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_Abstract

Several high—order finite volume schemes to solve the Euler
equations are constructed. The stability behaviour of the
methods is analyzed and the usefulness of the schemes is
demonstrated.

1. Introduction

Finite volume methods are today widely spread meth-
ods to solve the Euler and Navier—Stokes equations of gas-
dynamics. Most of the finite volume methods which are
in use today are of at most first—order accuracy in space.
We will describe where discretization errors during the ap-
proximation process are coming in and how they can be
decreased. The main goal of this paper is to present some
new techniques to increase the accuracy of the finite volume
schemes by using high—order approximations. The develop-
ment of high-order schemes is important for two reasons.
The first one is the increasing interest in more accurate
approximations. The second one is the necessity to reduce
the computer time needed to solve numerically the problem
under consideration.

In the following we give a brief outline on the approxi-

mation steps usually used in finite volume methods and we
will point out the sources for discretization errors.

The starting-point for every finite volume method is
the integral form of the conservation law for the quantities
describing the fluid flow. This conservation law has to be
fulfilled in each sub-domain V;;, of the whole flow domain
€ under consideration. Making use of the Gau’ theorem
the conservation laws follows

/V]@:fd:c n AV'_‘EH(f)nds — o,

ij

YV €Q, (1)
where n is the outward pointing unit normal vector to 0V,
and the vector f is defined by f := (p, pul, pu?, pu®,e)T.

In connection with the stability theory we will also use
the primitive variable formulation

/ g de + / (4100 + Asg, + Asg:) n ds = 0, (2)
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V Vi € Q, with g := (p,u!,u?, v p)T, and where the ma-
trices are given by
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0 u! 0 0 p?
A=10 0 wt 0 0 |,
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0 ~v(y—1)¢ 0 0 !

u? 0 P 0 0

0 u? 0 0 0
A= 0 0 u? 0 pt,

0 O 0 u? 0

0 0 ~v(v~1e 0 w?

v 0 0 p 0

0 «® 0 0 0
As:={ 0 0 0 0

0 0 O u? p?

0 0 0 ~(y—1e ®

Using the mean value theorem the volume integral in
(1) writes

[ afda = af(at) [ ds, (3)
Visk Viir

with 2z, € Vi as a certain unknown point in the sub-
volume V.

The first step toward obtaining a large coupled system of
ordinary differential equations is to approximate the values
O.f (2, t) by Ocf (Tiju, t), where 245 is the center point of
the cell V;;. This approximation is of first order accuracy
in space and here we have the first source for errors. We
will not say anything how to get a better approximation
order for this step, but we will explain some high-order
methods to solve the resulting system of equations which
now is given by

8,f(:z:,-,-k,t)/m dz = _/{W H(f)nds, VVigeQ. (4)

In the following z;; denotes the center and y;;. the ver-
tex of the cell Vi which is the lower left corner point of
the sub-surface common to the cells Vij, and Viey ja.
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Now, the surface integral in (4) is usually approximated
by

Q

-/;w,-.H(f)nds g/;! H(f)nds (5)

i1k

Q

; H(f(zgjk’ t) lsfjk‘”»

where S};, denote approximations to the six sub-surfaces of
the cell Vi;x, which often are calculated by St = |dy x d,|/2,
with d; and d; as the diagonalvectors connecting opposite
points on the sub-surfaces. z}; denotes a point on the sub-
surface S;,. Since the values of H(f) are unknown on the
sub-surfaces Sfj,, they are usually approximated by, e.g.,
H f x;_l,q,,t +H f :t."k,t
B(f(alt) ~ DU DI T @D)
In (5) and (6) the second and third sources for errors due to
approximations arise. The approximation of the surface in-
tegrals in (5) is of at most first—order accuracy whereas the
approximation in (6) is of at most second-order accuracy.

Using the common abbreviation ff;, := f(z,t) the
above approximations can be summarized to the following
system of spatial discretized Navier-Stokes equations

at‘ﬂtjk _/V..,.i dl’ =

where L is the operator approximating the surface integrals
in the way mentioned above. Several finite volume schemes,
explicit as well as implicit, based on (7) can be found, e.g.,
in [3].

Again, we point out that the approximation (7) is an
discretization of (1) of at most first-order accuracy. The
first of our new schemes is a simple upgrading of the exist-
ing finite volume methods in order to obtain second-order
accuracy in space.

~Lff, VVia€Q, t>0, ()

2. Explicit Finite Volume Approximations of High-Order

In order to construct our finite volume schemes in a first
step we derive schemes to approximate the surface integrals
with high-order accuracy. Next we use Taylor like expan-
sions with respect to time, up to a certain order where the
occuring time derivatives are replaced by the new spatial
discretized finite volume equation (7). The idea to replace
time derivatives by space derivatives was introduced by Lax
and Wendroff [1,2]. Furthermore, we make the usual as-
sumption that the matrices occuring in equation (2) are
independant on both the time and space variables. It is
mentioned that all the schemes are consistent.

Time step sizes are defined by Aty 1= 44 — 8, | =
0,1,2,3,..... , and by I := {to, 1,1, ..... }, with ¢ < £, <
1y < ... , we denote the corresponding partition of the time
axis. The precise step sizes At result from the restriction
for stability.

2.1. A Second—Order Spatial Discretization

In this chapter we propose a simple way to calculate
numerically the surface integrals in (4) with second—order
accuracy. Let a,b,¢, and d be the vertices common to the
cells V;j, and V,_y ji, where a is the lower left vertex and
a,b, ¢, and d are counted clockwise (see Figure 1). We then
define two triangles S}, and S}, in the way that S}, is
the plane triangle with corner points a,b, and ¢, and S,
the corresponding one with corner points ¢,d, and a. In
a similar way we can define triangles F}, and FZ, in j-

h) 4]
direction and G}, and G%, in k-direction.

Figure 1.

Instead of the common approximation, we use the exact
sub-surfaces consisting of the triangles defined above. In or-
der to calculate the surface integrals we will use the function
values of H(f) at the cell vertices. The function values of
H(f) at these points are unknown, but they can be approx-
imated with second-order accuracy by using the function
values of H{f) at the eight cell center points surounding
the corner point under consideration. Therefore, the sur-
face integral over 9V;;, can now be written as

/8 CH(f)nds

ik

- ,;{/54 H(f) n ds —/S, H(f) n ds}

ijk —1,5k

+3Af, Hnds - [,

ik §i-1,k

$A[, B - ],

ijh $5,k—1

H(f)nds} (8)

H(f) n ds}.

Here, the surface integrals on the right-hand side can be
approximated with second-order accuracy by, e.g.,

32 f H(f) nds ~
St

8{H(f(a,t)+ 2H(f(b,t) + H(f(c,)}Shuln(Siz) =
{H(ffj410-0) + H(ffjamr) + H(fij000) +
H(f) + H(fgap-1) + H(Faga-n)
FH(fa50100) + H(F0}
+2{H(fl;a0) + H(fin) + H(f) + (9)
H( 1) + H( v ganie) + H(fip i)
+H(fira0e0) T H(fip1 0100}
H{H(fE o) + H(fjorpen) + H(fiz) +
H(f.‘tj.k+1) + H(fit+1,j-1,k) + H(fit+1,j—1,k+1)
+H(fra) + H(fjeen)}
‘|551jk|n(s.'ljk)
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Note that the unit normal vectors n(S J,,) are constant on
the triangles ! i» and that, e.g., the normal vector on Sk
is given by n(S};) = (¢ = b) x (a = b)/|(c — b) x (a = d)|.
Furthermore, the area of S}, is given by |Sk| = |(c —
b) x (a—b)|/2. Implementing tl’us into (4), our second-order
spatial discretization can be summarized to

8, ‘,,+/ ds = —Liffy, VVake€Q, t>0, (10)
where L, is the operator approximating the surface inte-
grals in the way mentioned above.

Denoting by |Vije| := fy,,, dz the volume of the cell Vi,
we have the following

Lemma 1: If H(f(-,t)) € C*(Q), Vt > 0, then the spatial

finite volume discretization

Vi) Oefie = —Lnffpu V Vi €Q, t>0,

(11)

is a discretization of second-order accuracy of the system

(4).

2.2. The Explicit Finite Volume Schemes EFV2*

The Taylor like expansion
flz,t+ At) = f(z,t) + Atd,f(2,1) + o (At)’5] f(,1)
(T)
+a2(A8)°0) f(z,1) + as(At)*3; f(z, 8) + O((AL)),

which is an expansion backward in time up to a certain
order p, can be used to obtain an explicit finite volume

scheme. When specifying the coefficients «, in the way
that a, = (—ﬂ%ﬁf’ one yields the usual Taylor expansion. By

choosing the coefficients «; in a special way, we are able
to increase the largest possible time step, but at the same
time the accuracy in time is decreased by a certain order.
The exponential p takes the values 2, 3, 4, or 5, depending
on the choice of the o4’s.

In the following the abbreviation fZ, := f(zij,ta) is
employed. Using the spatial discretized finite volume equa-
tion (11) in order to replace the time derivatives &: f in the
expansion (T) by the corresponding finite difference oper-
ator L; we obtain our basic explicit finite volume scheme
of second order accuracy in space, from which our schemes
result by specifying the coeflicients a; in a certain way:

ntl At alAtz 2 azAt 3
ik = uk IV ILI t]k lVijk‘z 1J¢5k — (V I3L ;ch
Att
+T; Tl + O(AF) +0(aa?) + 0(ay*).(12)

Specifying now the coefficients o; in (12) to ay = 1/2, and
o; =0, for i = 2,3, leads to

([Xtﬂ)2 L2

f5t = fh— L1f,k+2|v o Lt (EFV2a)

lV¥

and we note that this scheme is of third-order accuracy in
time.
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In order to obtain our second explicit finite volume scheme
(EFV2b) we specify the parameters a; and a; in (12) to
a; = 1/2 and a3 = 1/6 obtaining

(A
2[Vial?

(Ay)?

GIV I3 LS ijk>
(EFV2b)

and we note that this scheme is of fourth-order accuracy in

time.

n
2~

l]h = fuk I I 1f3k+

3. Von Neumann Stability Analysis of the Schemes EFV2*

Since we are interested in von Neumann stability as-
sertions for the finite-volume schemes (EFV2*), we now
restrict ourselves to rectangular grids. A typical gridpoint
Ti% is then defined by

zie = (i Az, j - Ay, k- Az)T,
the volume |Vj;i| of a sub-domain V;;; can be expressed by
Vil = bz - Ay - Az,

= Ay - Az/2.

Now, by straightforward calculations it follows that in
the case of the Euler equations and equi—spaced orthogonal
grids the operator L; comes out to be

and the area of, e.g., Sk, is given b
) ¥1.3 g y Jk

2L1 '-t]-k = Az Ay Az {Als,(‘l + 2“/_1 + 27k + 7:7k)+(13)

Azbi(4 + 2% + 2m + vine) + Asbi(4 + 2%+ 2% + %)} i

where the operators é, and %, are defined by

t t 4
Sift = Fergn = Fican St = Sigrin = Fiicap
e 2Az ifian 2Ay ’

t t

§ e fi:i,k+1—fij.k—1 v f‘ +f‘
e le = —'——"2Az s Mgk = Jit1,5k i~1,5k>

—— t t t — t t
7jfijk = fiipp T Fijorge Nefipe = Fip + Fijpa

In order to study the stability of the scheme (EFV2a)
it is applied on a typical Fourier mode, given by

o ilkzthayth
G—Goe(‘ 23 sz)’

where ky, ks, ks € IR with k? + k2 + k2 = 1, and where G,
is a constant vector, and one obtains

G = Q.G
Defining the matrix E; by

Ey(kn) —{r(n). sin b, cos?(8,/2) cos*(6./2) A,
+r(n), sin 6, cos*(6,/2) cos?(6,/2)As

+7(n), sin 6, cos?(,/2) cos*(8,/2) Az},

with the used abbreviations 8, := k Az, 8, := k,Ay, 0, :=
kaAz, r(n)z := Atn/ Az, r(n), 1= At,/Ay, r(n), 1= At/ Az,
and kp := (r(n). sin 4, cos?(8,/2) cos?(,/2), r(n), sin 8,
cos?(8./2) cos?®(8,/2), r(n), sin b, cos?(6,/2) cos?(6,/2)), the
amplification matrix @, for the n-th time step is given by



i 1
Q. = I+ -Z-El(n,,) — gEf(n,.) (14)
The matrices Ay, A,, and Az can simultaneously be sym-
metrized by using matrices consisting of the left and right
eigenvectors to a linear combination of A4;, A;, and Aj,

see (3]. The sets of eigenvalues are given by EV(E,) :=

(MY = {—ru, =k v~k u, —k-u— |kl r(y = De/p,
—r-u+ |[&lly/v(y — e/p}.

Since the eigenvalues and the linearly independent eigenvec-

tors of the matrices E;(x,) are already known [3], the eigen-

values of the matrices I + $Ei(kn) — $E2(k,) are known,

too. Therefore, the amplification matrices @,, can be diag-

onalized (3],

P QuPy = diag{1 + SA(n) — A} =: ding{(m),

where the A(n)/s, | = 1,...,5, are the eigenvalues of the
matrix Ey(k,).

Since the Euler equations are of hyperbolic type, it fol-
lows that the von Neumann condition is necessary and suf-
ficient for stability of the scheme (EFV2a). Therefore, de-
noting by p(Q,) the spectral radius of the matrix Q,, the
condition p(@.) < 1, is necessary and sufficient for the
stability of the scheme (EFV2a). So, the condition to be
satisfied is

()| = 1+ A~ AR S 1, for [ =1,..,5, ¥n > 1,

from which one yields [A(n}] < 2,1=1,...,5,n=0,1,2,3, ..

With the notation Ju®|, e®, and p” being the maximum val-
ues of the solution on the n—th time level, one gets the
following

Lemma 2: The ezplicit finite volume scheme (EFV2a) is
stable, if

At, < 280z Ay Az
"= AyAzlu;‘sin0,|+AzAzlu;‘sin0,|+A=Ay|u;'sin0,|+2\/‘y('y—1)e"/p"l"

where the abbreviation
Ti= \/KyAz sin? 8, + Az Az sin? 8, + AzAy sin? 4,
has been used.

Note that this estimate is conservative.

Remark 1: For Az = Ay = Az, the above lemma simpli-
fies to

At, < 24z
n = [um 1| sin 8z |+ /3 /7(v—1)em /o7 | sin 6]

where the 1-norm of a vector u" is defined by |u*|; :=
g+ fug] + fugl.

In [3] we obtained the same estimate but for a finite
volume scheme which was of at most first order accuracy
in space. The most favorable advantage with our scheme
can be described in a simplified way as follows. Assume
we have to solve a boundary value problem on the unit
interval z € [0, 1]. In order to get an error of order e.g. 10¢
one has to use N &~ 1/107% = 1000 gridpoints when using
a finite difference method of second-order accuracy. This
corresponds to a system of 1000 equations. Note, that for a
corresponding problem in two dimensions we would have to
solve a system of 10® equations. Using a method of fourth-

order accuracy we only need N = 1/107%* = 31 gridpoints,
which correspond to a system of only 31 equations.

Next we study the stability of the scheme EFV2b. The
corresponding amplification matrix is given by

. 1 K
Qui=I+ ‘%E}(Km) - §E§(K‘ﬂ) - Zs_E?(K'")

However, the amplification matrix @, can be diagonalized
by Prl1QnPn =

1 1 1 .
diag{l - -8'/\(")12 +i(5A(n) - AN} =: diag{m(n)}-
The condition for stability of the scheme comes out to be
11— LAy +iGAMY — AP < 1, for [=1,..,5,
g It 48 ="

Vn > 1, from which follows that |[A(n)] < 4, | = 1,...,5,
n=0,1,2,3,....

Therefore, for the largest possible time step we have the
following

Lemma 3: The explicit finite volume scheme (EFV2b) is

stable, if
At 4Az Ay Az

< .
" = AyAz Jul sinfe |+ AzAz |uf sinfy|+AzAy |u;'sm0,|+\/'y('y-l)e‘/plr’
where the abbreviation

= /AyAz sin? 6, + AzAz sin® 6, + AzAy sin? 6,

has been used.

Remark 2: For Az = Ay = Az, the above lemma simpli-
fies to

< 4Az .
Aln S et F VB Der o simnt]

4. Future Work

In this proceeding we have given a simple upgrading
of the existing finite volume methods in order to obtain
second—order accuracy in space. We have started to develop
schemes of high-order accuracy (higher than order two)
by using overlapping control volumes. These schemes to-
gether with actual numerical results obtained for the three-
dimensional Euler equations will be presented during the
conference.
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