FLOW SIMULATION AROUND A REALISTIC FIGHTER

ICAS-90-6.4.1

AIRPLANE CONFIGURATION

Torsten Berglind
The Aeronautical Research Institute of Sweden (FFA)
Stockholm, Sweden

Abstract

The concept of patched Cl-continuous multiblock
grids is applied to the flow region around the new
Swedish fighter airplane, JAS 39 Gripen. The
volume grid is generated, block by block, using
transfinite interpolation. The Euler equations are
integrated numerically by a centered finite vol-
ume method using an explicit Runge-Kutta scheme.
Transonic flow cases are computed and the solutions
demonstrate that the grid resolves all relevant flow
features. The effect of different mass flux ratios at
the air intake on the global solution is investigated.
Also the problem of proper boundary condition on
the subsonic outflow boundary at the air intake is
addressed.

1. Introduction

The demand for flow computations around complex
geometries has propelled the development of several
numerical techniques in CFD. A variety of different
‘kinds of computational grids have been advocated,
but today two main choices can be discerned, un-
structered grids or patched multiblock grids. In this
work, the concept of patched C!-continuous multi-
block grids is applied to the flow region around the
Swedish fighter airplane, JAS 39 Gripen.

The process of decomposing the physical space
into blocks can be automatized to various extents.
British Aerospace! has developed a grid generation
system that automatically generates a multiblock
topology from information of desired kinds of grids
about each component. Such systems lead to an
enormous amount of blocks, and the advantage in
computational efficiency compared to unstructered
grids can be questioned. General Dynamics has for
their grid generation system? instead pursued inter-
active visual tools to facilitate the topology gen-
eration. The procedure described herein, requires
that the user entirely specifies the topology. It is
thereby possible to take all the intricate considera-
tions involved with multiblock grid generation into
account.

*This work is sponsored by the Defence Material Adminis-
tration of Sweden, Air Material Department, Stockholm.
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Grid generation is a compromise between the main
goal, to resolve flow gradients as efficiently as pos-
sible, and at the same time to avoid undesired fea-
tures, such as highly skewed grid cells, slope discon-
tinuities and sudden changes in grid spacing. Some
of the undesired grid features are not possible to
avoid due to geometrical restrictions on the con-
figuration surface. It is in those cases important
to limit the irregularities to a region as small as
possible. Also mapping singularities contribute to
larger truncation errors, but are in many cases use-
ful means to accomplish efficient grid point distri-
butions. It is in this context important to keep in
mind that the truncation errors depend on both
the grid defects and the flow gradients. The ef-
ficiency of a grid can therefore be estimated first
after computations of several flow cases.

Figure 1. The JAS 39 Gripen configuration.

2. Choice of topology

The choice of topology around a complex configu-
ration is crucial for the amount of effort required to
generate the grid. By a proper choice of topology,
it is usually possible to avoid regions with highly
skewed grid cells. The JAS configuration consists
of fuselage, canard, sawtooth delta wing, vertical
fin and side mounted inlets as depicted in Figure
1. The trailing edge of the canard and the leading
edge of the delta wing are partly overlapping each
other in a vertical view. This can be avoided by re-
garding the fillet of the delta wing as a part of the
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fuselage. The grid in the region between the canard
and the delta wing is cumbersome to generate since
the grid is required to conform to all wing edges.

Conventional multiblock topologies around airplane
configurations often apply H-grids (slits) around
the wing parts. For wings with round leading edges,
H-grid entails very skewed grid cells at the leading
edge, which is inappropriate since this is a region
with high flow gradients. An alternative idea with
an interior block which only covers the inner delta
wing region and its wake, is presented by Eriksson3.
One of the block faces degenerates to a singular
line on the configuration surface, extending from
the root chord of the delta wing to the symmetry
plane. This topology implies a better resolution
of the leading edge, especially where the maximum
nose radius is located, close to the root chord.

In Eriksson’s case, of an experimental fighter air-
craft, grid lines running lengthwise on the forebody
are swept outside the interior region. For the JAS
configuration, the trailing edge of the canard is lo-
cated very closely to the root chord of the delta
wing and furthermore, the sweep angle for the delta
wing is smaller than for the experimental fighter.
If the same topology concept is applied to the JAS
configuration, a region with highly skewed grid cells
behind the rear tip of the canard appears, Figure
2a. A better choice in this case is to bend the

Figure 2. Alternative topologies for the

canard/delta wing region.

grid lines from the lengthwise direction on the fore-
body into the interior region towards the symmetry
plane, Fig 2b. To accomplish a smooth change from
the lengthwise to the crosswise direction, a wedge
shaped block is inserted in front of the leading edge.
The concave corner in front of the air intake can be
visually eliminated by applying a specific block, at-
tached to the contour of the air intake and extended
to the nose.

Previous considerations formed the basis for the de-
composition of the physical space into blocks. The
flow solver requires that the interior of each block in
terms of computational procedure is completely ho-
mogeneous, i.e. it must not contain slits or mapping
singularities. Furthermore, the flow solver allows
block faces with mixed boundary conditions. The
decomposition of the physical space into such blocks
led to a multiblock topology with eight blocks, as
shown in Figure 3. This topology eliminates prob-
lems with grid skewness and automatically gives a
good resolution of the region in the vicinity of the
configuration.

3. Surface grid generation

The surfaces of the components are described by as-
semblies of cross sections. The represention of cross
sections is normalized, such that each cross section
contains the same number of points, distributed at
the same relative accumulated chord lengths. The
defined network forms the input to a parametric
surface description by bicubic splinest. The surface
parameters u and v define coordinates across and
along the cross sections, respectively. The surface of
each component is partitioned into smooth patches,
topologically equivalent with quadrilaterals.

The grid on each surface patch is thereafter gen-
erated by distributing grid points along constant
u- and v-values. This implies that the coordinate
directions of the surface grid will be aligned with
the directions of the surface parameters. A reori-
entation of cross sections is done in regions where
the parameter directions did not agree with the in-
tended grid line directions.

In cases where meeting boundary curves of two con-
tiguous patches are not aligned, the slope discon-
tinuity will propagate along the common boundary
curve. These slope discontinuities are smoothed out
by moving grid points on parametric spline curves
through the original grid. The adjusted grid points
will thereby automatically conform to the original
surface. The slope discontinuity at these bound-
aries can, as shown in Figure 4, be limited to small
regions. The surface grid is generated patch by
patch until the whole configuration is covered, Fig-
ure 5.
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Figure 3. A wire frame model of the block

decomposition
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Figure 4. Before and after smoothing of slope dis-
continuities at the configuration surface.
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5. Volume grid generation

Transfinite interpolation is a technique for mul-
tivariate interpolation that can be used for grid
generation®®7. The grid is generated by either La-
grange or Hermite interpolation on several control
surfaces. Hermite interpolation allows control of
the orientation of grid lines, i.e. boundary orthog-
onality and slope continuity across block interfaces
can be achieved explicitly. However a large number
of interpolation conditions lead to complex blending
functions and to poor control of grid lines. Partic-
ularly Hermite interpolation in concave regions has
a tendency to produce grid line crossovers.

The concept used in this work is to apply a simple
form of transfinite interpolation and subsequently
to smooth slope discontinuities at block interfaces.
It is not necessary to impose strict orthogonality at
solid walls, but the accuracy deteriorates if the de-
parture from orthogonality is too large. In our case
the Euler equations are solved and orthogonality
at solid walls is therefore less important than if the
Navier-Stokes equations were to be solved. The vol-
ume grid is generated with interpolation conditions
only on the six bounding faces of each block. The
procedure can be written in a recursive form,

2

P (u,v,w) = Z a;(u) - g(ui, v, w)

=1

f*(u5 v, ll)) = f**(u’ v, w)+

3 Biv) - (g(u, v, w) = F*(w,05,w)) (1)

i=1

flu,v,w) = f*(u,0,w)+

Z'yk(w) (g(u, v, w) ~ f*(u, v, w))

k=1

where f**, f* and f are the interpolated functions
after each interpolation step, and u,» and w are the
curvilinear directions defined as normalized accu-
mulated arc-lengths. The blending functions a;, 8;
and 7, are chosen to be linear.

a(u)=1-u au)=u
Br(v)=1~v Bi(v)=v (2)
nw)=1-w pnw)=w

For each block, grids on all bounding block faces
have to be generated in advance. Surface grids on
block faces other than at the configuration surface
are generated by transfinite interpolation on point
distributions on boundary curves. Interfaces be-
tween these grid surfaces have been smoothed out

by an algebraic technique. The slope discontinuities
have preferably been smoothed out at the bound-
aries before the volume grid generation , since these
otherwise propagate into the interior domain. All
eight blocks of the topology are generated with the
same technique. The resulting volume grid is shown
in Figure 6.

6. Numerical Method

The numerical method is a finite volume scheme de-
rived by applying the constant stagnation enthalpy
Euler model in integral form to grid cells of hexa-
hedronal shape®. The resulting semi-discrete scheme
becomes,

g% VOLijk + Flipy i — FIL

5 K+ Flijegn—

5

®3)

Flijoap+FK iy —FK 1 =0

where @ denotes the flow state vector containin

density and the momentum components and FI,FJ
and FK are the integrated fluxes in the curvilin-
ear coordinate system associated with the i-, j-, k-
indices. The non-integer indices refer to cell surface
centers whereas integer indices refer to cell centers.

An explicit one-step four-stage time integration
scheme that is first order accurate in time is used to
integrate (3) in time®. Since only steady solutions
are of interest, local time steps are used to acceler-
ate the convergence to steady state. The artificial
viscosity model uses a combination of a variable co-
efficient second-order difference operator and a con-
stant coeflicient fourth-order difference operator.

At solid walls, the wall pressure is extrapolated
linearly from the interior domain. At the inflow-
outflow boundaries characteristic boundary condi-
tions!® in their simplest form are applied. Inter-
face grid cells are treated as interior grid cells even-
though C'-continuity could not be enforced in some
small regions at configuration edges and at map-
ping singularities. The accuracy in these regions is
consequently of less than second order. Boundary
conditions for the artificial difference operators are

implemented according to reference!l.

The flow at the air intake is subsonic, which means
that one characteristic variable propagates into the
computational domain!®, i. e. one boundary condi-
tion should be applied, Figure 7.

Since in our case, the mass flow rate 7 is known,
a natural choice is to specify the velocity compo-
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nent normal to the outflow surface, here the u-
component as depicted in Figure 8.

Computational
domain

Surrounding
boundary

Supcrsonic

Subsonic I

U<o

|
l
I
Outflow |
l
I
|
— e artie e |

Figure 7. The number of boundary conditions at
outflow based on the ingoing characteristic
variables ¢™.m=1,....4!1.

Fig 8. The outflow boundary at the air intake.

ms/,qp(y,z)-U(y,Z)-dydz=CA'Poo'Voo'A (4)

p is the density and C4 is the inlet mass flux ratio
and A the area. We make the following ansatz for
the velocity u(y,z)

where uo is a constant and ¢ is a shape function of
the velocity profile. The constant uy can now be
evaluated from (4) and (5). In our case, the veloc-
ity profile is assumed to be uniform. By using zero
order extrapolation of the characteristic variables
pointing out of the computational domain as nu-
merical boundary conditions, also the semi-discrete
problem is well posed!2.

7. Computer Implementation

The flow computations are performed on the CRAY
X-MP/48 at Saab-Scania in Linkdping. Due to the
limited core memory on this computer (8 Mega-
words), the solid state disk device SSD had to be
utilized to a large extent. This meant that the orig-
inal code had to be somewhat modified. The vec-
torization of the code was done by the Fortran com-
piler.

The general purpose multiblock flow solver MESC113
allows, as previously mentioned, mixed boundary
conditions on block faces. Such a block face has to
be partitioned in the computational domain into
rectangular patches. A flowchart of the entire
multiblock structure and boundary conditions in
the computational domain is shown in Figure 9.
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Figure 9. A flow chart of the block structure in
the computational space.

8. Computational Results

Transonic flow cases are computed at the free
stream Mach number 0.95 for 0.0°, 3.2° and 6.4° an-
gles of attack. The mass flux ratio at the throat of
the inlet nozzle is 0.7. The computations have been
carried out for two grid sizes, 68 232 and 298 704
grid cells. Initially, solutions with all flow variables
at the air intake extrapolated, are computed. These
solutions are subsequently used as initial solutions
for the computations with a constraint on the mass
flow rate through the air intake.
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Mach contours on the configuration surface at a =
0.0° and 6.4° are shown in Figures 10 and 11. Ex-
trapolation of flow variables corresponds to a higher
mass flux ratio at the air intake than 0.7. The flow
solutions with the lower mass flux ratio show that
a zone of slow air is forming in front of inlet to
the air intake. In the region behind the inlet, a
complex pattern of separation bubbles appear. Fur-
ther downstream and a sharp gradient between the
faster air on the delta wing and the slower air on
the afterbody can be seen. The effects of lower mass
flux ratio at the air intake can be clearly seen on
the fuselage, whereas the effects on the canard and
delta wing are small. At a = 6.4° local shock waves
on the upper sides of both canard and delta wing
appear.

The pressure measurements are performed for a
configuration with the same forebody but a slightly
modified afterbody and ”similar” wing geometries.
Comparison of measured and computed wall pres-
sure coefficient in a position front of of the air in-
take is shown in Table 1. It is clear that solutions
with constraint on the mass flow, compared with
solutions with extrapolation of the flow variables,
as expected, agree much better with the measured
pressures. The good prediction of the pressure in
front of the air intake, indicates a proper treatment
of the outflow boundary condition at the air intake.

e 0.0° 3.2° 6.4°
Com  0.300 0.320 0.342
Cp1 —0.008 —0.003 —0.009
Cp2 | 0.325 0.325 0.327

Table 1. Comparisons of the wall pressure coeffi-
cient in front of the air intake. Cpm is the measured
value, Cp1 and Cp; are the values computed with
extrapolation and with constraint on the mass flow
rate, respectively.

Three component balance measurements are per-
formed for the same configuration with tip mounted
missiles. The deviation between computed and
measured Cp and Cp values can be seen in Table
2. The prediction of Cy, is fairly good whereas the
prediction of Cp ,as usually with Euler solutions, is
less good.

o 0.0° 3.2° 6.4°
ACp 0.0062 0.0093 0.0182
ACp 0.0128 0.0210 0.0500

Table 2. The differens betweeen measured and com-
puted Cr an Cp values.

9. Conclusions

The computational results demonstrate that the
flow solver MESC1 in conjunction with the multi-
block grid system is able to capture the complex
flow phenomena around the JAS 39 Gripen config-
uration. The few measured data accessible, confirm
the computational results. The example shows that
it is possible to generate efficient multiblock grids
with a relatively small number of blocks around
complex configurations. The mass flux ratio at the
air intake is shown to have a significant impact on
the global solution.
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