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Abstract

A numerical scheme is presented for the solu-
tion of the steady incompressible Navier-Stokes equa-
tions. Based on the pseudo-compressibility concept,
the scheme includes a conservative upwind discretiza-
tion of the convective terms obtained by the flux dif-
ference splitting approach, together with a central dis-
cretization of the viscous terms. The solution is ad-
vanced in time using a linearly implicit time-marching
technique. The linear systems are solved by either di-
rect or relaxation techniques. Numerical results have
been obtained for the laminar flows in the entrance of
a channel and over a backward facing step. They are
in close agreement with experimental data.

1. Introduction

For incompressible flows, the continuity equation re-
duces to a purely kinematical constraint rather than
being a dynamical equation. This proves to be a major
source of difficulty. Several strategies have been pro-
posed to overcome this difficulty. One such strategy is
the stream function-vorticity formulation. In two di-
mensions, this has the advantage of reducing the num-
ber of unknowns, as well as of eliminating the pressure
and improving the coupling between the equations, but
the stream function equation remains a purely kine-
matic equation and the approach extends with diffi-
culty to three-dimensional configurations.

Another approach is to replace the continuity equa-
tion by a Poisson equation for pressure obtained by
taking the divergence of the momentum equation and
using the continuity equation. However, this ap-
proach leads to difficulties in implementing the pres-
sure boundary conditions and the Poisson equation is
also a purely spatial equation. It then has to be solved
separately from the momentum equation, which affects
the convergence of the process.

Finally, another approach , valid for steady flows, is
to introduce an artificial time derivative term in the
continuity equation. This strategy was first proposed
by Chorin [1] and is known as the artificial or pseudo-
compressibility method. The modified system of equa-
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tions can easily be time-matched. However, if central
differencing (or standard Galerkin FEM) is used, sev-
eral problems appear, in particular, spurious oscilla-
tions develop at high Reynolds numbers. To overcome
these problems, use can be made of staggered grids or
of properly tuned artificial viscosity techniques. An-
other option is available. Indeed, when the pseudo-
compressibility technique is used, the incompressible
Navier-Stokes equations closely resemble the compress-
ible Navier-Stokes equations. In particular, the invis-
cid terms in isolation constitute a hyperbolic system of
conservation laws. It is therefore possible to discretize
these terms using a high resolution upwind difference
technique as those developed for the compressible flow
equations. This approach has the advantage that the
numerical dissipation is naturally built into the dis-
cretization technique without the need for developing
a sophisticated artificial dissipation operator and also
that when used in conjunction with implicit time step-
ping, it leads to well conditioned linear systems which
can be solved by relaxation methods. Such an avenue
was explored by a few authors [2,3,4,5]. The present
paper presents a scheme based on the same philosophy.
However, high resolution is achieved by a different ap-
proach, following a suggestion by Roe [6], and requires
much fewer limiter function evaluations than previous
schemes.

2. Analysis

2.1 Governing equations

The 2D incompressible Navier-Stokes equations,
with pseudo-compressibility included, are written, in
non-dimensional form
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where the continuity equation has been used to sim-
plify the viscous fluxes and P is the pressure p divided
by the density p. f is the artificial compressibility
parameter. A value of 1, which has been suggested
by various authors (e.g. [2]) has been adopted in the
present study. It should be noted, as pointed out by
Pan and Chakravarthy [5], that although the artificial
compressibility parameter 8 does not influence directly
the steady solution since the term involving it vanishes
at steady state, it does influence it indirectly because
of its effect on the eigenvalues/vectors of flux jacobians
and the associated conservative upwind discretization.
Pan and Chakravarthy have shown that the influence,
and the related errors, is strongest for large values of
B, which is an additional reason to choose a value of 1
for B.

2.2.1 Space discretization

The scheme uses a composite discretization. The
well-behaved viscous terms are simply centrally dif-
ferenced whereas the inviscid terms are upwind dis-
cretized using the flux difference splitting (FDS) ap-
proach pioneered by Roe (7], Let us now describe the
FDS technique on the one-dimensional inviscid equa~

i
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The FDS discretization is based on a finite volume for-
mulation where the variables represent cell averages.
A general finite volume semi-discretigation of 3 is

dQ; F
a '

=0 (3)
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where F.;, /2 are the fluxes at the cell boundaries. The
FDS flux formulas are obtained by solving a’linearized
Riemann problem at the cell interface ¢ + 1/2
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where the matrix A is evaluated at some average state
between Q; and Q;+i. The average state is chosen
such that [7]

A:A:-———

Lfor Qi1 =Qi=Q, 3

2. A(Qi41— Qi) =Fip - F;

For incompressible flows, it turns out [2,3,4,5] that the
simple arithmetic average of Q; and Q;,; possesses
these properties. The solution of the linearized Rie-
‘mann problem then gives the first order flux formula

Fiyip= 5—-%%‘& - %IAI(Q:'+1 -Q) (9)

where |[A| = R|A|L. R and L are respectively the right
and left eigenvector matrices of A and [A| is the diago-
nal matrix of its eigenvalues moduli. Their expression
is given in the Appendix.

As such, the FDS flux formula is first order accurate
and therefore generally produces excessive dissipation.
Several strategies can be used to increase the order of
accuracy. One such strategy is the MUSCL approach
first introduced by van Leer {8] whereby the Riemann
problem at the cell interface uses values reconstructed
from neighbouring cell values. This reconstruction pro-
cess may or may not be limited in order to obtain TVD
properties. That approach has been used by Gorski [3],
Pan and Chakravarthy [5] and, in a slightly modified
form, by Hartwich and Hsu [2].

Another approach is to combine first-order flux vari-
ations across neighbouring interfaces to conmstruct a
higher order flux formula. Such an approach requires
less computations since just first order flux variations
are computed. It was used by Liou and van Leer [9] for
the compressible Euler equations and by Athavale and
Merkle [4] for the incompressible Navier-Stokes equa-
tions. It is however difficult to use limiting to obtain
the TVD property with this approach.

The approach that was used in the present study
follows rather the suggestion by Roe [6]. It is identical
to the previous one for unlimited discretizations of lin-
ear constant coefficient systems but provides a much
easier way to introduce limiting. Also, with respect to
the MUSCL approach, it requires half as many limiter
function evaluations. The higher order flux formula is
given by the following relation

F;+F; 1
Fivipp= “'Tﬂ - ERKL(Qi+1 -Q) (7

where matrices R and L retain their previous mean-
ing. With respect to the first order formula, the only
modification is the replacement of the diagonal matrix
|A| by another diagonal matrix K which is defined as
follows.

B(r
K = diag]|A{) (1 - ((;,*"”)1 (8)
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(9)

is the ratio of k-wave intensities at two neighbour-
ing cell interfaces and B(r) is some averaging function
which can be linear — B(r) = r and B(r) = 1 cor-
respond respectively to central and fully upwind dis-
cretizations — or non linear (limiter function). It can
easily be shown that the discretization is second order
accurate provided that B(r) is a continuous function
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in the neighbourhood of r = 1 and B(1) = 1. In the
present study, the min-mod limiter function was used

B(r) = max(0, min(1,r)) (10)
Following a suggestion by Pan and Chakravarthy [5],

it may be preferable to use a linear averaging function

such as 9
B(r) =3 + 5

which yields third order accuracy.

(11)

2.2.2 Time discretization

Once the space discretization is chosen, there re-
mains to choose the time discretization. Since we are
interested in steady solutions, we adopt an implicit
technique for faster convergence. In the present study,
only the backward Euler formula was used, yielding
the following discretization

AQ+5,F"+1+5,,G“+‘—%(5,1?‘,““4-5,,@,,““) =0

(12)
where 6§, represent the discretization formula in the
x-direction and similarly for 6,. For practical imple-
mentation, this discretization must be linearized. For

example, we have

F ;+1/2 +Z"£LAQm (13)

t+1/2

Now, the high resolution discretization of the convec-
tive fluxes requires a 5-point stencil in each direction,
leading to expensive block pentadiagonal systems. Fol-
lowing several authors [4,9] who have shown that the
simplification does not significantly alter the conver-
gence speed, we use for the implicit part the first order
flux formula, i.e.

n+t1
Fl+1/2 hr

+ ZQ.FL‘ELL AQ, (14)

t+1/2 hr

where the subsripts hr and 1 denote respectively the
high resolution and first order flux formulas. The im-
plicit stencil is then reduced to 3 points in each direc-
tion but the scheme remains quite complex because of
the complexity of the true flux jacobians. The first or-
der flux formula at the cell interface ¢ + 1/2 may be
rewritten

Fip12=Fi+ RATL (Qiyy -
A-_i+l/2

Qi)

The following approximate formula is then used for the
flux increment

Z OFi 12,1 AQ, ~
Q.

A AQi + A7 41 /2(AQiy1 — AQ))

(15)

The following discretization results, because of the can-
cellation of the A; AQ; terms.

1 -
—+ A '+1/25: +A+“_1/2 5::

1
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B—J'+1/25: +B+J'_.1/2 6; bt 6yBu]AQ=

Re
1
6T +8,GY - 6F" - 5,G™  (16)

where §* and §~ denote respectively the first order
forward and backward difference operators.

2.3 Solution strategy

The resulting linear system of equations may be
solved in various ways. For coarse grids, direct meth-
ods can be used. We used simple Gaussian elimina-
tion for the first test case, the laminar flow in the en-
trance of a channel. Because the system is well con-
ditioned, relaxation methods can also be used. Other
alternatives are approximate factorization (AF) or ap-
proximate LU factorization as used respectively by
Gorski 3] and by Athavale and Merkle [4]. Vertical line
block Gauss-Seidel relaxation was used in the present
study for the second test case.

3. Results

3.1 Flow in the entrance of a channel

The flow in the entrance of a channel was computed
with a Reynolds number based on the channel half-
width of 5. A uniform 21 x 21 grid was used with
Az = Ay = 0.1. Results were obtained with both
first and second order space discretizations. Gaussian
elimination was used to solve the linear systems. Both
calculations converged in 30 iterations, confirming the
fact that the combination of first order implicit and sec-
ond order explicit discretization does not significantly
reduce convergence properties of the algorithm. First
order velocity profiles are displayed in Fig. 1 while
second order profiles are displayed in Fig. 2. The im-
proved accuracy of the latter results is demonstrated
by the capture of the off-center velocity peaks close to
the channel entrance and by the more accurate value
of the fully developed velocity maximum.

3.2 Flow over a backward facing step

As a more severe test-case, the laminar flow over
a backward facing step was computed. This well-
documented flow configuration [10] allows compari-
gson with both experimental and other numerical re-
sults. The configuration parameters were the follow-
ing : the step height was half the channel width and the
Reynolds number based on channel width and mean
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inflow velocity was 200. A uniform 129 X 49 grid was
used.

Converged results were obtained in less than 100
iterations for both first and second order space dis-
cretizations. The computed streamlines are displayed
in Fig. 3-4. Both results are nearly identical and the
separation lengths, respectively 2.83 and 2.77 channel
widths for first and second order discretizations, closely
agree with the experimental value of about 2.8. This
clearly reveals that the present upwind discretization
produces very little dissipation even in the first order
case when neighbouring cells are separated by a single
inviscid standing wave. This was also observed in the
compressible case {11].

4. Conclusions

A numerical scheme has been developed for solving
the incompressible Navier-Stokes equations. Based on
the pseudo-compressibility concept, it combines cen-
tral differencing of the viscous terms with upwind dis-
cretization of the convective fluxes, obtained by the
flux difference splitting approach.

High resolution is obtained by a slight modification
of the first order flux formula and requires half as many
evaluations of the averaging (limiter) functions than
the MUSCL approach. The scheme was tested for two
laminar flow configurations and proved to produce ac-
curate results in rather few iterations.

Forthcoming developments include adaptation to
general curvilinear coordinate systems for the treat-
ment of arbitrary geometries such as aerofoils, the com-
parative study of various solution strategies and the
inclusion of acceleration techniques.
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Appendix

Expressions for the evaluation of
flux formulas

The matrix A of the 1D approximate Riemann prob-
lem in the x-direction is (8 = 1)

i 01 0
A=[128 0 (17)
0 o @

where @ and © denote the arithmetic average of values
at neighbouring points.

The eigenvalues are @ — @,% and @ + @ with a
v/1+ @2, The matrix of right eigenvectors is

1 0 1

— a2a 0 aia
- a a
oa-g) o ofe-a
a a

and the matrix of left eigenvectors is

(18)

a+ta 1 0
2
L= -&% -7 1 (19)
a—e 0
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Fig.1 Flow in the entrance of a channel : first order velocity profiles
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Fig.3 Flow over a backward facing step : streamlines computed with first order flux formula
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Fig.4 Flow over a backward facing step : streamlines computed with second order flux formula
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