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ABSTRACT
In meeting the demand for a practical tur-
bulence modeling describing the nonisotropic

character of turbulence and the turbulent stresses
rapidly and accurately, an attempt of building up a
turbulence modeling based on the concept of fractal
analysis, has been carried out. Instead of the
conventional Reynolds-averaging method, a general
analytical-averaging method is proposed, which is
widely applicable to obtain a perturbation equation
for any nonlinear equation describing its averaged
chaotic behavior. The perturbation of the
Navier-Stokes equation, obtained by superposing a
noise onto the flow field, gives a concrete
expression of the turbulent stresses with clear
physical meanings. 1In this sense, the perturbation
equation may be considered as the physical equation
of turbulence, which has been sought after since
the beginning of this century. The corresponding
turbulence modeling has been applied to a variety
of compiex turbulent flows and the results show
that the modeling successfully predicts the extra-
stresses, and may apply to any complex turbulent
flows and replaces the existing industry-standard
k-€¢ and Baldwin-Lomax modelings. The new modeling
may also compete with any Reynolds-stress transport
modelings.

Nomenclature
€, €gs €1, €2, €3, Cy constants
ey, €] unit vectors
>

Fg generalized perturbation force

Gk generation rate of the kinetic energy of
turbulence.

Ge Generation rate of the dissipation of tur-
bulence energy.

k kinetic energy of turbulence

p pressue

PE mathematically expected pressure obtained by
discrete method

p! perturbation value of pressure

s tensor of strain rate

t time
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mean velocity, equal to v

instantaneous velocity

<} < =

E mathematically expected velocity obtained by
discrete method

>
v' perturbation value of velocity

mean velocity
, ¥, coordinates
E virtual work

perturbation displacement

dissipation rate of the kinetic energy of
turbulence

alternative tensor

heat conductivity

HL laminar kinetic viscosity

HT turbulent kinetic viscosity

v ,vL laminar kinematic viscosity
vT turbulent kinematic viscosity
P density

ox, 0g coefficients

Tij turbulence stress tensor

¢ dissipation function

Ve velocity of strain

Y dispersion function

9} verticity

INTRODUCTION

The problem of turbulence, along with the
strong nonlinearity of its governing equations. has
been recognized as one of the most perplexing areas
within the realm of classical mechanics. The major
barrier for solving this problem is that a con-
vincing understanding on physics of turbulence is
lacking and a powerful mathematical method is
needed to handle its nonlinear equations. There
are two basic approaches for statistical turbulence
modeling: first to average then to analyze; or
precisely the reverse, The first way is the well-
known Reynolds-averaging approach, which results in
an unclosed set of equations. Turbulence modelings
for the closure of the Reynolds equation, so far,
are not entirely satisfactory. As for the second
approach, owing to the intractability of the nonli-
near hydrodynamic equations, hardly anyone has
followed it.

The Reynolds-average method leaves all the
effects of nonlinearity of turbulence stresses in
terms of Reynolds stresses. If a more precise
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expression for these turbulence stresses can be
found with definite physical meanings, some univer-
sal modelings with fixed constant coefficients
would be possible. The trouble 1is that the
concrete content of these turbulence stresses is
never known. Therefore, modelings with incorrect
stresses terms have to struggle with coefficient
adjustment. The concept of zonal modeling,
suggested by Kline (1981) at the 1980/1981 Standord
Conference on Computation of Complex Turbulent
Flows, implies that there is no universal tur-
bulence modeling and the coefficients may depend on
the flow type, which in turn implies that a user
has to choose the qualitative flow type and its
corresponding = coefficients. By definition,
however, a modeling should have coefficients which
will be applied without case-to-case adjustment by
the user. Otherwise the modeling 10ses its genera-
lity and creditability.

Despite many modelers are strongly biased
towards Reynolds-stress modeling, stress-transport
modelings have not lived up to their promise. It
seems that along the first approach, the road is
endless so long as the problem of nonlinearity is
imminent.

THEORETICAL DEVELOPMENT

In the 1last decade, chaos and fractal
become the frontiers of research in non-linear
dynamics. It has been learned that the seemingly
chaotic events resulting from the orderiy physical
laws, are not truly formless chaos, but exhibit
underlying coherent patterns and possess fractal
structures. This modern interpretation of chaos
has been gradually replacing the conventional view
that the order emerges from the underlying formless
chaos. Along with the discovery of chaotic pheno-
mena in all areas of nonlinear dynamics, it is also
recognized that nonlinear difference and differen-
tial equations can admit bounded, nonperiodic solu-
tions which exhibit randomized behavior even though
no random parameters appear in the origin§1
governing equations (e.g. Moon, 1987) Turbulence 15
one of the few remaining unsolved problems 1in
classical physics. The recent discovery of deter-
ministic systems exhibiting chaotic oscillations
has created much optimism about understanding the
mysteries of turbulence. Recent studies on frac-
tals have been focused on fractal geometry dimen-
sion and attractors (e.g. Orbach, 1986 and Moon,
1987). So far as the fractal dynamics is con-
cerned, it has not reached it pragmatic stage of
analyzing the dynamic process of a fractal system.

Since a turbulent field is governed by a giant
system of multiple strange attractors, the concept
and the method of attractors seem far away to give
an accountable description of turbulence. It is
necessary to try to find some other alternatives
within the concept of fractals. It is indeed the
intention of the present effort to introduce a
general analytical-averaging method for nonlinear
equations, developed within the fractal concept.
Application of this technique to turbulence opéns a
new way for turbulence modeling, indicating the
fruitfulness of the above mentioned second
approach.

have

A GENERAL FRACTAL ANALYTICAL METHOD FOR NONLINEAR
EQUATIONS

In dealing with the generalities of all disor-
dered systems, fractal claims that random recurrent
behavior gives rise to a family of remarkably simi-
lar patterns, which appear on different scales at
the same time with abrupt boundary and sudden tran-
sitions. Despite the fact that accumulation of
recurrent patterns gives apparent chaos, the quasi-
self-similar patterns imply that the recurrent
behavior must be governed by the same nonlinear
equation, but with different scales at the same
time,

Fractal has unforeseen importance on the
nonlinear science. It points out that the spatio-
temporal dimension is not an integer, but a frac-
tion, and there is hidden orderliness behind the
apparent disorder phenomena. The change of outlook
on space and time would have dramatic impact both
in the Natural science and the Philosophy. On the
side of the nonlinear science, it lays a physical
foundation of analytical-averaging method for the
nonlinear equation. After several bifurcations, an
unstable nonlinear equation wusually produces
chaotic solutions. Among numerous chaotic solu-
tions, only their average behavior is meaningful
and controllable. But the control equation
describing an averaged chaotic phenomenon differs
from its original nonlinear equation. Only after
necessary mathematical treatment can the average
control equation be obtained. Ordering or quasi-
ordering is determined by the original nonlinear
equation. Accumulation of recurrent patterns with
different scales presents apparently disordered
chaotic patterns. Based on this concept, a general
analytical method seeking for the control equation
of chaos is suggested as follows:

1. From the D'Alembert's principle, any
nonlinear equation may be considered as a genera-

lized dynamically balanced system. Upon
multiplying the original nonlinear equation by a
small scaled displacement of perturbation, it

yields the corresponding terms of perturbation work
controlled by the equation within the small scaled
space.

2. Through the virtual work analysis on the
perturbation work, distinguish the active and
passive work terms; the active terms being respon-
sible for the perturbation work production the
passive ones for the work redistribution.

3. A new equation is obtained by adding the
corresponding active perturbation force terms to
the original equation. This new equation is able
to describe the average behavior of the chaotic
system with a second order of accuracy.

1-3 with even
a new equation with a

4. Repeat the procedures
smaller scales to obtain
higher order of accuracCy.

Nonlinear functions do not have additivity.
But after discarding the passive terms, the active
generalized perturbation forces are addible. In
the meantime, when the active terms are added to
the original eguation, all dependent variable of
the new equation became averaged quantities and an
average equation has been obtained.
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THE PERTURBATION EQUATION OF THE NAVIER-STOKES
EQUATION

Turbulence is a typical fractal phenomenon.
The Navier-Stokes equation isusually applied to the
total time varying velocity field. For a laminar
flow with a single scale, the Navier-Stokes
equation gives a single determinate solution. For

a turbulent flow with multiple scales, it gives
chaotic solution. Chaotic flow field usually has
infinite layers of scales. Therefore, the Navier

-Stokes equation can give accurate solutions for
turbulent flows only when the smallest scale valid
under the concept of continuum, is adopted. When
discrete mathematical method is used to solve the
Navier-Stokes equation, any of its determinate
solution is only a mathematically expected distri-
bution upon which there must always be added some
stochastic fluctuations with scales less than the
adopted size of grid. In other words, there always
exists an accompanying noise or perturbation field
along with the solution of the Navier-Stokes
equation. In the sense of fractal, there must
always be some self-similar subpatterns with even
smaller scales within the flow simulating and con-
firming the flow patterns of reality. This is the
reason why turbulence models must be performed
instead of employing the Navier-Stokes equation for
practical engineering calculations. Nevertheless,
the Navier-Stokes equation is still the starting
point for the analysis of turbulence. The aim of
the analysis is to find out the precise expression
of the effect of the perturbation field on the
average equation of turbulence, i.e. the alter-
native expression of Reynolds stress terms.

Let
V=VE+V',P=Pg+P (1)

where Vg, Pg are mathematically expected values of
the velocity and the pressure, V‘, P' are their

perturbation values and V, P are their real
values. Both the real and the expected values
satisfy the Navier-Stokes equation. They belong to
the infinitely numerous chaotic solutions of the

nonlinear equation. In fact, both V and VE cor-
respond to two distinct realizations of the fractal

dynamical system, each obeying the Navier-Stokes
equation. From the Navier-Stokes equation, one
obtains
v P .
We  _TE,, w2 (2)
Dt p

OV D(VEgN') 1 ) s
ez " = - — VU (PE+P') + v V& (VE+V') (3)
o o 5 (PE+P") (Ve

Substracting Eq. (2) from (3) yields
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av - - a N
— + (VE.V) V'+ (V'.V) Vg
at
- - 1 2t
#{V'.Y) Vo= - 5 VPt + vUEY! (4)

Equation (4) and the Poisson equation of the fluc-
tuating pressure given by

1 a - IS - - -
-5 U2P' = V.[(VE.V) V'+ (V'.V) Vg + (V'.V) V']

yield

g%- N AT (5)

where C is the constant of integration determined
by the boundary conditons of the fluctuating velo-
city and pressure. Equation (4) may be expressed
as

C 4+ WIAV' 4 (VE.V) V'+ (V'.7) Vg
> - 1 -
+(V.T) V= - S TP vy2y! (6)

Equation (2) with its boundary condition may have a
determinate solution for a group of streamlines.
From the viewpoint of analytical mechanics, the
equation and its boundary conditions are still a
set of incomplete constraints for the chaotic
state. Upon taking the natural frame of the
streamline group as the generalized coordinates,
the perturbation force may be interpreted as the
generalized force acting within the generalized
system of coordinates. Therefore, through the vir-
tual work analysis, and subsequently adding these
perturbation forces to Eq. (2) may directly give
the perturbation equation of the Navier-Stokes
equation.

According to the rate of deformation tensor
given by

uy >
— =5 + 1/2 (WxV) (7)
an

- »
where S is the rate of strain tensor, and 1/2 (VxV)
is the rotation tensor. One may use a method ana-
logous to the Prandti‘s mixing 1length concept

ou
(v'=1 5—) to obtain
Yy

- a N
V' = —=6r =5 .67 + 1/2 (VxV) x §F



or

a

V' = Vo + 1/2 (VxV) x §F (8)

where 6T is a perturbation displacement and V$ is
the velocity of strain. Due to the local discrete
character of turbulence (the particle character of

turbulent eddies) , ' may be considered as a
local spatio-temporal constant vector much larger
than the differential scales. This assumption
introduces discreteness into the treatment of tur-

bu]ence. Upon multiplying Eq. (6) by 8 and sub-
stituting Eq. (8) 1into 1it, one may obtain the
virtual work as

~

a a 1 >
8E = Fg.6F = 6T.[- 5 Up'+ VW2V]

= 8T . [C+WV2(V9) + (VE.V) Vo + (V9.V) Vo

[ a

+1/2 (Er.M)T - ¥ (87.7) Q] (9)

where Fq represents the generalized perturbation
force. After discarding the passive terms, the
generalized perturbation force is addible to the
right side of Eq. (2) and then let the velocity
variables have new values to obtain a new equation,
which includes the interaction between the two
distinct fractal flows of different scales and

describes their average behavior. Upon adding F
to the right side of Eq. (2) and treating all para-
meters as the ensemble average, one obtains the
perturbation equation of the Navier-Stokes equation
as:

- . L
LA Up + VW2V + (V.V) V¢ + %

.- (X877 Vo

v
+ (V6.V) Vo + vW2(Vp) - > (87.7) Uxil+c (10)

where the tildes, denotes the mean values.
The indefinite integral constant ¢ has no influence
on the discrete numerical calculation of turbulent
flows. It is thus negligible in the differential
treatment of turbulence.

o n
’

Obviously, Eq. (10) is an alternative to the
Reynolds equation, and provides a concrete
expression of turbulent stress terms. The physical
interpretation of the extra turbulence stresses has
been precisely described by the five extra terms on
the right side of Eq. (10). In fact, the equation
is the physical equation of turbulence with a
second order accuracy, which has been sought after
for a long time. A detailed discussion on this
equation has been reported elsewhere (Gao, 1989a).

THE ESSENCE OF EXTRA NONISOTROPIC STRESSES

Shearing is the most obvious reason of produc-
tion of turbulent kinetic energy. However, the
curvature of streamline, the stretching or
compression of streamline and the jnteraction bet-
ween the large and small turbulent eddies may also
play important roles 1in producing turbulent
stresses. A1l non-shearing stresses are named
extra stresses. They must be appropriately con-
sidered for complex turbulent flows. The momentum
equation based on the concept of eddy viscosity 1is

bv (11)
Dt

= - % Up + (vp+vy) TV

This equation is a result of analogous simulation
of turbulent eddy viscosity to molecular viscosity.
A rigorous derivation of the equation is lacking.

To simplify the perturbation Eq. (10), one
assumes that the perturbation velocity V$ and the

perturbation displacement §r are locally constant
and con-tribute as part of the eddy viscosity, vy =

c'V§ST , where c' is an coefficient.

Equation (10) now becomes

empirical

~

DV 1 ~ 1
2 e = 2y 4 =
- P Up + (vL+vT) Vev 4 5 (Qx8r.v) V¢

~ v ~ ~
+ (V.V) V9 - EE (8r.¥) (VxQ) (12)

with vy V&V = (V4.7)7Vp + vV2 (V4)

vVZ(VQ), representing the effect of positive
dispersion on the turbulent stresses which is one
of the most important features of turbulence
(Karweit, 1985), has been absorbed into the visco-
sity coefficient, and

(V6.V) V¢ = V¢ &F V2V

Comparing Eq. (12) with Eq. (11), one recogni-
zes that there are three extra turbulent stresses
in Eq. (12): the vorticity term in which the
effect of streamline curvature is included; the
convective term of perturbation velocity in which
the effect of streamline stretching or compression
is included; and the last term consisting of the
perturbation displacement and the secondary deriva-
tive of the vorticity, which reflects the effect of
interaction between large and small eddies. 1If a
correct modeling of these extra terms can be
accomplished, problems with these extra nonisotro-
pic stresses can be properly dealt with. These
three extra terms also reveal the physical essence
of these extra stresses, which are the direct
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results of the convective perturbation velocity and
the interaction between vorticity and perturbation
parameters. They also simultaneously show the con-
vective transportation (expressed by the two pre-
ceding terms) and the discrete character (expressed
by the last term) of turbulence.

A brief observation of Eq. (12) may also
reveal the shortcomings of the prevailing tur-
bulence modelings. For instance, 1in the eddy-

viscosity modeis, only vTVZV is_ considered; in the
large eddy simulation, only vV¢(V$) is considered;
in the Reynolds stress modeling, the discreteness
term,

v ~ ~
- =(§T.7) Vxf,
Z{6r-0)

has not been considered.

Anisotropy, as a direct result of nonli-
nearity, is a basic characteristic of turbulent
flows, and 1is not the property of the fluid.
Adopting the Boussinesq's eddy-viscosity concept, a
traditional treatment for anisotropy is to look for
an anisotropic viscosity coefficient. But from the
viewpoint of random movement, it is known that the
local isotropy of turbulent eddies prevails. The
movement of eddies has a strong tendency to
isotropy due to the isotropic stochastic collision,
except for those occasions where the extra stresses
cause eddies moving in a particular direction.
Therefore, 1in a general sense, adoption of an
isotropic turbulent viscosity coefficient ur at any
point of the flow field is more convincing. The
assumption of isotropic ut is in consistence with
stochastic property of turbulence. Anisotropy
should be expressed by the extra stresses in the
momentum  equation. From Eq. (10), the
corresponding turbulence stress tensor can be
interpreted as

Ty = V0o + % (fxsT) Vo + Vo Vo + vV (Vo)

8T (VxS) (13)

N <

It is obvious that with the effects of the ordi-
nary and the extra stresses, Eq. (13) will disptay
non-isotropic features.

TURBULENCE MODELING

The perturbation equation of the Navier-Stokes
Eq. (10} contains two turbuient parameters: the
perturbation velocity V¢ and the perturbation dis

placement §r. If both of them can be correctly
described by differential equations, complex. tur-
bulent flow problems can be dealt with completely
within the realm of the two-equation modeling.
There exist many ways to modeling the Eq. (10).
As a simulation of molecular motion, turbulent
viscosity usually consists of a length scale, a
velocity scale and an experimentally determined

coefficient, i.e. v. = cvi. In order to model the
perturbation equation, the velocity of strain V¢
may be chosen as the velocity scale and the pertur-
bation displacement 87 may be chosen as the 1length
scale. Changing the positions of V$ and &r to
bring them together to form the turbulent viscosity
v., one may effectively consider that they are
lanlly constants and neglect their spatial dif-
ferentials. One of these attempts of modeling is
given by Gao (1989b). In this scheme a set of new
control equations for incompressible turbulent
flow, i.e., continuity, momentum, turbulent kinetic
energy, its dissipation and the energy equations,
are formulated as:

duy
— = (14)
axj
duy ouj 1 0P . a(vp+vr) (éﬂi . 921
at ax; T op Xy axy axjy Ay
vy vk
+Q1J—+C3e-| UJ—
x4 x4
k3/2 820y
- —_— 15
Co 2 . e] €jjk 5;35;] (15)
ak ak 1 3 o8k Gk
—hu— - — (L —)+—-€  (16)
ot axj P oxj ok dxj p
de de 1 3 wyur 9
— +uj— = - — (— —)
ot oxj P axj Oe axj
€Ge €2
+ C -C (17)

2
! k+(2v €)1/2 k+(2v e)1/2

dh dh l19p 1 dp 1 93 (AaT ) o V¥
— j— = = — + — Uj— + -~ — (A—) + -+ -
ot * uJan pat o Jan P 3Xj axj [

(18)

Gy = max (I-II-I1I, 0) , Gg = max (1 - 11, 0)

duj duj duj duj Buj duj
= —_—f —) — — o — —
=¥ (axJ axi) axj (SXJ X  9xj
duy duy duy 1 2
=7 (— + =) — - = §7 Q45

axj A&xj x5 2
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Vr_ duj

IT = C3 ejujvk — .

3 &4} Gij
k3/2 o duy

ITIT = Co P —— €] €jjk — —= s
€ 8xj 9xi

s 23U duy c pk2

Yol ey B PR

when uj 20, ej=¢e7 =1

uy <0, ej=ey=-1

For the dissipation function ¢, ¢ = max (I-11,0)

Buj Buy Buy
SU(— =) —
oxj  Axj dxj
For the dispersion function ¢, ¢ = -~ 111,

Various constants and coefficients related to this
modeling are given in Table I.

Table 1. The coefficients for the Rectangular
system of coordinates.

Co €1 C2 C3
III1 2 0, 0.30 1.44 1.92 0.16
IIT1 < 0, 0.0

ok O¢ Cu
1.0 1.3 0.08

As discussed previously (Gao, 1989b) due to
the spatio-temporal instability, intermittency of
turbulent flow is the basic reason that the prin-
cipie directions of stress and strain are non-
coincident with each other. This is why the
Boussinesq's eddy-viscosity model fails. The task
of turbulence modeling is to resolve the incom-
patibility of  the constitutive relations of the
viscous flow with the non-Newtonian property of the
intermittent turbulent flow. In this sense, all
the extra stresses, added to the momentum equations
as presented in Eq. (10), cannot be interpreted as
standard tensors. This present modeling by Gao
(1989b), however, is a modification of the original
k-e¢ modeling by Launder and Spalding (1974) by
taking advantage of their previous tremendous
achievement. In order to bring all the extra terms
into tensorial expression, an effort to use the
summation subscripts has been applied to them.

Based on the nonlinear fractal analysis, the
new modeling has extra terms of stretching, rota-
tion and negative dispersion, which reflect the
non-linear coherent property of turbulence. On the
other hand, the empirical coefficients reflect the
stochastic nature of turbulence. Many perplexing
problems of turbulence, such as anisotropy, tur-
bulence energy inversion (Sommeria, 1986), cut-off
of the turbulence energy spectra, intermittency and
coherent structure may be explained theoretically
and simulated numerically by this nonlinear
modeling.

DISCUSSION OF COMPUTED RESULTS

By adopting the procedures suggested by
Patankar (1981) numerical computations for many
complex turbulent flows have been performed with
the improved turbulence modeling. The results of
these calculations are respectively discussed in
the following:

1. The Anomaly of the Round Jet/Plane Jet

The computed and measured behavior for the
plane and. the round jets are compared in Figs. 1-3,
and in Table 2. The corresponding kinetic energy
profile, shown in Figs. 1 and 2, are in satisfac-
tory accord. The difference in the shape of the
turbulence kinetic energy profiles between the
round and plane jets is correctly reporduced by
these numerical computations. The improvement of
the k profile of the round jets, especially in the
region near the .axis, is mainly attributable to the
extra stretching term in the momentum equation. In
the case of the round jet, the strength of the
velocity decay in this region is far greater than
that in the plane jet. Since the velocity decay
effectively increases the kinetic energy produc-
tion, the k profile of the round jets exhibits a
monotonic decrease from the axis while the k pro-
file of the plane jets exhibits a hump with its
maximum at y = 0.65 y3;2. The most interesting

X | -=--_ k-€
Ug\ 0.l
—— present
o_oar =3~ —°7" experiment
(Bradbury)
006
004
002 .
~N
0 04 08 1.2 16 20 24
Y/Y‘/z
Fig.l. Turbulence Kinetic Energy Profile of

a Plane Jet in Stagnant Surrounding
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(Rodi)
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004}
002 ¢t
0 04 08 12 16 20 24
Y/Yh
Fig.2. Turbulence Kinetic Energy Profile of

a Round Jet in Stagnant Surrounding

results appear in Table II, which Tists the rates
of spread of the two flows including that of the
experimental data. It also includes the results
from the Algebraic stress model and the Reynolds
stress transport model. Obviously the anomaly of
the round jet/plane jet has been . adequately
resoived (Hanjalic, 1988). The reason for the
improvement of the spread rate is traced to the
extra stretching term in the momentum equation.
The component of the stretching term in the

9

y-direction is C3 V 555 . From Figures 1 and 2,
it is shown that this term always suppresses the
rate of spread for the round jet, while it is posi-
tive within the region from the axis to y =
0.65y1/2 for the plane jet, which helps to increase
the rate of spread. Shown in Figure 3 are the
measured and predicted dissipation profiles of the

- round Jjets. Since there is no extra stretching
term in the dissipation production Gg¢ of the pre-
sent modeling, a hump-like profile of dissipation
has been obtained. If this extra stretching term
is also included into Gg, the level of € decreases
monotonically from the axis, similar to the k pro-
file in the round jets. This gives an important
support to the opinion that Gy and Ge should not
contain the same element, and the extra stretching
term should appear only in Gg.

Predicted by prese,m model
— - ~— Exp. LDA doto, energy balonce

0.25
-o-- Exp. HW data, energy baolance
020 } (Toulbee)
0.1
C.10
0.05
) Ry -
0 05 1.0 1.5 2.0
vy,

Fig.3, The Measured and the Predicted Profiles of

a Round Jet (Dissipation Rate of the Turbulence

Kinetic Energy)

2. Near Wall Flow

Since the modeled differential equation for
free turbulence yields incorrect results near a
wall, various ad hoc functions (there are at least
five functions of this kind in the k-e modeling)
are conventionally added in an effort to eliminate
this shortcoming. Since the present modified k-e
method is based upon a thorough consideration of
the non-linearity of turbulent flow, the appearance
of the proposed modeling undergoes a substantial
change. Group I of Gy always substracts the term

2

1/2 Ui, which accounts for a significant impro-
vement of the shortcoming of the original k-¢
modeling. It 1s well known that the original k-e
modeling 1invariably predicts a higher turbulence
intensity and turbulent viscosity in the near wall
region (Y*< 40). The cut-off state of Gy and Gg
in the region of Yt = 10 also offers an important
contribution to the correct prediction in the near-
wall region. An interesting discovery arising from
this improvement is the modified k-e¢ modeling is
effective for both the free flow and the near-wall
flow. No additional function is needed in this
improved modeling.

Table II  Rates of Spread of Plane and Round Jets
Flow Experiment Original k-€ ASM RST Present
Model Model
Plane jet 0.110 0.108 0.114 0.108 0.111
Round jet { 0.086-0.093 0.114 0.149 0.121 0.092
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3. Three-Dimensional Calculation of a Centrifugal
Compressor

With this Gao's modeling, Bo and Bosman (1989)
at the University of Manchester Institute of
Science and Technology, computed a three-
dimensional flow field of a centrifugal compressor,
and achieved a complete success. The grid of
calculated fiow field is shown in Fig. 4. The com-
puted results at the section No. 25 by the original
k-¢ model and the present model are shown in Figs.
5 and 6, respectively. Fig. 7 presents the experi-
mentally measured results in the same section.. In
comparing these sets of results, it is obvious that
the present modeling gives very good prediction of
the secndary flow vortices in scale, form, position
and the flow direction, very similar to the experi-

mental data. However, for the original k-¢
modeling, the vortex on the suction side almost
disappears. Both the turning points of the flow

direction and the velocity profile of the secondary
flow vortices are qualitatively incorrect, and the
poor results cannot be corrected despite wide
adjustment on its empirical coefficients. It has
been found that the extra stretching and rotation
terms of the new modeling are responsible for the
correct prediction, which exhibits the charac-
teristic of strong stretching and sharp rotation in
the centrifugal compressor, (Cumpsty, 1989).
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4. Swirling Flows

Another importany improvement was observed in
the confined sudden-expansion swirling flows by Xu
and Gao (1990). With the new modeling, the form of
the recirculating zone, the composite vortex pro-
file of the tangential velocity, the proceeding
vortex roll behind the recirculating zone, and the

The Computational Grid for the Eckardt Compressor

profile of the axial velocity within the recir-
culating zone are all correctly reporduced through
numerical computations. Fig. 8 shows .the com-
parison of the axial and tangential velocity profi-
les between the experimental and the numerically
predicted results. The original k-e modeling
failed to give the proceeding vortex roll (Fig.
8a), the outer composite vortex (Fig. 8b) and the
deficit of the axial velocity near the central axis
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Experimental Data
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Fig.8a The Axial Velocity Distribution
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Fig.8b The Tangential Velocity Distribution

Fig.8 The Flow Field Within a Confined Sudden Expansion Swirling Fiow

within the recirculating zone (Fig. 8a). These
defects, however, cannot be corrected by adjusting
the coefficients. The results by the new model do
not show the deficiencies.

It has been found that the extra rotation term
and the third-order negative dispersion term play

the important roles 1in obtaining the correct
tangential velocity profile and the proceeding vor-
tex roll behind the recirculating zone. The

stretching term makes the deficient axial velocity
profile within the recirculating zone possible.
The two modelings were also employed to predict the
non-swirling and moderate swirling flows.
Different sets of constants were required to deal
with different levels of swirl for the ordinary k-¢
modeling. Even under this condition, the results
showed the maximum reverse flow always occurred on
the axis and it never reproduced the structure of
the downstream proceeding vortex roll-composite
vortex structure. For the improved k-e¢ model all
these features have been correctly and adequately
reproduced.

DISCUSSION AND SUMMARY

With this improved modeling, computations have
been carried out to study the vortex field behind a
bluff body, diffusive flows, and the near wall
flows. All results showed improved qualities. The
success of predicting compliex turbulent flows so
far instills the confidence of future capabilities
of dealing with complex three-dimensional turbulent
flows, with accurate prediction of extra stresses,
but within a reasonable amount of computing time.
In this sense, it is a strong competitor for the
industry-standard turbulence modeling.

It has been learned that the new coefficients
Co, C3 need some additional adjustment. Although
the physical Eq.(10) has the second order accuracy,
some terms have been omitted in the modeling pro-
cess for the sake of reducing the amount of com-
puting time. Some errors must have been
unavoidably introduced. For example, for the con-

vection

term of the perturbation vetocity, (V.V)
V¢,

it has three components in each momentum
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equation. Only the component in the i direction
has been retained. This treatment, in tura, intro-
duced an amount of uncertainty of the coefficient
C3. Another example is in the extra rotation

term 1/2 (fix6T.V) V4. §T was considered as a ‘local
constant and was combined with V¢ to form the tur-
bulent viscosity uyr, which introduced a certain
amount of error to the coefficient Cq.

Besides the present modeling, new modeling for
the physical equation of turbulence is possible.
Additional attempt for improving the capability of
the non-linear modeling is worth exploring. Since
the intermittent coherent structures are produced
by the interactions of dissipation and dispersion,
jt is necessary to keep the positive dispersion
term VZ(V¢) in the modeling equation if the func-
tion of simulating the coherent behavior of tur-
bulent flow is emphasized. However, for any
attempt of modeling, it should be kept in mind that
a compromise of accuracy and simplicity should be
considered.
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