ICAS-90-6.4.4

APPLICATIONS OF MULTIZONE EULER/NAVIER-STOKES AERODYNAMIC METHODS
TO AIRCRAFT CONFIGURATIONS

P. Raj*, C. R. Olling**, and S. W. Singer***
Lockheed Aeronautical Systems Company
Burbank, CA 91520-7551

Abstract

Computational methods based on cell-centered
finite-volume spatial discretization and explicit
time-stepping algorithm for solving the Euler and

Navier-Stokes equations are used to simulate
inviscid and viscous flow about configurations
ranging from simple two-dimensional airfoils to

complete aircraft. Solutions are obtained using
patched multizone grids with matching and different
grid densities across zonal interfaces. Emphasis is
placed on evaluating the sensitivity of computed
solutions to numerical dissipation associated with
the cell-centered finite-volume schemes, and the
effects of grid density and turbulence modeling.
This is accomplished by correlating computed
solutions with experimental data and analytical
solutions, wherever possible. The results provide
an added measure of confidence in the computational
solutions of the Euler and Navier-Stokes equations,
and also point out some of the limitations.

I. Introduction

One of the factors contributing to high cost of
aircraft development is the need to evaluate
numerous geometrical modifications to ensure that
the final design will meet all mission requirements
while maintaining desired 1levels of performance.

For the aerodynamic part of the design, such
evaluations are most effectively performed by a
combination of wind-tunnel testing and

computational simulations.
offers a reliable and proven means of predicting
aerodynamic data, but it can be expensive and time
consuming, especially when surface and flow-field
measurements are made, due to model fabrication,
labor, and energy requirements. The costs are even
higher when tests are conducted to minimize scale
effects and wall interference. For some flight
regimes, wind tunnel testing is not feasible at
all, Computational simulations promise to alleviate
precisely these kinds of deficiencies.

Methods for
have made significant

computational aerodynamic analysis
progress over the past two
decades. The boundary integral methods, popularly
known as panel methods [1-4], were the first to be
developed. They are now widely used in- various
phases of aircraft design but their application is
restricted to purely subsonic or supersonic flows
due to the inherent limitations of their linearized
potential flow formulation. For transonic flows,
nonlinear potential flow methods based on transonic
small-disturbance equations [5] and full-potential

equations [6,7] have been developed. However,
accuracy of their solutions deteriorates in the
presence of strong shocks or rotational flows.

These limitations of the potential-flowv codes can
be alleviated by solving the Euler equations, which
allow nonisentropic shocks and rotational flows to
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The wind-tunnel testing .

be a part of the solution {[8,9]. However, the
precise structure of the shocks and rotational
flows cannot be modeled accurately without solving
the Navier-Stokes equations. Also, the Euler
solutions cannot adequately model flows dominated
by viscous effects.

equations adequately model
class of flow phenomena for
which continuum is a valid assumption. (The
Boltzmann equations based on the kinetic theory of
gases need to be solved for modeling molecular
flows.) Solving the Navier-Stokes equations to
simulate laminar flows is quite common, but using
these equations to model even simple turbulent
flows stretches the current supercomputers to their

The Navier-Stokes
the physics of a large

limits [10]. At present, the Reynolds-averaged
Navier-Stokes (RANS) equations are used almost
exclusively to simulate complex turbulent flows

typically encountered by flight vehicles.

‘The RANS methods are capable of analyzing a
variety of configurations ranging from two-
dimensional (2-D) airfoils {11] to three-
dimensional (3-D) configurations including complete
aircraft [12-14]. Their effective use in the design
environment is largely hampered by three factors:
(1) they require relatively large amounts of
computational storage and time; (2) generating
suitable grids for complex configurations is
tedious and time consuming; and (3) accuracy of
computed solutions 1is subject to inadequacies of
turbulence modeling and numerical parameters such
as grid density, numerical dissipation, etc.
Improved algorithms and increased speed and memory
of supercomputers promise to alleviate the first
difficulty. Significant progress is also being made
in improving the grid generation process [15,16].
However, turbulence model inadequacies persist
[11,17] for complex flows typified by shock-induced
separation and vortical flows. Also, sensitivity of
the solutions to variations in numerical parameters
is not fully documented.

In this paper, computed solutions are presented
for five test cases to illustrate the capabilities
and limitations of two methods, namely, the Three-
dimensional Euler/Navier-Stokes Aerodynamic ﬁethod
(TEAM) and the Three-dimensional Reynolds-Averaged
Navier-Stokes Aerodynamic Method (TRANSAM). Special
attention is given to evaluating the sensitivity of
solutions to grid density, numerical dissipation,
and turbulence models. The TEAM code [18] has been
developed by Lockheed under a U.S. Air Force
contract. The TRANSAM code 1is an extension of the
TEAM code and it serves primarily as a testbed for
turbulence models. Computed solutions for the test
cases are compared with available analytical,
numerical, and experimental data. The remainder of
the paper is divided into two major sections
followved by concluding remarks. Basic features of

782



the TEAM and TRANSAM codes
Section II and
in Section III.

are highlighted in
the analysis results are discussed

II. Basic Features of TEAM and TRANSAM

The TEAM and TRANSAM codes are designed to
compute steady-state solutions of the Euler, RANS,

and Navier-Stokes equations representing
conservation of mass, momentum, and energy,
expressed in  unsteady, integral form. The
computational algorithm employs finite-volume

spatial discretization, proposed by Jameson et al.
[19], producing a set of ordinary differential
equations which are integrated in time using a
multistage time-stepping procedure. The finite-
volume formulation requires that the region
surrounding a given configuration be divided into
an ordered set of hexahedral cells. Such a set,
called a grid or a mesh, may be constructed in any
convenient manner; only the Cartesian coordinates
of the cell vertices are required to carry out the
solution process. The basic features of the codes
are highlighted here; other details can be found in
References 9, 13, and 18.

Multiple Zones.-- Both codes can accommodate
patched zonal grids of arbitrary topologies. Across

zonal interfaces, three classes of grid
distributions, shown in Figure 1, are allowed,
namely,

Class 1: One-to-one nodal point matching.

Class 2: Nodal points of one grid being an

ordered subset of the other grid.

Class 3: Mismatched nodal point distributions.
Every cell at the zonal boundary has an image cell
associated with it. Note that the image cells do
not physically exist; they are fabricated to
facilitate computation of fluxes for all faces--
interior as well as boundary--using the same
formulation.

Multizone architecture is particularly useful
for analyzing complex configurations since it
allows considerable flexibility in grid generation.
It also permits efficient modeling of viscous
effects because the RANS equations need to be
solved only in selected regions of the flow field;
the Euler equations are solved elsevhere. In
addition, Class 2 and 3 type interfaces can be
utilized to improve accuracy and/or computational

CLASS 1

INTERFACE

efficiency. These aspects are further discussed in

the Results section.

Turbulence Models.-- The well-known Baldwin-Lomax
turbulence model [20] is included in the TEAM code.
Three additional models have been incorporated into
TRANSAM and their effectiveness is being evaluated.
These models are: renormalization group (RNG)
theory based algebraic model [21]; Johnson-King
model [22]); and Chien two-equation model [23]. The
corresponding solutions for an airfoil are included
in this paper.

The Baldwin-Lomax model 1is an algebraic two-
layer model widely used for computing attached and
mildly separated turbulent flows. It is an
equilibrium model that does not include turbulence
history effects. The eddy viscosity is not related
to boundary-layer thickness or displacement
thickness. Instead, a maximum of a function f = pnw
is located in the direction normal to the solid
surface to estimate eddy viscosity. Here, n is the
normal distance from the solid surface and w is the
vorticity magnitude. In some cases, there can be
multiple maxima of f. Degani and Schiff [24]
proposed a scheme for choosing the correct maximum
of f in cases vhere a basically inviscid vortex is
present outside the boundary layer.

The RNG algebraic model,
is also an equilibrium model.
systematic elimination of small-scale turbulent
fluctuations using renormalization group theory.
The theory determines both the mathematical model
and the values of the model constants. A length-
scale must still be specified, which leads to some
loss of generality of the model. In the present
form this length-scale is postulated from physical
considerations for boundary-layer flows. Also, it
is assumed that the rate of dissipation of
turbulent kinetic energy is equal to the rate of
production ‘of turbulent kinetic energy. A cubic
equation is solved to determine the eddy viscosity.

included in TRANSAM,
It relies upon the

The Johnson-King model  makes use of an
additional differential equation representing the
maximum turbulent shear stress for boundary-layer
flovs. It is a nonequilibrium model that includes
turbulence  history effects. This model was
developed specifically to improve the accuracy of
separated flow simulations. Predictions of attached
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Fig. 1 Three classes of zonal interfaces of multizone grids
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flows in adverse pressure gradients have sometimes
been reported to be inferior to predictions based
on algebraic turbulence models, such as the
Baldwin-Lomax model. Recently, a modification to
the Johnson-King model has been proposed by Abid
and Johnson [25] that improves this situation.

The Chien two-equation model solves two
‘additional partial differential equations for
turbulent kinetic  energy, k, and rate of

dissipation, €. It is a nonequilibrium model and
therefore includes turbulence history effects. A
difference from the other models in TRANSAM is that
a length-scale is not algebraically specified but
computed using k and €, and thereby increasing the
generality of the model. At a solid boundary, k and
€ are set to zero. This is a low-Reynolds number
model in which the integration is carried out all
the way to the solid surface that can lead to
"stiff" equations requiring a smaller time step.
Another drawback is the necessity of specifying
initial conditions for k and €.

Spatial Discretization.—- In the
finite-volume formulation used to discretize the
spatial terms, the flow variables are defined at
cell centers and fluxes are computed at cell faces.
A simple arithmetic average of the cell-center
values in two neighboring cells is used to estimate
the convective and viscous fluxes, as well as flow
variables, at the faces. The flow gradients
required to estimate the viscous fluxes are
computed using either the divergence-theorem
approach of Jayaram and Jameson [26] or chain-rule
differentiation.

cell-centered

This discretization is equivalent to a central-
difference approximation which is second-order
accurate on smooth grids. For Euler equations, the

resulting semi-discrete equations have to be
augmented by numerical dissipation terms (also
known as artificial or numerical viscosity) in
order to prevent instabilities arising from
aliasing error due to high-frequency error

components, to suppress odd-even decoupling, to
capture shocks, and to minimize oscillations in
regions of high gradients. These terms are needed
even when solving the RANS equations because the
viscous dissipation is generally not sufficient to
suppress the high-frequency error. In TEAM and
TRANSAM, two types of schemes, namely, adaptive and
characteristic-based, are used to construct the
dissipation terms.

Adaptive Dissipation.-~- The adaptive dissipation
schemes employ differences of the flow variables
directly. Two types of schemes are included in the
codes: (1) standard and modified adaptive
dissipation (SAD and MAD); and (2) flux-limited
adaptive dissipation (FAD). The SAD scheme uses
blended first and third differences as proposed by
Jameson et al. [19]. The MAD schemes are derived
from SAD by selecting different scaling factors for
the difference terms to reduce the overall level of
dissipation. The reduction is particularly
desirable for viscous computations in order to
prevent the numerical dissipation from overwhelming
the viscous dissipation. The FAD scheme employs
only third differences with appropriate flux
limiters [27]; the first-difference terms are not
used. For a scalar conservation law, it becomes a
total variation diminishing (TVD) scheme provided
that the coefficients are appropriately chosen. The
FAD scheme is capable of nonoscillatory shock
capture. The mathematical formulation of these
schemes is given in Appendix A.
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Near the boundaries of the computational
region, the dissipation terms have to be
constructed differently than those for the interior
since the present algorithm uses only one image
cell. Three options for defining the dissipation
terms are outlined in Appendix A. For multizone
grids, the use of Option 1 at zonal interfaces
resulted in divergence of the solution process
which could be remedied by wusing Options 2 or 3.
Option 3 is formally the least dissipative and it
has been used to obtain most of the solutions
reported in this paper.

All schemes use two user-specified parameters,
VIS-2 and VIS-4, to control the 1level of
dissipation. For the SAD and MAD schemes, the input
V1S-4 parameter (divided internally by 64) scales
the third-difference terms and controls the
background dissipation needed to suppress high-
frequency error components vhereas the VIS-2
parameter is used to minimize wiggles and
overshoots near shocks and stagnation points. For
the FAD scheme, the value of VIS-4 determines a
lower bound on dissipation and VIS-2 may be
adjusted to ensure that there is enough dissipation
to eliminate oscillations near shocks.

Characteristic-based Dissipation.—- Although the
adaptive dissipation schemes are quite effective,
difficulties may be encountered in simulating high-
speed flows because these schemes do not accurately
model the wave propagation in supersonic flows. The
characteristic-based schemes (also known as upwind
schemes) provide appropriate upwind bias for
supersonic flows albeit at the expense of
additional computations compared to the adaptive
schemes. In TEAM and TRANSAM, the symmetric TVD
formulation with Roe averaging described by Gnoffo
et al. [28] 1is wused. In its simplest form, this
formulation leads to a first-order accurate upwind
scheme. A second-order accurate upwind scheme
results from using a flux limiter. Both options are
included in the codes and the user can select
either one by changing the value of an input
parameter. The input value of the VIS-2 parameter
serves as an eigenvalue limiter near the critical
points; i.e., stagnation points, sonic points, and
shocks. The input value of VIS-4 is used to scale
the dissipative terms to provide enhanced
stability.

Boundary Conditions.-- Appropriate nonreflecting
boundary conditions based on Riemann invariants are
used at the far-field boundaries. For inviscid
Euler computations, a no-normal-flow condition is
imposed on the solid surface and the wvalue of
pressure on the surface is estimated wusing the
normal momentum equation as described in Reference
18. For viscous computations, the no-slip condition
is applied at solid surfaces which are also assumed
to be adiabatic. If needed, a constant temperature
condition can be prescribed. At a nacelle inflow or

inlet face, Mach number, pressure ratio, speed
ratio, or mass-flow ratio (MFR) can be specified.
At the exhaust face, nozzle pressure ratio (NPR),

total temperature ratio, and exit flow direction
need to be prescribed. At a zonal interface along
which two zones are patched, the flux-conserving
boundary conditions are used [18].

Time Marching.—— The set of ordinary differential
equations resulting from the finite-volume spatial
discretization is integrated in time using a
multistage time-stepping scheme with options for

three, four, or five stages. Convergence to a
steady state is typically achieved in hundreds of
time steps, rather than thousands typically



required by a more conventional explicit scheme
using a global minimum-step size, because the use
of local time step (i.e., a different step size for
each cell determined solely by the local stability
restrictions) is augmented by enthalpy damping (for
inviscid flows) and implicit residual smoothing.
Analysis Process.-- The analysis starts with the
flow variables, namely, density, three Cartesian
components of momentum, and total energy, in all
cells initialized to free-stream conditions. This
is equivalent to am impulsive start. Following each
time step, the ratio of the current and the initial
values of the average residual (root-mean-square
value of the net mass flux) is checked to determine
vhether a steady state has been reached. The time
marching stops if a pre-specified convergence
criterion is met or after a prescribed number of
steps. The code has a provision to restart the
solution process and perform additional steps if
needed.

ITT. Results and Discussion

~.In this section, solutions are presented for
five test cases, namely, NLR 7301 airfoil, RAE 2822
airfoil, Lockheed-AFOSR Wing C, a canard-ving-body,
and the advanced nozzle concept (ANC) fighter
configuration. In all cases, the flow was
impulsively started and no Kutta condition was
explicitly applied; shocks and rotational-flow
regions were automatically captured. At least a
four orders of magnitude reduction in the average
residual was used as a convergence criterion. In

many cases, the time marching was advanced even
further to examine any changes. All 3-D cases
considered  here involve  symmetrical flight

conditions. Therefore, only half the configuration
was analyzed.

NLR 7301 Airfoil.-- Analysis of this airfoil was
primarily motivated by the availability of a
shockfree transonic  solution of the Euler
equations, obtained using the hodograph technique
[29], which could be wused to evaluate the accuracy
of the TEAM computations. The solution corresponds
to a free-stream Mach number (My) of 0.721 and an
angle of attack (&) of -0.194%9, For these
conditions, TEAM analysis was performed using
several O-type grids with the coarsest having 2,025
nodes and the finest having 103,041. For all cases,
the far-field boundary was located nearly 80-chords
avay based on the results of a previous study [30]
vhere the effect of the far-field boundary location
was investigated. No far-field vortex correction
was used because its effect on the results was
found to be negligible when the outer boundary was
moved past 60 chords.

Sensitivity of the solutions to numerical
dissipation schemes and grid density was partially
addressed by Raj [9]. For most grids but the
coarser ones (less than 25,000 nodes), the computed
surface-pressure and Mach-number distributions were
found to agree well with the hodograph solution
except in the aft region of transition from
supersonic to subsonic flow. The computed solutions
there exhibited a wiggle whose amplitude varied
with the grid distribution. The amplitude of the
wiggle increased as the number of points on the 0
curves increased from 161 to 241 to 321 while
holding the number of 0 curves fixed at 49. On the
other hand, the amplitude decreased as the number
of 0 curves increased from 33 to 49 to 65 to 81
while keeping the number of points on each curve
fixed at 241.

To investigate the effect of grid density and
numerical dissipation further, grids with 81 x 321,
161 x 321, and 321 x 321 nodes were selected. The
lift and pitching moment coefficients exhibited
relatively little sensitivity to grids and
dissipation. The computed value for 1lift was
nominally 0.5959 which compares favorably with the
"exact"  solution (numerical integration of
hodograph data) of 0.5949 and the hodograph
prediction of 0.5939. The computed pitching moment
of -0.1325 compares well with -0.1298 given as the
exact solution. Sensitivity of the drag coefficient
(exact solution being 0.0005 and hodograph
prediction being 0.0) is shown in Table 1. The
results confirm the low levels of dissipation for
the the MAD-2 scheme.

Table 1 Drag Sensitivity to Grid Density for
NLR 7301 Airfoil, My = 0.721, o = —0.1940
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49 x 321 | 81 x 321 | 161 x 321| 321 x 321
SAD 0.000577 | 0.000294 | 0.00025 0.00027
MAD-1 | 0.000464 | 0.000282 | 0.000241 | 0.000241
MAD-2 | 0.000354 | 0.000245 | 0.000206 | 0.000207
FAD 0.000804 | 0.000505 | 0.000394 | 0.000367
The computed surface pressure distribution on

the 81 x 321, 161 x 321,
compared well with each other and the hodograph
solution. A typical comparison for the finest grid
(321 x 321) is shown in Figure 2(a). The total-
pressure loss distribution on the surface is shown
in Figure 2(b). On a large part of the airfoil, the
total pressure losses are less than a 1/4-percent.
Ideally, they should be zero.

and 321 x 321 grids

RAE 2822 Airfoil.—- The RAE 2822 airfoil has been
experimentally tested by Cook et al. [31] and has
become a standard test case for evaluating viscous
computational methods [11]. Solutions for two flow
conditions corresponding to Case 6 and Case 10 are
presented here.

Case 6 TEAM computations were performed at Mg, =
0.725, @« = 2.4° (corrected) and Reynolds number
based on chord, Re., of 6.5 million. Thin-layer
RANS solutions were obtained on two C grids, a 64 x
161 coarse grid (161 nodes in the wrap around
direction and 64 in the normal direction with
appropriate clustering to resolve the boundary
layer), and a 129 x 257 fine grid. The coarse grid
was divided into an inner and an outer zone.
Solving RANS equations in the inner zone, and
either RANS or Euler in the outer zone produced
identical solutions. Of course, the use of Euler
equations reduced overall computational time. The
fine grid was divided into six zones and RANS
equations were solved in all =zones. The Baldwin-
Lomax turbulence model was used for all viscous
solutions, and the £flow was considered to be
turbulent on the entire airfoil.

The computed solutions are compared with each
other and with the experimental data in Table 2 and
Figure 3. An Euler solution on a 64 x 161 grid is
also included for the sake of completeness. Viscous
solutions on the finer grid clearly show a better
agreement with the measured data. The illustration
also demonstrates relatively little sensitivity to
using MAD-1 or MAD-2 scheme. However, the use of
MAD-1 improved robustness and convergence rate.
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Table 2 Correlation for RAE 2822 Airfoil
(AGARD Test Case 6)

C1 Cq
Experimental 0.743 0.0127
Euler(64 x 161) 0.874 0.0109
RANS (64 x 161) 0.704 0.0165
RANS (129 x 257)| 0.746 0.014

Case 10 This is one of the most difficult cases
since there is strong shock-induced boundary-layer
separation. For that reason it was chosen to
investigate the effectiveness of four turbulence
models. The wind-tunnel test parameters are Mg =
0.75, a = 3.19% (uncorrected), and Re, = 6.2x106.
The corrected angle of attack of 2.§0° vas used
here. Laminar to turbulent transition was tripped
in the experiment at x/c = 0.03, but the entire
airfoil was considered turbulent in the
computations. Thin-layer RANS computations were
performed on a six-zone 129 x 257 C grid with
sufficient clustering to produce the nondimensional
wall coordinate y* to be less than unity in the
cells adjacent to the solid surface.

Correlation of computed and measured surface
pressure coefficient is presented in Figure 4, The
Euler computations are included to show the
inadequacy of an inviscid computation to accurately
model this flow in that the shock location is too
far aft and the shock strength is too large. The
Baldwin-Lomax  turbulence model provides some
improvement, but the shock location is still poorly
predicted. The RNG and the Johnson-King turbulence
models yield much better predictions of the shock
location but overpredict the pressure aft of the
shock. The Johnson-King predictions are slightly
better than those of the RNG predictions. The Chien
k-£  turbulence model provides a solution
intermediate between the Baldwin-Lomax and Johnson-
King models in terms of shock location. ~

The computed and measured skin friction
coefficient on the upper surface is also shown in
Figure 4. The Baldwin-Lomax model predicts a
separation point too far downstream. The RNG model
predicts the separation point well but the flow
does not reattach as in the experiment. The
Johnson-King model results in good separation point
prediction and a skin friction coefficient in the
reattached flow of the correct magnitude. The Chien
model gives a separation point too far downstream,
and then the flow abruptly reattaches to predict
excessively high skin friction values. A finer grid
near the solid surface may provide better skin
friction values in the reattachment region. Further
investigations are continuing.

Lockheed-AFOSR Wing C.-— This wing, shown in Figure
5, 1is characteristic of a transonic maneuver
fighter. It has a leading-edge sweep of 459, aspect
ratio of 2.6, and a taper ratio of 0.3. It was
analyzed at its design conditions of M, = 0.85 and
a« = 5° using several grids. Sensitivity of
computations to dissipation and grid density using
C-H type grids were previously reported by Raj
[8,9]. Inviscid as well as viscous solutions on a
C-0 grid, which better models the tip region, are
presented here.
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To evaluate the sensitivity of Euler solutions
to grid refinement, solutions on a coarse grid with
112,875 nodes (129 nodes in the wrap around
direction, 35 nodes between the root and the tip,
and 25 in the normal direction) were compared with
those on refined grids. The coarse grid was divided
into an inner and an outer zone, each having a 13 x
129 x 35 grid. The effect of increasing the number
of nodes in the normal direction from 13 to 25 or
in the spanwise direction from 35 to 49 was
minimal. However, increasing the number of nodes in

the wrap around direction from 129 to 257
dramatically changed the solution, especially on
the outboard stations, as shown in Figure 6. Note

that only the inner zone was refined leading to
Class 2 type interfaces for some grids but no
detrimental effects were noted. To the contrary,
retaining coarser grid in the outer zone afforded a
computationally efficient means of evaluating the

grid refinement effects.

The effect of numerical dissipation was
investigated by comparing computed surface
pressures (not included here) corresponding to the
SAD, MAD, and FAD schemes. For this study, the
values of VIS-2 and VIS-4 were set at 0.5 and 1.5
respectively. The SAD scheme was found to be too
dissipative as evidenced by a forward location of
shocks compared to the solutions of the other two
schemes. The MAD-2 scheme was not as robust and
required increasing VIS-4 to 2.0 to obtain a
converged solution.

For viscous analysis, a 7-zone C-0 grid with a
total of 458,745 nodes (51 x 257 x 35) was used.
The thin-layer RANS equations were solved in six
inner zones and the Euler equations in one outer
zone. All interfaces were Class 1 type. The free-
stream conditions were: M, = 0.85, o« = 59, and
Repge = 10 million (based on mean aerodynamic
chord). In Figure 7, the computed solutions are
compared with two sets of measured data, one from a
large-scale test [32] and the other from a small-
scale test [33]. Note that the Reynolds number and
the Mach number are the same for the two test data,
but the angles of attack are different. The large-
scale test data corresponds to o« = 5° and the
small-scale test data to 5.9°9; the measured lift
coefficients and the leading-edge pressure peaks
match for these values. The viscous solutions show
better agreement with the measured data than the
inviscid solutions, particularly for the outboard
stations. However, discrepancies remain which may
be due to the coarseness of the grid and/or
inadequacy of the Baldwin-Lomax turbulence model to
simulate localized flow separation on the outer
parts of the wing demonstrated by experimental data
[32]. Further analysis using other models as well

as finer grids is needed to isolate the source of
discrepancy.

Canard-Ving-Body.-— TEAM analysis of the canard-
wing-body configuration, shown in  Figure 8,
demonstrates the ability of the code to model
transonic flow about a relatively complex
configuration and also illustrates its ability to
simulate canard-wing interaction. Raj et al. [34]

presented correlation of computed solutions at Mg =
0.9 and o = 4° for this configuration, with canard
in position 1 and wing in position 6 (see Figure
8), using a five-zone grid of H-H topology. Each of
the zones had 168 planes between the upstream and
the downstream boundaries, and 34 planes between
the plane of symmetry and the outboard side
boundary. The canard upper and lower surfaces were
each defined by a 34 x 13 grid (34 nodes chordwise
and 13 spanwise). The wing upper and lower surfaces
were each defined by a 38 x 22 grid. Analysis of
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the canard-off configuration was
same number of points.

done using the

In order to examine trade-offs between accuracy
and efficiency resulting from reduced grid
densities in the outer regions of the flow field,
further analysis was carried out on three 36-zone
grids: (1) a 521,220-node grid with Class 1
interfaces obtained by subdividing the five zones
of the baseline grid; (2) a 457,980-node grid with
Class 2 interfaces obtained by deleting grid lines
along one parametric direction in selected outer
zones; and (3) a 400,028-node grid with Class 2
interface obtained by deleting grid lines in two
parametric directions 1in selected outer zones. A
comparison of all computed solutions showed
excellent agreement for forces and moments as well
as surface pressures indicating negligible effect
of using coarse grids in the outer =zones on
accuracy wvhile improving computational efficiency
through reductions in computing time proportional
to the reductions in the total number of nodes.

Computed 1lift and drag coefficients correlated
vell with the measured data of Stewart et al. {[35].
In Figure 9, surface pressures corresponding to the
MAD-1 and FAD schemes are compared with each other
and experimental data at four stations on the wing
for the « = 4° case. Good overall agreement is
found with the exception of the shock location. The
computed shock is located approximately 10 percent
aft of the measured one. Such a discrepancy is,
howvever, typical of inviscid simulations of flows
exhibiting significant shock/boundary-layer
interaction. For the present case, effects of such

an interaction are seen in the measured data but
not simulated in the TEAM computations carried out
to date.

ANC Fighter Configuration.-~ The ANC fighter
configuration, shown in - Figure 10, represents the
first complete aircraft geometry analyzed using the
TEAM and TRANSAM codes. This configuration features
close-coupled canards mounted on the outboard side
of podded engine nacelles which are separated from
the fuselage by straked-wing sections. The results
demonstrate the ability of the TEAM code to compute
flow field around a complete aircraft
configuration.

It was analyzed at My = 1.19 and « = 0.42, 2.6,
4.85, and 7.11 degrees using a 27-zone H-H type
grid with 378,464 cells. The grid generation
process is described in detail by 0lling and Mani
[13]. At the inlet face of the nacelle, the MFR
value was set at 0.75. At the exhaust face of the
nacelle, the NPR value was set at 7.6. Viscous
effects on the wing were simulated for the 4.85°
and 7.11° cases at Repye = 5.77 million. Thin-layer

RANS equations were solved only in =zones
surrounding the wing. Of course, the grids were
appropriately clustered. The Baldwin-Lomax

turbulence model was used for the results presented
here.

Correlations of inviscid Euler and measured
[36] C;, vs @« and Cj vs Cp data are presented in
Figure 11. In Figure 12, the chordwise surface C
distributions at two wing stations are shown for
both Euler and thin-layer RANS analyses at « =
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T IV. Concluding Remarks
FOREBODY // ‘\ Du;ing the }9805, consi?erable progress vas
CENTERSECTION made in developing computational techniques to
solve the Euler and Reynolds-averaged Navier-Stokes
equations about complex configurations. However,
the full range of capabilities of the computational
+ 15° CANARD E6d methods is not known. A thorough evaluation of the
ADJUSTMENT - e capabilities requires (1) conducting sensitivity
~ O 10 . :
—— studies to investigate the effect of various
s iy computational parameters, such as, grid density,
_ 1 ‘rr turbulence models, treatment of boundary
o 10 io © 3.0 conditions, etc., on the solutions and (2)
4§3§|¢FD WING N ) correlating computed solutions with experimental
IONS 2 POSITIONS data to determine the accuracy of the computed

WING AIRFOIL

Cx

CANARD AIRFOIL

Fig. 8 Canard-wing-body configuration geometric
features

7.11%, For the inboard station, the computed values
could be correlated with the available measured
data of Zilz et al. [36]. These solutions indicate
tbat the viscous effects are not significant on the
wing.

the methods be considered
validated for routine aerodynamic analysis. Of
course, the enormity and the importance of the
evaluation task should not be underestimated. With
that in mind, this paper should be considered as a
small contribution towards a better understanding
of the capabilities and 1limitations of the
computational solutions of the Euler and Navier-
Stokes equations.

solutions. Only then can

The computational methods considered here,
namely, TEAM and TRANSAM, afford a cost-effective
means of obtaining steady-state solutions to the

Euler and RANS equations. The codes accommodate
patched multizone structured grids of arbitrary
topologies and thereby facilitate analysis of
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was demonstrated in
for five test cases
to a complete aircraft.

complex configurations. This
this paper by the solutions
ranging from 2-D airfoils
The ability to generate suitable grids about
aircraft configurations in a timely manner is the
key to using the codes effectively. Grid generation
continues to be a challenging task and is
considered a pacing item for effectively using the
advanced computational methods.

The results presented in this paper
demonstrated the ability of the TEAM and TRANSAM
codes to simulate a variety of flows. Correlations
with experimental data illustrated the sensitivity
of the solutions to  turbulence modeling,
particularly for separated flows. Also, effects of
grid density and numerical dissipation were
investigated. With similar ongoing investigations,

it is only a matter of time when the codes become
even more  effective for practical aerodynamic
analysis.
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Appendix A
Numerical Dissipation

The mathematical formulations of the numerical
dissipation schemes are briefly described in this
Appendix. The vector of flov variables is defined
as v = [p, pup, eE] where p denotes density; up
are velocity components with subscript m = 1,2,3
denoting the component in Cartesian X, Y, or 2
direction respectively; and E is total energy. The
static pressure is denoted by p.

Standard and Modified Adaptive Dissipation.-— These
schemes are based on a blending of first and third
differences in each of the three parametric index
directions. The i-direction dissipative flux at the
interface between two cells identified by (i,j,k)
and (i+l,j,k) sets of indices is considered here.
Expressions for other index directions can be
analogously written.

Dii1/2,5,k = %2 4541/2,5,k ~ % Cis1s2,5,k  AD
where

i
div/2,5,6 ¢ MNar2,5,k Ewi+1,j,k - wi,j,k)
©i41/2,3,k= S [di+1/2,j,k‘ 2d; S5i1/2,k di,j-l/z,k)

Note that the terms d  and e are formally
proportional to the first and third differences of
flow variables respectively. The scaling factor ¢
is varied to construct different dissipation
schemes. In the present work, the following
formulations have been considered.

¢ =1+ rji + Iy SAD scheme [18]

¢ =1 + max( r?., ra.) MAD-1 scheme [37]
ji’ ki

¢ =1 MAD-2 scheme [38]

Here « is typically 0.5, and
N P
i = Mo, ik 7 MNa1/2,90k

k

i
Tei = Ma1s2,5,k 7 Ne1s2,3,k

i 1 i i ]
)\i+1/2,j,k -2 [ )\i+1yj1k+ )\irj’k

Here, Xi, xj, XK are the spectral radii of the
flux-Jacobian matrices in the i, j, and k
directions respectively.

The coefficients of the first- and third-difference
terms in Equation (A-1) are constructed as follows:

€ = K

2 = %o Vi+1/2,j,k and €, = max(O, K- 82)

4

where

Vie1/2,5,k° "X (vi+2,j,k’vi+1,j,k’vi,j,k’vi—l,j,k]

Pivi,i,k " 2P gkt Pic1,ik
Picl, ik * 2P,k * Pis1,3,k

and

v, .
i,j.k
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For MAD schemes, g; is redefined as

€, = min (1/2, K.V,

2 0 1+1/2,j,k)

A user-specified coefficient, VIS-2, defines Ky and

another user-input coefficient, VIS-4, divided by
64, defines Kj.

Boundary  Formulation Since the present
algorithm considers only one image cell, the
dissipative terms need to be constructed

differently for the boundary faces than those for
the interior. For the boundary face at i = 3/2 (see

Figure A-1  below), three options have been
considered as discussed below.

172 3/2 5/2 7/2

— - -

1 2 3 Figure A-~1

|
Option 1: Following Eriksson [39]), the first and
tEird differences are set to =zero at i = 3/2 and
the third difference at i1 = 5/2 1is reduced to a
second difference, i.e.,
d3/2,j,k =0 and e3/2,j,k =0
e =d . -d .
5/2,3,k - ©7/2,5,k T %5/2,3,k

This is formally equivalent to using a zeroth-order
extrapolation of flow variables to define values in
the image cell at i = 1.

Option 2: In this option, the following assumption

is made about the first differences near the
boundary faces.

d1/2,5,k = 93/2,5,k = 95/2,5,k

This is equivalent to a linear two-point

extrapolation of the flow variables to define flow

variables in i = 0 and i = 1 image cells. (Note
that only i = 1 image cell is considered in the
present algorithm). This results in the third

difference term going to =zero at the boundary and
reducing to a second difference at i = 5/2 just
like for Option 1.
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Option 3: Using the following assumption for first
differences at i = 1/2 face,

=2d -d

41/2,5,k 3/2,3,k ~ 95/2,5,k

results in the third difference at the boundary (i
= 3/2) going to zero; the values at i = 5/2 are not
affected. This is equivalent to a three-point
extrapolation of flow variables to define the flow
variables in the i = 0 image cell.

Flux-Limited Adaptive Dissipation.—— For this
scheme, the dissipative flux term at a cell face is
expressed as:

B(

Div1/2,5,k = Bii3s0 5 0 Yib1/2,5,K)

- 2d, + B(d,

141/2,3,k 1+1/2,5,k%-1/2,5,60 (&2

where the limiter operator,
b is defined as

B, with arguments a and

B(a,b) = (s(a) + s(b)) min (lal|, [b])
s(a) = 1/2 , a0
-1/2 , a<0

The first differences are defined as in Eq. (A-1)
except that the scaling factor is now given by:

+ K, v,

¢ = min (1/2, Ko 1 1+1/2,j7k)

The values of Kg and Ki are specified through user-
specified VIS-2 and VIS-4 parameters respectively.
As pointed out by Jameson [27], if ¢ is set to 1/2,
the scheme is TVD but excessively dissipative.

Near the boundaries, options similar to the ones
for SAD and MAD schemes were incorporated. However,
the best performance is achieved by setting D (see
Eq. (A-2)) to zero at the boundary face.



