O grid with a singular line emanating from the nose.
Solution of the Euler equations is carried out simultane-
ously at a number of cross-sectional planes encompassing
the subsonic region. This procedure allows information
from all directions to be utilized in the calculation. The
space-marching procedure is then used downstream from
where the flow becomes supersonic. By using the QAZ1D
formulation and the shock fitting option, consistency is
provided between the nose tip solution and the marching
solution.

The starting procedure has been validated for vari-
ous blunt nose geometries. Figure 8 shows the predicted
surface pressure distribution for a blunt cone/cylinder ge-
ometry at a free stream Mach number of 4.95. The pre-
dictions agree well with flight test data (Reference 10)
up to the sharp expansion corner. A small region of flow
separation exists downstream of the corner which an invis-
cid code such as SCRAM will not predict. The predicted
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shock wave shape for a cylinder with a spherical nose cap
at a free stream Mach number of 3.0 is shown in Fig-
ure 9. The comparison with test data (Reference 11} is
very good. For both of these computed results, a smooth
transition is obtained between the fully-iterative starting
solution and the marching solution.

0.150
— SCRAM Prediction

0.125 O Flight Test Data (Ref. 10)
0.100

Pressure 0.075

Coetficient,
0.050
Co
0.025
0
-0.025 ! 1 l
0 5 10 15 20
Axial Distance, X/R
Fig. 8 Surface Pressure Distribution
for Blunt Cone/Cylinder
Moo = 4,95 a = 0°
4
~——— SCRAM Predictions
O Test Data (Ref. 11)
al-
Radial
Distance,
2 -
Y/D
1 —
0

-1 0 1 2 3 4 5 6
Axial Distance, X/D
Fig. 9 Shock Location for Hemisphere/Cylinder
Moo = 3.0 a = 00

As a further demonstration of SCRAM capability,
the flowfield about the lifting body geometry of Reference
12 was computed at a free stream Mach number of 3.0.
Figure 10 shows the surface portion of the computational
grid which had half-plane dimensions 61x13x49. Also
shown are pressure contours on the surface and center-
plane and the bow shock location. The starting solution
extends onto the flat upper surface in order to ensure su-
personic flow for the marching procedure. The transition



between the starting solution and the marching solution
is smooth.

61x13x49 Hali-Plane Grid Pressure Qomoun

Fig. 10 Pressure Contours for Lifting Body Geometry
Mew =30 a=0.5°

Subsonic Regions

Occasionally at a canopy-fuselage or wing-fuselage
juncture a small region of subsonic flow may occur which

will cause a breakdown in the marching (supersonic) solver.

An example is the lifting body geometry described pre-
viously (see Figure 10). When a subsonic point is de-
tected, SCRAM will write a restart file from the last su-
personic station and stop. The solution procedure can
be restarted by using a fully iterative routine (similar to
the blunt-nose solver) over a specified number of stations.
When a longitudinal station is reached where the flow-
fleld again becomes fully supersonic, SCRAM will switch
back to the marching solver to save execution time and
computer memory. For the case of the lifting body, the
blunt-nose routine was used to start the solution. The
marching solver was then used up to the canopy. At the
front of the canopy the subsonic routine was used and
then at the top of the canopy SCRAM switched back to
the marching solver for the rest of the body.

Inlet/Nozzle Capability

For complete configurations SCRAM can model en-
gine inlets and nozzles. At the inlet face, the mass fisw
is removed from the flowfield assuming no spillage. This
mass flow can be added back at a nozzle face to simulate
an engine. At the nozzle exit face, arbitrary flow condi-
tions can be imposed. A demonstration of the inlet/nozzle
capability can be found in Reference 3.

Flow-Through Boundary

For vehicle geometries that have aft-swept trailing
edges or an over-hanging empennage, isolated solid sur-
faces appear in the cross-plane flowfield. A wake surface
is used to connect the solid surfaces and a flow-through
boundary condition is applied. To demonstrate the proce-
dure, force and moment predictions are presented in Fig-
ure 11 for an arrow wing/body configuration at a free
stream Mach number of 3.0. The predictions compare well
with the test data of Reference 13. An estimate for skin
friction drag was not added to the SCRAM predictions.
Figure 12 shows a cross-sectional view of the flow-through
boundary. Pressure contours are also shown along with
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the shock-fitted grid. Note that the contour lines cross
the flow-through boundary smoothly.

B SCRAM Prediction
(No Skin Friction Drag)

- Test Data (Ref. 13)

0.3
0.2}~ = =
L . u
c 0.1 r
- 0p= — g
u
0.1 - -
0.2 | ] 1 P
-3 (] 3 601 0 -0.10 0.010.020.03
a (deg) CM CD

Fig. 11 Force and Moment Predictions
for Arrow Wing/Body
Mo = 3.0

Half-Plane Grid Dimensions
61 x15x 31

Pressure Contours

Fig. 12 Arrow Wing Flow-Through
Boundary Ilustration
Mew =3.0 a=4°

Zonal Grid Capability

A single surface-conforming grid is sometimes not
adequate to define the surface curvature or associated off-
body field of complex configurations. Additional zones or
subgrids may be introduced within SCRAM to define com-
plex regions (e.g., between vertical tails, around missiles,



etc.). Boundary conditions at the zone interfaces are mod-
ified to transfer flow information between the main grid
and the subgrids.

Figure 13 shows an example of how a zonal grid can
greatly improve grid resolution quality. Using a single grid
causes grid lines to become highly skewed with inadequate
grid density on the surface. Crossed grid lines would cause
failure of the flow solver. When a zonal grid is used, there
is adequate grid definition between the tails and between
the wing and store. A demonstration of zonal grid flow
solution capability is shown in Figure 14. Even with point
mismatch, the pressure contours are smooth along the grid
interfaces.
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Fig. 14 Zonal Grid Flow Solution for a Generic Configuration

Mo =174
Control Surface Deflections

As part of the aircraft design process, SCRAM may
be used to evaluate the effectiveness of various movable
control surfaces. The control surface can be any “trailing-
edge” type surface (e.g., aileron, elevon, rudder). To ac-
count for surface deflection, SCRAM adjusts the local flow
angle on the vehicle surface similar to a surface blowing
or suction boundary condition. The grid is not altered
from the zero deflection case and cannot account for the
gap between the control surface and the adjacent geome-
try. Grid points on a control surface are flagged and the
boundary condition is adjusted based on grid point loca-
tion, input hinge line, and input deflection angle. The
control surface can be full or partial span and the hinge
line may be swept. A series of deflection angles can be
efficiently run by restarting the solution upstream of the
control surface and changing the deflection angle in the
input file.
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Elevon control power predictions were made for the
Supersonic Persistent Fighter (SSPF) model of Reference
14. Calculations were made using a faired inlet forebody
geometry. Figure 15 shows the surface grid and the ac-
tual model configuration. Predicted elevon control power
increments are compared with test data in Figure 16 for
a free stream Mach number of 2.0. Control surfaces were
deflected upward 5 and 10 degrees. The agreement with
test data is good. A zero-deflection case required approx-
imately 12 minutes execution time on a CRAY XMP-18
computer.  Subsequent deflected surface cases required
about 2 minutes each. The zonal grid capability described
above was used to define the area between the vertical
tails. Including the vertical tails in the analysis improved
the moment prediction by introducing the nonlinearity in
the moment curve at the high deflection angle.



Faired Iniet Forebody
97 x 23 x 46 Half-Plane Grid

Actual Configuration

|

I

Fig. 15 Surface Grid for Supersonic Persistent
Fighter (SSPF) Model
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Real Gas Effects

At hypersonic speeds the perfect gas law must be re-
placed with a real gas model as outlined earlier. Initially
a version of the NASA RGAS program (Reference 15) was
used to compute the gas properties required in equations

(6). Because the RGAS program requires a large amount
of computer time, new curve fits (called TMGAS) of the
RGAS data were generated. The TMGAS curve fits are
similar in construction to the TGAS curve fits of Refer-
ence 16 except that enthalpy and entropy are the inde-
pendent variables. The execution time of SCRAM was
improved by a factor of two when TMGAS was used in-
stead of RGAS.

Surface densities predicted by the real gas SCRAM
code (called RSCRAM) are compared in Figure 17 with
the analytical calculations of Reference 17 for a circular
cone in equilibrium air. At lower Mach numbers (My <
10) predictions agree well with perfect gas theory. At high
Mach numbers, predictions agree well with the analytical
theory of hypersonic conical flow. Solutions obtained us-
ing the TMGAS model are nearly identical to those ob-
tained using the RGAS model.

Accurate prediction of bow shock-wave shape is es-
pecially important for hypersonic vehicles where the en-
gine inlet often lies just inside the bow wave. Shock posi-
tion can be strongly influenced by real gas effects. Shock-
wave angles predicted by RSCRAM for a cone are pre-
sented in Figure 18. The predictions show excellent agree-
ment with the analytical results of Reference 17. Com-
puter run times for the real gas version of SCRAM are
typically 40 to 50 percent more than for the perfect gas
version.
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complex configurations. The code has been coupled with
a versatile grid generation procedure for construction of

14 2 RSCRAM (RGAS) po = 0.21162 Ib/ft2 high quality computational grids about such shapes. Pres-
13 | ® RSCRAM (RGAS) po, =21.162 tb/ft2 sure distributions, forces, and moments compare well with
O RSCRAM (TMGAS) po, =0.21162 [b/ft2 test data for configurations having arbitrary nose shapes,
12 |- © RSCRAM (TMGAS) po., = 21:162 Ib/ft2 i aft-swept wing trailing edges, vertical tails, and control
""" Perfect-gas analytic surface deflections. Efficient real gas capability has been

11 | Real-gas anaiytic validated against analytic cone solutions.
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