1CAS-90-6.4R

VISCOUS SUPERSONIC FLOW
PAST A WEDGE-SHAPED BODY

Z. Dzygadlo*and S.¥Wrzesied *

*

The Military Technical Academy
Warszawa, Poland

Abstract

Steady-state viscous plane supersonic
flow past a wedge-shaped body is examined
by means of the two-dimensional Navier-
-Stokes equations in the nonstationary con-
gervation-low form, An implicit factored
finite-difference scheme is developed toge~
ther with the method of fractional steps
and a time-dependent iteration procedure.
The steady field of supersonic flow can be
found as a limit of unsteady flows determi-
ned in the course of iterations.

Numerical analysis of the flow is car-
ried out for moderate values of Mach number
and Reynolds number as well as several va-
lues of wedge angle.

Nomenclature
Cp,Car specific heats
€ internal energy
E total energy
F.6 flux vectors, Eq. /3/

‘?,?M, vectors, Eq. (25)
F? vector, Eq. (27)
64;61/463:6'! boundary of computation region,

Fig. 1
k Poisson adiabatic exponent
M,Ms  Mach number
", direction normal to the surface,
number of time layer
Pr Prandtl number

transformed varigbles
gas constant

Re Reynolds number
) direction tangent to the velocity
vector
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o) vector, Eq.(7)

S,’SB)SE components of the vector S, Eq.(a)

t time

T temperature

uw velocity in the x direction

U vector of conserved quantities,
Eq.(2)

y velocity in the y directilon

L velocity of gas

Xy rectangular coordinates, Fig. 1

Xa,Us dimensionless rectangular coordi-
nates, Eq.(24)

' 4 coefficient of heat conduction

éL coefficient of dynamic viscosity

) constant, Eg. (10)

1 den~sity

dx,,,é%éagcomponents of the viscous siress
tensor, Eq. (9)

T time step

Subscript

o undisturbed flow condition

1. Introduction
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Numerical computations based on the
Navier-Stokes equations developed during
the last two decades,  The method of fi-
nite elements was used in the case of in-
compressible flows. 2™ As regards the su-
personic flow range, various algorithms
were applied based on methods of finite
differences.4‘7

The problem to be studied in the pre-
sent paper is that of a wedge-shaped body
flown-past by viscous, heat conducting gas,
the complete Navier-Stokes equations being
used. In that case a boundary layer and an
oblique shock wave is formed simultaneoud-

1y in the same reglon of flow, thus ena-

bling us to determine the influence of the
dissipative properties of the gas on the
course of those phenomena.
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The present paper is a development
of and contains some results discussed
in the reports. The problem has been sol-
ved numerically by the method of decompo-
sition of the set of equations, fractional
steps and an iterative procedure with res-
pect to time.9’1o This set of equations
has been approximated by an implicit dou-
ble-~layer difference scheme of the Cranck-
=-Nicholson type.10

2. Formulation of the Problem
Let us consider plane supersonic flow
of gas past a body having the form of a
wedge with a sharp edge, an angle {8@and
length L (Fig. 1),

fy
N
6 G
Moo, Re, Byl 5 .
— - b L X

It is assumed that the stream of gas is
homogeneous and parallel to the symmetry
plane of the flown-past body.

The gas is treated as a viscous and
heat conducting medium to be perfect in
the thermodynamic sense, the coefficient
of dynamic viscosity Al and that of heat
conduwction @@ being known functions of the
temperature T, while the Prandtl number
Pr and the Poisson adiabatic exponent k
being constants.

The two-dimensional equations of the
problem can be expressed in the rectangy-

lar coordinates x, y in the form of
the conservation low1

%%%{ +'%%§ + %%? ==A£5 (1)

where U is the vector of conserved quan-
tities

and F , G are flux vectors
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The total energy of gas is

E=e+d(us ) (4)
and the internal energy
e=Cyl , Co=const (5)

For a perfect gas,the equation of state is
p=8RT, R=Cp-Co= const (6)

The vector S in the right-hand mem-
ber of Eq.(1) has the form

Ox

where
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= Q%xx , OO«
Sx d3x %E“
S= e B @)

Se= &[5+ 3BT ¢
: 53)_( (M,G,xx + méxa\-}% (udxai'mdm)

The components of the viscous stress
tensor are assumed taking into considera-
tion the condition that the volume visco-
sity of the gas is disregarded1

W
G’lxx":zﬂ‘ 61: —%ék (%% ¥ %ﬂgl\}
=ty * B
Gy = 2@%‘—%~%é&(% +%g)

The coefficient of dynamic viscosity
can be found from the equation

()

W= (;-Eﬁku , (o= const (10)

The coefficient of heat conduction €
is assumed to vary proportionally to the
coefficient(%; and, therefore, the Prandtl
number is

M Cp

= (1)

= const

P =

The boundary conditions of the problem
can be assumed to be (Fig. 1)

w=n=0

(12)
T
%;L-O
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at the surface of the body and

:=§—T:==-a—g= = 13
at the symmetry axis of the flow, for
y =0, and
u.:' ua(’d ) {l}.‘: ’Uq,""o
(14)

T=Te ) g=gn

in the region of undisturbed flow.

2s Transformation of the Equations
and the Computation Region
The eguations of the problem will be
considered in a dimensionless form. In
this connection the following quantities
are introduced

— u,,Q —
't='t'f' ) X=")E' ) H:—Iuj
A _
L=T B=1o)3=%
Tt p (15\
T 10p =_
T=0 0 P= gtk
=& & %
F--E
T

Equations (1) to (9) can, then, be
presented in the dimensionless form, the
bars over particular symbols being rejec-
ted and the constant parameters involved
in those equations are referred to the
undisturbed flow parameters

_ Co Moo (16)

Re= Moo

’%ﬁ?‘b‘ 3Pr

The computation region G of the flew
is assumed in the form shown in Fig. 1.
The lower boundary of the region is the
Ox-axis /the symmetry axis of the flow/



and the surface of the body. The front and

upper boundaries are assumed to lie outside
the perturbation region of flow.
The boundary conditlions assumed

computation within the region (> are:

for Gelx) (0&%4%u; y=Gy())
and G (x=030< y< 6,(0)

us=4; =0, ¢=14

L T I
[=Tee = ) ML,

for

(17)

for G,/x/,at the symmetry axis of the flow,
(0< XL %p ) Y=0)

"%

(18)
%ﬁ Th =0

and on the surface of the body

(Xp< X X, Y= Balx))

W=0=0, %}L=O

At the rear boundary of the computation
region, for 63(X=X; G(x)< Y < Galxd),
we assume approximate boundary conditlons,
which are necessary to close the boundary-
-value problem. It can be taken, for ins-
tance, that the gradients in the flow di-
rection can be set to zero

Sr=5- =0 ()

The problen of supersonic viscous flow
past a wedge is treated 2s an initial-
~boundary-value problem and the steady-state
field of flow will be determined by an ite-
ration process as a limit of unsteady
fields,

The initial conditions can be, for
t =0,

(19)

Wixyt) = U...(X. )

Hxgt) =% (xy)

S(X,g,) 2 (%) (21)
T(xyt) =Te (x.4)

where the functions on the right-hand side
of (21) must satisfy the conditions on the
surface of the body (19) . They may repre-
sent the parameters of undisturbed field
of flow or a field of flow determined in
the course of the iteration process.

The computation region G assumed on
the physical plane /x, y/ in the form
shown in Fig.1 can now be transformed on
the auxiliary plane of variables (&1, qz}
into the square of unit side length,

The transformation will be performed
by means of the functions

.-.____..o 8 H G‘l()‘l

Ga. (5()‘ Gd (*)
'PO"‘ X4 X4P
v In[aCOupxa]
W= Yop o(lm(/!:;,)
for %4> ap (22)
Qi=Xapt Mg{m&t‘d;qﬂj
_ I (4by,
9™ I (A+b)
A _ 4
o= Xip ) Tffsz;ﬁ

This transformation enables us also to
condense difference meshes in the physical
plane /x, y/ within the region of the boun-
dary layer and in the vicinity of the sharp
edge of the wedge by selecting appropriate
values of the constants b, ¢, d. The meshes
remain uniform in the computation plane
/ 91y q2/ .

4,

Numerical solution to the set of equa=~
tions of the problem can be found by trans-
forming those relations according to /22/
and expressing them in terms of the coordie
nates 9q9s 9. Then the set of equations ta-
kes the form

Method of Solution
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%%cl =N (23)

The solution algorithm is based on the
method of decomposition of the set of equa-
tion. 7210 16 apply it let us rewrite Eq.

/23/ in the form

¢
é_’c{"'gl?:FP

where the vector of unknown gas-dynamic
functions is

(2)

3 (25)

and & is a differential matrix operator
of a separated part of Eq./23/ which will
be approximated by an implicit difference
scheme and F_ is the remaining part of Eq.
/23/ that will be approximated in an expli-
cit manner,
On transforming Eqs./23/ and /24/, we

obtain the relation

Beror@in e

The left~hand member of Eq. /24/ will
be replaced with an implicit two-layer
difference scheme of the Crank-Nicholson
type. We obtain the difference equation

Feligrey, @

B o

which approximates Eq. /24/ with an accura-
cy to 0(f+hk) , where U 1is the time step,
h - spatial mesh pitch, k - order of the o~
perators involved in /24/,

Making use of /26/, Eq. /27/ can be ex=
pressed in the form of the two-layer itera-
tion formula

T e CILINE

which can be used as a basis for devising
an algorithm for numerical solution of the
problem and I is the unit matrix,

In order to simplify the algorithm of
solution let us first apply the method of
multiple decomposition of Eq. /28/. To this
end we present the operator p in the

52h=%; SZM (29)

The separation /29/ is performed with
respect to the directions q4 and 9, as well
as processes and fields. In this connection
derivatives with respect to q4 are involved
in the operators.fzhi and flha only and de-
rivatives with respect to q - in hZa“d
S2py-

The mixed derivatives are transferred
to the right-hand member of Eq. /28/, which
simplifies in an essential manner the solu-
tion procedure., In the difference scheme
the first derivatives &/Jg, ana 9/3g,
are approximated by asymmetric difference
operators of the first order and the second
derivatives - by symmetric difference ope-
rators., It can be shown that

] il
I+’C%QM=LTJ(I+T9.M§+O(’E*) ()

In this connection the iteration for-
mula /28/ can be transformed into

T&T(IJES?M,\ ﬂ;—%g [(%%}W}: (31)

l=1

The formula /31/ mekes it possible to
device a recurrence algorithm for computing
the vector f’of gas dynamic parameters of
flow for the n +4 { time layer, if the
flow parameters in the n-th layer are known.

To do thig let us introduce auxiliary
vectors @Y for u= 0,1,2,3,4 and
write the following sequence of relations

U
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v +(L-
(L TQu) Ve it/
Jor L=4,2,3Y

and ’FMM - ¥m+ TL?MM (31‘)

The algorithm based on this sequence
of equations enables us to determine the
required vector ~#n+1 by solving much sim~
pler sets of equations than in the case of
direct application of Eq,/28/. It should
be added that intermediate, fractional ti-
me layers n+1/4, n+1/2, n+3/b4, n+b/bL have
been introduced in Eq./33/ to solve conse-
cutive simplified sets of elgebraic equa~
tions,

Equations /32/-/34/ have been used for
developing computational programs and nu-
merical analysis of supersonic viscous
flow past a wedge.7’8

(33)

5. Results of Numerical Analysis

Numerical analysis of the field of su~
personic flow past a wedge was performed
making use of some computers and programs
written by the present authors., A testing
analysis was performed for wedges with
edge angle 2 @ = 30°, 40°, 60° and super-
sonic flows with Mach number My, = 2; 3;
3.5 and Reynolds numbers Re = 250 to 4000,
the coefficients characterizing the gas
being k = 1,41, Q@ = 0,75, Pr = 0,71,

The analysis was made for various va-
lues of spatial steps hy, h2 and time step
T . The effect of the initial conditions
on the flow stabilizing process was also
studied.

Some characteristic results of the a-
nalysis are presented in a diagramatic
form in Figures 2 to 6, where all the flow
parameters and coordinates are taken in
the dimensionless form, making use of Egs,
/15/.

Figure 2 shows veriation of the veloe
city components, u, v, in the front of the
wedge depending on Reynolds number Re, for
Moo = 3 and = 20°, It is seen that Re
has an essential effect on the course of
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velocity profiles and, therefore, on the
thickness of the shock wave.

Figure 3 shows variations of }23/031

for y = 0 and on the surface of the wedge,

where p; is the pressure in the undib—

turbed flow end p, - the disturbed value
of the pressure, In Fig.3q we can see the
course of the ratio p2/p1 for several va-
lues of the Mach number Mg, and Re = 500,

= 20°, in Fig.3b the course of the ratio
p2/p1 is presented for several values of
the Reynolds number Re and Mgy = 3} @ = 209
while in Fig.3c we have the course of the
ratio pz/p1 for several values of 63 and
Moo = 3, Re = 500,

Figure 4 shows variations of the densi-
ty g and temperature T in the front of
the wedge and on the surface of the wedge,
for several velues of Re and Moo= 3, @ =
20°.

It is seen that gradients of the prei-

sure ratio pz/p1 in the vicinity of the
front of the wedge increase rapidly with
increasing Re, M, , @ and, therefore, the
shock wave becomes thinner,

The profile of the density‘g in the
vicinity of the front of the wedge is simi-~
lar to that of the pressure ratio p,/pq,
while the course of the temperature T is
different,

Figure 5 shows variations of the flow
parameters for three values of x = 0,25,
0.5, 0.75 and Mgo = 3, Re = 500, = 20°
and in Fig.6 there are shown, by way of
example , the profiles of the pressure p
and the angleé%v of the inclination of the
vector of flow velocity ur for the coordinate

X = 1/2.

Tt is seen that in the vicinity of the front
of the wedge /Fig.5a/ there is an interac-
tion between the boundary layer and the
shock wave., In the farther sections /Figs.
5b,c/ those structures are separated and
there is a region of almost homogeneous
flow between them, in which, however, den-

sity g and temperature T are variable.
The pressure P remains constant in the

region between the surface of the wedge and
the shock wave /Fig.6/, while the vector of
flow velocity changes its direction éaur .
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Fig.2 Velocity components,u,v, in
front of the wedge
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Fig.3a Pressure ratio p,/p, in front
and on the surfage 3: the wed-

ge
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Fig.3b,c Pressure ratio p,/ps in front
and on the surfage 3f the
wedge

"
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Fig.4 Temperature T and density Q
in front and on the surface of
the wedge
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Fig.5a,b Profiles of the flow parame=-
ters for x = const
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Fig.5c Profiles of the flow parame-
ters for x = const

Fig.6 Profiles of pressure p eand
angle @, for x = const
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