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Abstract

A finite-volume-based numerical method for the solution
of the Euler and thin-layer Navier-Stokes equations is pre-
sented. The convective part of the fluxes is solved using
a flux-vector splitting method and the diffusive part using
central differences. The equations are integrated in time
with an approximately factored implicit scheme. Conver-
gence is accelerated by applying a multigrid technique. . Re-
sults are presented for inviscid and viscous flows over an
NACA 0012 airfoil and for three-dimensional laminar and
turbulent flows over a body of revolution at high angles of
attack.

1. INTRODUCTION

In recent years upwind difference methods have become
popular in solving both inviscid and viscous flow problems.
Upwind methods are intrinsically dissipative and require
no additional dissipative terms. Due to the intrinsic
dissipation, computational algorithms based on the upwind
differences are usually more robust than the algorithms
based on the central differences. The drawback of the
upwind methods is the strong dissipation inside shear layers
and in the case of low Mach number inviscic flows.

There are many ways to employ the upwind concept for
the flow equations. These include the flux-vector splitting
method of Van Leer®) and the flux-difference splitting of
Roe.(2) In the present paper we use the method of Van Leer
for inviscid and viscous flows. The method is applied in
a cell-centred finite-volume form. On the cell boundaries
the convective part of the fluxes is split in a locally
one-dimensional fashion. The thin-layer approximation is
performed for the viscous terms.

The flow equations are integrated in time using an approxi-
mately factored bidiagonal scheme.(®) The effect of the vis-
cous terms is taken into account by modifying the diago-
nal eigenvalue matrices arising from the linearization of the
convective fluxes. The integration method is approximative
and the resulting maximum CF L-number is of the order
of one. The convergence is accelerated using a multigrid
method.

Computational results in a two-dimensional case are pre-
sented for inviscid and viscous transonic flow over an NACA
0012 airfoil. The turbulent viscosity is calculated using the
Baldwin-Lomax turbulence model. Three-dimensional re-
sults are shown for a laminar and turbulent flow over a
body of revolution at high angles of attack.
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2. GOVERNING EQUATIONS

2.1 Differential Form
The Navier-Stokes equations can be written in a conser-
vative form using Cartesian coordinates as
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Here U is the vector of conservative w’/a,ria,bles, p the density;
the velocity components are u, v and w, p is the viscosity
coeflicient, p is the pressure, e the total internal energy,
k the thermal conductivity, and T the temperature. The
definition of the second coefficient of viscosity: A = —2/3pu,
has been taken into account in the formula of the viscous
stress tensor 7;;.

The pressure is calculated from
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where v is the specific heat ratio.

For the solution, the flow equations are scaled as follows:
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Here the subscript oo refers to free stream conditions and
c is the velocity of sound. This transformation retains
the form of the Euler equations, whereas the dimensionless
stress tensor is
May, [
T = 2y
1) 'ng

L
Poo

Jui

ij

20u
36(1:):

-t~ IO

Here and in the following, the superscripts have been
dropped for simplicity.

The heat flux is calculated from
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After scaling we obtain
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In the following, a constant Prandtl number Pr = 0.72 is

assumed.
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Fig. 1. Computational grid used in the flux-vector
splitting method.

2.2 Finite-Volume Form
The flow equations have an integral form
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where V represents the cell volume and S the cell face area.
The cell face area can be expressed using the Cartesian base
vectors
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The corresponding unit vector is
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Performing the integrations of Eq.(12) for a computational
cell 2 shown in Fig. 1a yields
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where the sum is taken over the faces of the computational
cell and

F=n,F+n,G+n,H (16)

For clarity, the viscous part of the u-momentum equation
is rewritten
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Similar equations are obtained for the viscous parts of
the v- and w-momentum equations, F5, and Fy,. The
corresponding part of the energy flux is written as
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3. SPATIAL DISCRETIZATION

3.1 Calculation of the Fluxes

The calculation of the convective parts of the fluxes is based

on the rotational invariance of the Euler equations. On a

cell surface the convective flux is calculated from
F =T FHTU") + F(TU")] (19)

Here F+ and F~ are Van Leer’s split fluxes(!), U! and U

are the values of the solution vector evaluated on the cell
surface and
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After multiplying by the rotation
matrix the fluxes have the same functional form as in the
case of the Cartesian coordinates and can be split similarly.
In a two-dimensional case this procedure has no drawbacks.
However, in a three-dimensional case the matrix T is
singular if n, = 0. This can be avoided by choosing
another rotation matrix. The requirement for the rotation
matrix is that the third and the fourth lines of T' consist of
components of vectors that are normal to 7i. Here, the form
of Eq.(20) is used for simplicity. In the present case Eq.(20)
is applied in the ¢-direction.

is a rotation matrix.

In the - and (-directions
the components of (20) are permuted from the zyz-order
to yzz- and zzy-orders, respectively. Furthermore, after
generating the grid, the coordinate system is rotated by a
small angle around every Cartesian coordinate axis, which
prevents the singularity problem.
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Fig. 2. Shifted control volume used for the evaluation of
the viscous terms.

In order to discretize the viscous fluxes, the derivative terms
must be evaluated on the cell surfaces. For the evaluation,

the Gauss theorem
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s

v

(21)

is applied. In a two-dimensional case the volume Vi,
is depicted in Fig. 2 by a dashed line. Using the Gauss
theorem, the derivative of ¢ with respect to z can be

expressed as 5
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VI 8z’ S=¢

faces

(22)

Similar equations hold for the y- and z-derivatives. Those
values of ¢ which are not known on the surfaces of the
shifted volume can be obtained as averages of the cell
values. However, in a general case the derivative terms
are lengthy expressions and consume a large amount of
computation time. Hence in the present study a thin-layer
approximation is used. In the thin-layer approximation
only those terms in Eq.(22) which are evaluated in the the
direction of the cell surface are retained. For example, on
the surface 1 +1/2,j of Fig. 2, the z-derivative is expressed
as
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Furthermore, by applying the following approximation
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the derivative can be approximated as
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Here the constant subscript j has been dropped for simplic-
ity. In Eq.(25), d;11/> approximates the distance between
two neighbouring cells. By replacing the derivatives of the
viscous fluxes by the formula of Eq.(25) we obtain
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Here the definition of the scaled contravariant velocity
component
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has been utilized.

The diffusive part of the energy flux is obtained from
Eq.(18) using Eq.(25)
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With the present scaling of the equations, T = ¢?, which is
taken into account in the implementation of Eq.(28). Veloc-
ities and viscosity coefficients at the cell surfaces are eval-
uated as averages of the cell values. The form of Eqs.(26-
28) is the same on all the surfaces of a computational cell.
Usually the viscous terms are activated only in one or two
coordinate directions. The equations have the same form in
two dimensions without the contribution arising from the
velocity component w.

3.2 Boundary treatment

At the free stream boundary the values of the dependent
variables are kept as constants. The boundary at the wake
cut is treated explicitly.

In the calculation of the convective flux at the solid bound-
ary, the splitting is not used. By taking into account the
wall boundary condition, it appears that the only contribu-
tion to the convective fluxes arises from the pressure terms
in the momentum equations. A simple way to calculate the
wall pressure is the following second-order extrapolation

3 1

Pw = 501 — P2

2 5 (29)

Here it is assumed that the solid boundary exists below
the first computational cell. As in the case of the other
boundary conditions, the calculation of the wall pressure is
also performed explicitly.

The calculation of the flux next to the solid boundary needs
some consideration because on the other side of the cell
face only one row of cells exists. For the corresponding
part of the flux a simple linear interpolation is used. If the
solid surface is located below the first cell, the state U;/2 is
calculated as

Us ), = 1/2(Us + Uy) (30)

This formula has a second-order accuracy which was found
to be of essential importance in the calculation of lift and
drag coefficients. If Eq.(30) were replaced by a first-order
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formula, in many cases the resulting numerical drag would
be too high relative to the physical drag.

In calculation of the viscous fluxes at the solid boundary,
the central expression which appears in viscous fluxes is
replaced by a one-sided formula

8¢7w + 9¢1 ¢2 (31)
3d,
Here d,, is the thickness of the cell adjacent to the wall.
In the calculation of the friction terms no slip boundary
condition is imposed, u,, = vy = wy, = 0. The heat flux
on the wall is set to zero indicating an adiabatic surface.
The viscosity coefficient is extrapolated on the surface as
the wall pressure.

4. SOLUTION ALGORITHM

4.1 Time Integration Method

The finite-difference equations are integrated in time using
the LU-factorization.(®) This is based on the approximate
factorization and on the splitting of the Jacobians of the
flux terms. By using the splitting and the approximate
factorization, the following equations are obtained
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Again those subscripts ¢jk that are constant have been
dropped. The superscripts + refer to the positive and nega-
tive parts of the Jacobian matrices 4, B and C. The resid-
ual R; is defined by the right-hand side of Eq.(15). The
parameter 0 is chosen according to the spatial discretiza-
tion; 8 = 1.5 is used for the second-order upwind method
and 6 = 1.33 for the third-order upwind-biased method. In
order to ensure the stability of the viscous terms the Ja-
cobians are modified. The split Jacobians can be written
as

A% = L7 (A* + kD)L
C* = L7 (A* + kD)L,

B* = L;Y(A* + kI)L,

33)
where A* are diagonal matrices containing the posi(tive
and negative eigenvalues of the Jacobians of the convec-
tion terms. The eigenvalues in the general coordinates are
obtained from the corresponding eigenvalues in the Carte-
sian coordinate system by replacing the velocities by the
scaled contravariant velocities. The factor k is chosen to
ensure the stability

M
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In Cartesian coordinates the matrices L,, L, and L, and
their inverses can be presented as products of two matrices
which represent the transformation from the conservative
to the primitive variables and from the primitive to the
characteristic variables.
in Cartesian coordinates as L, = LyL,. Then in general
coordinates

Let for example L, be written

L¢=L,TL, L' =Lt

where T is the rotation matrix given by Eq.(20). The
matrices in the 5- and (-directions are obtained similarly.

Egs. (32) are block-tfidiagonal equations and can be
further simplified by applying approximate factorization.
The first stage is rewritten as

(Vi — At8S;_1)sATYOU,; + At8Siy1/2A45,,8U 114
= AtR; (36(1)

(Vi + A0Sy, AF)8US* — AtOS; 1, AL (6UF,

= V80, (365)

Similar equations can be written for the 5- and (-directions.
These equations have a block-bidiagonal structure and can
be inverted using a similar techmique to that with the
MacCormack method.(*) Thus the implicit stage consists
of a backward and forward sweep in every coordinate
direction. These sweeps are effectively explicit. Presently,
the starting values of the implicit sweeps at the lower and
upper boundaries are simply set to zero.

It should be noted that the splitting is based on the
Jacobians which are not the true Jacobians of the fluxes
(16). Firstly, the splitting of the convection terms is based
on the splitting of Steger and Warming(®) instead of the
splitting of Van Leer. Secondly, the linearization of the
viscous terms is simplified. Because the mass equation does
not contain any diffusion term, in the simplified treatment
of the viscous effects a smoothing term is implicitly added
on the left-hand side of Eq.(32). The amount of this
smoothing depends on the time-step.

In the present calculations only the steady state is of inter-
est, hence a spatially varying time step has been applied.
Because the true Jacobians are not used, the time-step size
is limited. However, the computation time of the bidiagonal
equation system is considerably less than the computation
time of the block tridiagonal system arising from the lin-
earization of the fluxes (15). Furthermore, it appears that
the implicit stage has good smoothing properties and, con-
sequently, its effectiveness can be considerably enhanced
combining it with a multigrid.

4.2 Multigrid Method

In order to make the method more efficient, a multigrid
cycling is applied. In the following, kh; denotes the grid
level, h; being the finest level.




The algorithm follows the method of Jameson(®):

1) Calculate the residual Rj, on the finest grid. The
residual is defined by the right-hand side of Eq.(15).

2) Perform the implicit phase and update the solution.

The following steps 3-9 are repeated until the coarsest grid
level is reached:

3) Recalculate the residual Ry, , on the previous grid level.
4) Calculate a new residual using the forcing function Py,_,
R;;;_1 = Rhi—1 + Phi—1 (37)

On the second grid level no forcing function from the finest
level exists. Thus R}, | is simply replaced by the residual
calculated in the third step.

5) Transfer the residual of Eq.(37) and the variables from
grid h;_; to the next coarser grid h;. The transfer of the
variables is performed as

Uitz.- = Z Vot Uni 1/ Vi (38)
and the transfer of the residual as
Ry, =) R;, . (39)

The sum is taken over the cells which approximately occupy
the cell on the coarse grid.

6) Calculate the residual R, using the transferred values
of Eq.(38).

7) Calculate the forcing function from

Py, = R}, — Ry, (40)
8) Recalculate the residual from
RZ‘, = Rp, + P, (41)

In the present case only one iteration cycle per grid level is
performed. Then actually R}, is the same as the residual
transferred via Eq.(39).

9) Perform the implicit phase using R} as a residual and
update the solution Up; on grid ;.

It is essential to use larger time steps on the coarse grid
levels than on the fine levels. As in practice there is a
stability limit with the present time integration method, a
certain value of CFL cannot be exceeded. However, it is
possible to apply the same Courant number on every grid
level, this leading to a large time step on the coarse grid
levels. Furthermore, it is possible to use the first-order
method in the calculation of fluxes on the coarse grids.
Since the solution on the coarse grids is determined by
the residuals on the finest grid, the final solution does not
depend on the spatial accuracy on the coarse grids. This
treatment will save some computation time and provide a

means to further accelerate the convergence rate. This is
due to the fact that when a first-order method is used, the
time integration is stable with longer time steps than in
the case of the second-order method. Hence it is possible
to use a larger value of CFL number on the coarse grid
levels than on the finest level where an accurate solution is
desired. Generally this will speed up the convergence.

When the coarsest grid is reached, the corrections are
transferred back to the finer levels. Let U ,t , be the final
value of Uy, ,, resulting from both the correction calculated
on grid h;;y and the correction transferred from grid h; ;.
Then

U'-: = Un + I,’::+1(U,t,+1 ~ U, ) (42)

hiy1

Here the interpolation operator [ ”::+1 is simply a direct
transfer of the difference U,;‘:,Jrl — U,i“r1 from the coarse grid

cell to the appropriate eight (or four in a two-dimensional
case) fine grid cells.

The calculation on the coarse grid levels is performed in
exactly the same way as on the finest grid level. The only
exception is the first-order interpolation on the coarse grids.
This similarity allows us to use the same subroutines on
each level by passing the arrays through the parameter lists.

5. RESULTS

5.1 Inviscid 2-dimensional flow

As an inviscid test case we consider a transonic flow over
an NACA 0012 airfoil. The test case is at Ma = 0.85 and
a = 1°. In this study an O-type algebraically generated
grid is used. The grid size is 128 x 32 and five grid levels
(the finest grid and four coarse grid levels) are utilized in
the calculations. The resulting pressure coefficient and the
Mach contours are shown in Figs. 3 and 4. The calculated
force coefficients are ¢q = 0.00579 and ¢; = 0.350, which
agree well with the values found in the literature.(”) In this
calculation a second-order extrapolation with the limiter
of Van Albada et al.(®) is used for U! and U™ in both
coordinate directions. The limiter may have some effect
on the calculated force coeficients. In transonic cases this
effect is usually negligible, but in subsonic cases the limiter
produces a relatively large numerical drag. If no shocks
are present, the calculation should be performed with a
third-order upwind-biased interpolation without limitation,
which then leads to a reasonable drag value.

The convergence histories with different numbers of grid
levels are shown in Fig. 5. The Courant numbers in
the computations were 2.5 on the finest level and 4.0 on
the coarse levels. The first-order method used on the
coarse levels allows to use somewhat larger values for the
CFL-number on those levels. Since the computations
were performed with 64-bit arithmetic, from Fig. 5a it is
seen that in this particular case the computation ceases to
converge before the machine accuracy is obtained. This
does not matter because for practical purposes the result is
accurate enough when the maximum change in density is
about 1x107%. The machine accuracy can be obtained e.g.
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by reducing the CF L-numbers. The effect of a larger coarse
grid CF L-number on the convergence is shown in Fig. 5b
and on the convergence of the lift on Fig. 5¢. The optimum
choice of CFL-numbers with a second-order method is
about 4.0 on the fine grid level and 6.0 on the coarse
grid levels. Although not shown, these CFL-numbers will
accelerate the convergence so that in the present case the
residual of 1 x 1075 is reached in fewer than 150 cycles.

5.2 Viscous 2-dimensional flow

As an example of the viscous simulations a case of a
turbulent flow over an NACA 0012 airfoil is introduced.
Results concerning laminar flow are provided in Ref. 12.
The flow conditions are Ma = 0.7, Re = 9.0 x 10% and
a = 1.49°. In the case of a turbulent flow the viscosity and
the heat conductivity are replaced by

b

® + Mty _F; PTt

(43)
where p; is the turbulent viscosity. For the turbulent
Prandtl number Pr,, a constant value of 0.9 has been
specified. The turbulent viscosity is evaluted using the
Baldwin-Lomax turbulence model.(?)

The grid size is 192 x 64 and the grid is of a C-type. The
minimum cell thickness is 5 x 107° at the leading edge,
increasing to 2.5 x 107* at the trailing edge. The com-
puted pressure coeflicient together with the experimental
results('®) are shown in Fig. 6 and the computed Mach con-
tours in Fig. 7. For the surface pressure the agreement be-
tween the experimental data and computation is good. The
computed force coefficients are ¢g = 0.00803 and ¢; = 0.247,
which are close to the values ¢g = 0.0079 and ¢; = 0.241 de-
termined experimentally and well within the limits of other
computations.('?) In the calculation the third-order inter-
polation method was used. The limiter would increase the

calculated drag value.

The computation time with the Cray X-MP /432 computer
is 27us per volume and grid point with a single grid.
With three grid levels the method requires 55us and with
five levels 56us. These values are for the third-order
interpolation method without the limiter. If the limiter
were included, the execution times would be longer by
about 10 %. The laminar calculation would reduce the
computation times by about 15 %.

The iteration histories are shown in Fig. 8. Owing to the
larger number of grid points and the concentration of grid
points inside the boundary layer, the computation requires
many more iteration cycles than the inviscid case. In the
present case the application of five grid levels is possible.
It has been found that sometimes the viscous calculation
has to be performed by using only three or four grid levels.
The use of more grid levels in those cases would result in
an oscillatory solution.

5.3 Supersonic Flow over a Body of Revolution
In order to demonstrate the method’s ability to resolve com-
plex flow phenomena, supersonic flow over a body of revo-
lution at high angles of attack has been simulated. The flow

patterns that a body experiences as it is pitched from 0° to
90° angle of attack are discussed in Ref. 13. At moderate
angles of attack (a & 10°), the crossflow about the body
begins to separate over the leeside generating symmetrical,
counter-rotating vortices on the leeside. At large incidences
and depending on a number of other factors, the vortices
over the leeside may become asymmetric. Finally, at high
angles of attack (a =~ 60°) an unsteady wake-like flow is
obtained.

The purpose of the present calculations was to validate the
code in 3-D by providing solutions which agree qualitatively
with the experiments and results obtained elsewhere.(!®)
With a zero angle of attack the calculations could also
be checked with the aid of an axisymmetric code. In
order to calculate this type of turbulent flow the standard
Baldwin-Lomax turbulence model has to be modified. The
justification for the use of an algebraic turbulence model
and the necessary modifications are discussed in Ref. 14. In
the following, these modifications are briefly summarized.

The major difficulty encountered in applying the Baldwin-
Lomax turbulence model to bodies with crossflow separa-
tion is that of properly evaluating the scale length y,,42-
This is because the function F(y) of the standard Baldwin-
Lomax model shows multiple maxima in the regions of sep-
aration. The standard model would use the largest maxi-
mum for Fr,qz, which leads to much too high a value for the
turbulent viscosity. This is avoided when the maximum is
considered to have been found when the value of F(y) drops
to 90% of the local maximum value. Choice of F,,,, in this
way should exclude the second, spurious maximum. The
value of 90% has been used in this study according to Ref.
14. However, it seems that sometimes the first maximum is
very flat and would not be detected with the 90% criterion.
A further test is applied. The computation proceeds in a
circumferential direction around the body. On each ray a
cut-off distance is specified in terms of Ypmq, from the pre-
vious ray as Yeutoff = 1.5Ymaz. If no maximum in F(y) is
found along the ray for y < ycy1055, the values of Fi, 5, and
Ymaz are taken as those found on the previous ray. In this
way a physically reasonable value for g, will be chosen for
those rays close to the crossflow separation points.(14)

The blunt-nose cylinder used in the calculations is the same
as in Ref. 13 (Fig. 9). The grid sized 80 x 64 x 48 was
generated by rotating a two-dimensional grid around the
axis of symmetry. The two-dimensional grid was generated
by a transfinite interpolation method. The grid is highly
clustered in the radial direction. About 30 of the 64 points
in the radial direction are placed inside the boundary layer.
The minimum cell thickness near the nose is 3.5 x 1073,
increasing to 1.8 x 107* at the base. In the circumferential
direction the radial clustering is constant. The use of
only 48 cells in the circumferential direction results in a
circumferential spacing of 7.5°.

The free stream conditions of the test cases are as follows:

Ma=16, Rep=>5x10°
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Both turbulent and laminar simulations have been made at
three angles of attack.

Laminar Flow at o = 20°. Asin Ref. 13, no attempt was
made to decide whether the flow is laminar, transitional or
fully turbulent. Instead, all the cases were calculated as if
the flow were either laminar or fully turbulent. At o = 20°
the laminar longitudinal pressure distributions are shown in
Fig. 10 together with the experimental data. Our results
agree well with the results obtained elsewhere(!®), but the
agreement with experimental results is not particularly
good at circumferential positions of { = 90° and ¢ = 180°.
The calculated normal force coefficient Cp is 2.08, while
the experimental result is 1.92.(13) The base is used as the
reference area.

Two axial stations are used to show the crossflow density
contours. Stations I and II (Fig. 9) are located immediately
after the forebody-cylinder junction (z/D = 3.17) and
upstream of the base (z/D = 6.17). Comparison of these
results shows how the primary vortex grows towards the
base (Figs. 11a and 12a). The circumferential skin friction
coefficient is plotted on Fig. 13. The primary separation
takes place at ( = 106° and the primary reattachment point
is located at { = 0°. The same locations were obtained
in the calculations of Ref. 13. The secondary separation
occurs at ¢ = 34° and the secondary reattachment point
is at ¢ = 71°. The reference results are 27° and 81°,
respectively. The reason for this deviation lies obviously
in the inadequate mesh spacing in the circumferential
direction. The present mesh spacing is 7.5°, while a spacing
of 2.5° is required for accurate results.(**) According to
the computations{!*) the secondary separation point moves
towards the windward side and the secondary reattachment
point moves towards the leeward side as the mesh spacing
is increased. This behaviour is also seen in the present
calculations.

Turbulent Flow at o = 20°. In this case the longitudinal
pressure distribution differs significantly from the laminar
result only at the position { = 90° (Fig. 10). The difference
in the crossflow density contours at Station I is also small
(Fig. 11b). At Station II the deviation is more pronounced
(Fig. 12b). At ¢ = 90° there is a strong crossflow shock. In
the present calculation the shock profile is smeared, which
is again caused by the coarse mesh spacing in this direction.
However, the results agree qualitatively with the results of
Ref. 13. The largest difference between the present results
and those of Ref. 13 is the existence of the primary vortex
at Station I in our results. In Ref. 13 the primary vortex
at this station is visible only in the laminar result.

In the turbulent calculation we obtain Cn = 1.94, which
is very close to the experimental value 1.92. The primary
separation at Station II occurs at { = 92° (in Ref. 13 they
also found 92°). The secondary separation takes place at
¢ = 31° (31°) and the secondary reattachment at { = 58°
(51°).

Laminar and Turbulent Flow at o = 32°. In this case
the differences between the laminar and turbulent calcula-
tions are smaller than in the previous case. In the laminar

case the normal force coeflicient C is 4.31. Assuming tur-
bulent flow, we obtain Cp = 4.29. These values are reason-
ably close to the experimental value 4.19.(13) Although not
shown, the longitudinal turbulent and laminar pressure dis-
tributions could not be distinguished from each other. The
agreement between the calculated and measured pressures
is better than at a = 20° (Fig. 14). Since the difference
in the laminar and turbulent crossflow density contours is
small, only the laminar results are shown (Figs. 15 and 16).
The shock surface on the windward side is visible at Sta-
tion I. The circumferential friction coefficient is depicted in
Fig. 17. In the laminar case the primary separation occurs
at ¢ = 84° (in Ref. 13 they found 86°). Before the sepa-
ration the turbulent friction is significantly larger than the
laminar friction. On the separation region the difference
between the laminar and turbulent friction coeflicients is
small. The secondary separation occurs at ( = 28° (25°)
and the secondary reattachment point is at ¢ = 51° (52°).

_Laminar and Turbulent Flow at o = 44°. The longitudi-
nal pressure coefficient distributions of the laminar compu-
tation are given in Fig. 14. Again the agreement with the
experimental data is good. The force coeflicient is 6.61 and
in the turbulent case we obtain about 6.62. The laminar
result is within 4% of its experimental value (6.38). The
crossflow density contours at Station 1l are given in Fig.
18. It is seen that the flow is practically symmetrical in the
laminar case, whereas in the turbulent case an asymmetric
nonsteady flow is obtained. At Station I the flow is steady.
On the surface the unsteady behaviour is visible on a small
area in the range —60° < ( < 60°, i.e. where the secondary
separation occurs, its effect on the normal force coefficient
only being about 0.2 %. The circumferential skin friction
coeflicient is shown in Fig. 19. In the laminar case the pri-
mary separation occurs at { = 71° (in Ref. 13 { = 81°).
The secondary separation occurs at { = 24° (22°) and the
secondary reattachment point is at { = 41° (48°).

Code performance In this application the maximum
Courant number must be significantly decreased from that
used in the airfoil calculations. In the calculations per-
formed a Courant number of 0.5 was applied. The same
reduction in the maximum allowable Courant number also

takes place in two-dimensional axisymmetric calculations.
Furthermore, it is difficult to get started utilizing the grid
size of 80 X 64 x 48. For example, the turbulent simula-
tion at a = 20° was started by calculating firstly 100 cycles
using a first-order interpolation method with a single grid
level. The next 100 cycles were calculated with a second-
order method and the limiter. From 200 to 500 cycles two
grid levels were applied and finally after 500 cycles five lev-
els were in use. After 500.cycles the limiter was on in the
axial direction only. In the circumferential direction the
second-order method was used and in the radial direction
the third-order method. In spite of the gradual start, the
convergence of a turbulent calculation is fast at a« = 20°
and a = 32°. The lift and drag coeflicients are practically
constants after 700 cycles (Fig. 20). Since there are no diffi-
culties in beginning the calculation with a coarser grid, the
efficiency of the calculation could be significantly increased
by initializating the calculation by mesh sequencing.(!?)
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The behaviour of the laminar calculation is different. It
appears that although practically steady flow is established
along the body, an unstable flow is developed behind the
base. The same phenomenon is also present in axisymmet-
ric simulations. The density histories at & = 0° are mon-
itored in Fig. 21. The densities are on the outer edge of
the boundary layer: the first one is between Stations I and
I1, the second one a little behind the base. The density in
the body region is finally constant whereas time-dependent
flow is established in the wake region.

At the highest angle of attack (44°) an usteady flow is also
established assuming turbulent conditions. The unsteadi-
ness is much more severe than in the laminar computations
and occurs also in the body region. The resulting density
contours at Station Il reveal an asymmetric time-dependent
vortex structure. In spite of the time-dependent behaviour,
the computed normal force coefficient is almost constant.

The computation time of a single-grid calculation with the
turbulence model is around 37us per grid point and cycle.
With five grid levels the computation time is about 74us
with the Cray -XMP/432.

6. CONCLUSIONS

A numerical method for compressible flow equations which
utilizes multigrid acceleration for the convergence has been
presented. The method is suitable for inviscid and viscous
flow problems. The discretization is performed with the aid
of a finite-volume formulation. The convective fluxes are
calculated using Van Leer’s splitting, while for the viscous
fluxes the thin-layer approximation is applied. The time
integration is performed employing a simplified implicit
scheme which results in a limited CFL-number. The
convergence is accelerated using a multigrid method.

The method has been applied for inviscid and viscous sim-
ulations over an NACA 0012 airfoil. The calculated force
coeflicients are in reasonable agreement with experiments
and other calculations. At least a threefold saving in com-
puting time is obtained by applying the multigrid acceler-
ration. Especially the convergence of the lift coefficient is
enhanced.

In three dimensions the method has been applied for a
simulation of a supersonic flow over a body of revolution.
The results generally agree with those obtained elsewhere
and also with experimental data. Owing to the coarse
mesh spacing in the circumferential direction, the secondary
separation is modelled inaccurately, but the primary flow

features are well predicted.
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Fig. 12. Crossflow density contours for a) laminar and b) turbulent flow at Station II for o = 20°.
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Fig. 15. Crossflow density contours for a laminar
flow at Station I for a = 32°.

Fig. 16. Crossflow density contours for a laminar
flow at Station II for a = 32°,
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