UME IMULATION OF HIGH SP

D COMPRESSIBLE FLOWS WITH UPWI S

ICAS-90-6.10.2

EMES O

ADAPTED UNSTRUCTURED GRIDS

L.Formaggia and V.Selmin
AERITALIA G.A.D.
Torino, Italy

1. Abstract

The study of high speed flow is receiving
attention by aerospace industries in connection
with the design of high-supersonic transport
aircrafts and reentry vehicles. The development
of effective numerical solvers is of particular
interest due to the difficulties and high costs
associated with experimental work at this flow
regime. High speed flow is characterised by
the importance of forms of energy which are
normally neglected at lower speed, namely the
excitation of vibrational internal degrees of
freedom, dissociation and ionization. Therefore,
the solution algorithm must take into account,
to some degree, of all or some of this new
mechanisms of energy transfer. In addition, the
flow solution normally presents strong shocks
and shock interactions, the code must then be
able to capture those features neatly and without
spurious oscillations.

The presence of localised gradients makes the
implementation of adaptive techniques quite
attractive. In this work, the geometrical
flexibility of triangular unstructured grids has
been exploited for the development of a mesh
adaptation procedure which allows to efficiently
refine the grid where needed. The first part of
the paper will illustrate the methodology adopted
for the generation and the adaptation of the
grid.

Examples of steady 2D inviscid flow solutions
for non-reactive and reactive fluid in chemical
equilibrium are presented. The flow equations
are solved using an hybrid finite volume/ finite
element approach which adopts upwind concepts
formulated in the context of unstructured grids.
The algorithm is capable of quasi-second order
accuracy in space by employing a MUSCL type
procedure. However, for the chemically reacting
flow computations, only first-order solution will
be here presented. Work is ongoing for the
extension of the methodology to non-equilibrium
flows.

2. Mesh generation

The interest in unstructured grids is growing
in the CFD world, the main reason being the
easy way in which complex geometries can be
treated and the efficient control of mesh
resolution. Localised refinements may allow to
optimise the number of grid points necessary
for a given accuracy in the solution, thus
compensating the higher computational effort per
mesh point normally associated with the use of
an unstructured grid based solver. In this work
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we have coupled an unstructured grid generator
with an adaptive procedure to provide an
effective tool for high speed flow computations.

The mesh generation algorithm adopted here
makes use of the 'front advancing technique' as
formulated in ¢*’. With this procedure mesh
elements and points are generated at the same
time according to a specified spacing distribu-
tion. The algorithm takes its name from the way
the triangulation of the domain is carried out,
procedure which is extensively described in the
previously mentioned reference. The main
feature of the method is that it does not require
to pre-define the set of points to be triangulated,
as it is instead demanded by most unstructured
grid generators based on Delauney triangula-
tion¢2? >, which usually connect a set of given
points. It allows for high variations in shape
and size of the elements, it treats naturally
non-convex boundaries and it can be extended
to 3D problems(*’,

Control of mesh resolution

In order to efficiently control the mesh
resolution we specify some characteristic
dimension parameters at each point of the
computational domain, namely the spacings s.
and s>, and the associate directions defined

by the two orthonormal vectors g‘ s 9_2. By means

of those parameters we can locally define a linear
transformation T which relates a vector in the
physical space R with its image in the so called
normalised space R”. The transformation is
governed by the relation:

v=Tv" (veR, v eR") 1

where T is expressed by

T=s5,a'®a'+s,a’°®a’ (2)

B unitary circle in the normalised space is
transformed by T into an ellipse whose principal
axes, of length s, and s, respectively, are

oriented according to o', a’. We will consider a

triangle as ‘optimal' if its image in R™ is
equilateral with unitary side length (see figure
1). The mesh generator will then try to form
elements whose shape is as close as possible
to the optimal one.



The values of the dimension parameters, and
thus of T, can be either given by the user or
determined by an automatic adaptive procedure.
For an initial grid, T will be interpolated from
the values input at some user defined points.
while for an adapted grid the dimension
parameters will be evaluated by analysing a
previously computed solution, using the pro-~
cedure described in the next section.

"

Fig. 1) Optimal element dimension parameters and
element image in the normalised space R"™.

3. Adaptation

Several strategies may be followed for mesh
adaptation on unstructured grids ‘®’. They are

normally based either on node movement, mesh
enrichment or remeshing procedures. The
methodology adopted here follows the one

employed in ¢*’ which consists in successive
remeshing, each one made using a previously
computed solution for the determination of the
adapted element spacing distribution.

The implementation of an adaptive strategy
requires first to define what is meant by the
'best' mesh for the problem at hand. A possible
criterion is to take ag ideal mesh the one which
minimises, for a given number of nodes, some
norm of the discretization error defined as the
difference between the computed and the real
solution. Unfortunately, at the time being a
general error theory for upwind solutions of
system of hyperbolic equations, able to furnish
an estimate of the local discretization error seems
lacking. We have here employed a strategy which
adopts some concepts borrowed from interpo-
lation theory with the addition of ‘ad hoc?
corrections in order to provide an effective
methodology for the class of problems examined.

Error estimation

A good error estimator for an adaptive
procedure should give an indication on how the
error varies with the mesh size. We will here
employ a methodology based on the formulas for

the interpolation error which is defined as the
difference between a function u(x} and its
interpolant.

If we consider the approximation u,(x) of a
one dimensional function u(x) on a linear finite
element one-~dimensional grid, we can give a
local estimate of the bound of the approximation
error Ex on an element kK=[X),Xx+1] of length
hy={Xuxra-Xx| as(®>:

oY

|

| ela= lu-u.l,sChE) )
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ax=i,

where } denotes the L» norm.
} 2

This formula may be used for the construction
of an adaptive procedure. After having computed
a solution on a given mesh, an approximation
of the second derivative may be evaluated, for
example using a variational recovery procedu-
re¢”?, The imposition of an even distribution of
the approximation error may allow to determine
an optimal mesh spacing distribution. For
example, we can obtain a distribution for the
spacing sy at each point P of the current mesh
by requiring that
l d?u,
dxz !,

2
P

= (4)

s

T

at each point P.

The value of the constant ¢ may be determined,
for example by imposing a value for the minimum
spacing and a new mesh may then be generated
whose element size varies according to the
spacing distribution computed in (4).

The concepts here illustrated for a 1D problem
can be extended to multidimensional situations,
and in particular to the 2D case. If we consider
a solution un(x) computed on a given tri-
angulation, we can estimate the second derivative
tensor D

2%u,

Dijte= odxox’le

(S)

at each node P of the current mesh. Two local

principal directions, a, a, can be evaluated

from the eigenvectors of D, and they locally
define a coordinate system X,,X=. The eigen-
values A;, A, of D will represent the second

derivatives with respect to this coordinate frame.

%uy, 2%u,
Ay, = | Ny, = —— 6
D S B 2r o axils (6
UM 2N
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The one-dimensional analysis can be now
applied on each principal direction separately.
The imposition of a constant value for the
interpolation error norm leads to two expressions
analogous to (4). It has been found, however,
that better results are obtained by using the
expression for the relative error e, instead of
the absolute error.

IU,"U,h’
ful

(7

e =

This has been accomplished in practice by scaling
the second derivatives. The formulation for the
optimal spacings s, and s> in the two principal
direction at every point P of the given mesh
may then be found by requiring that

sizlni], =s22|R2,), = c (8)
where
N M
jul

and the subscript P denotes quantities evaluated
at point P. The L- norm is here defined as

R
Ixl,-( ] IxI"a0) (9)

N

and the estimation of the integral over element
k has been performed using a rectangular rule
and assuming for the element an area
proportional to s:s8-.. The final expression is

- (1) =
HXPIZQ(SIPSZP)j)])\p' (10)
The constant ¢ in (8) is computed by imposing
a value for the minimum spacing allowed.

Finally, the spacing distribution, evaluated
using relations (8) and (10), is input, together
with the corresponding principal directions, into
the mesh generator in order to provide a
completely new, adapted mesh.

Extension to svstems of equatio

The extension of the procedure to systems of
equations has required to select one or more
'key variables' to be employed for the error
analysis. The procedure has been carried out
separately on each variable and the smallest
value of the resulting spacings has been adopted.
In the present investigation, it has been found
that the use of density and absolute value of
the velocity as key variables gives satisfactory
results for the non-reactive flow problems. For
flows in chemical equilibrium, however, the mass
fractions of atomic oxygen and nitrogen have
been added for a better control of the mesh.

Special treatment for discontinuities and for-
stagnation points

The analysis previously illustrated assumes
that the variable u is smooth and in particular

that it possesses finite second derivatives. This
is generally not the case for the solution of
inviscid flow at high speed, where discontinuities
in the flow field are usually present. In these
situations the second derivative is locally
unbounded and we have to provide some
corrections to the general methodology. We feel
that the use of the L= norm in the error analysis
already permits to reduce the effect of a peak
in the second derivative compared to method-
ologies which make use of the RMS value as in
‘1, 1t has been found, however, that it is
better to also limit the maximum value for the
estimate of the second derivative. This is
accomplished in practice by considering the
distribution of the derivative and cutting its
value for the highest 0.5 per cent of mesh points.

Another special technique has been employed
in order to ensure a good refinement at the
stagnation region. This feature can be of
particular importance for hypersonic flows when
a detached shock is very close to the body and
it may be desirable to have some extra refinement
in the subsonic pocket. The Mach number has
been chosen as the non-dimensional variable
which allows to best localise stagnation regions.
The treatment is then performed by specifying
the spacing desired at the stagnation point Satag
as a fraction of the minimum value Smin in the
mesh, and a limit value Myi., for the Mach number.
The Mach My at each point P is then computed
and the spacings are corrected according to

(515) , =TSuag+(1=r)s;,  (11)
s s
(__2_5) =r+(1-r)(—2—") (12)
S12/ now Ste
where
M o.My, -M
= ax( i ?) (13)

Mh’m

4. The Solution Algorithm

The solver employs some finite element/volume
concepts in order to formulate a discretization
procedure able to operate on completely
unstructured grids.

Basic Euler Solver

We start from the basic Euler equations written
in conservation form as

U oF oG

_5_t-+ Ix—-ﬁa—:y--'o (14)
where U{p,pu,pv,pE :1 are the conservative
variables and F = F(U) and G = G(U) are the

inviscid fluxgs. Here p denotes the fiuid density,
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u and v are the components of the velocity with
respect to a cartesian coordinate system (x,y)
and E represents the total specific energy. In
particular, we will consider weak solutions¢®’
of (14), which results in employing the
conservation equation written in integral form.

Spatial Approximation

The spatial discretisation is obtained by
considering polygonal control volumes Cs
surrounding each vertex i of the triangular
mesh. These control volumes are constructed
by cutting each triangle along its median lines
to form six sub-elements(®’.

L

Fig.2) Construction of the control volume.

The control volume C; is formed by the union
of those sub-elements which have i as vertex,
as it is sketched in figure 2. We can now
associate to each side (i,j) of the triangular
mesh the bi-segment Bi, which forms the
boundary between the control volumes C; and
C;y, as illustrated in figure 3.

The integral equations of conservation laws
over each C; may be written as

Fig.3) To each side (i,j) of the triangular mesh
it corresponds a bi-segment line Byy=D1-M-D:,
which will be employed for the numerical
discretization of the flux integral. Here M is
the mid-point of side (i,j) and Di,D> are the
baricenters of the two adjacent triangles.

U iq=-
c, ot oC,

F-ndl (15)

where n=(n..,n, ) denotes the outward normal to

the boundary oC, of the control volume and

F-n=FU)n,+G(U)n, (16)

is the projection of the flux vector on the normal
direction. The flux integral is estimated by
summing the contribution coming from of each
bi-segment associated to the mesh sides
departing from node i , while the time derivative
integral is evaluated by considering a constant
value for U over the control volume. The
resulting expression may be written as

U,
Ae—2=- ) HW,U,n,) n, (17)
(i, 0)eSy

where Ae; is the area of control volume C;, Sy
is the set of sides (i,j) converging to node i
and H represents the numerical flux. n; is the
normal integrated over B;;, outward oriented
with respect to control volume C; (ref. figure
3), and it is computed as

-

n,= | ndl (18)
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The numerical flux H will in general depend on
the value of the variables at the end points i
and j and on the direction defined by ng. A
centered scheme may be obtained by taking H
equal to the average value of the fluxes at the
two end points.

Upwinding

The scheme adopted in this work makes use
of upwinded numerical fluxes by employing a
flux vector splitting procedure. The numerical
fluxes H in equation (17) are splitted into a
'positive' and a 'negative' contribution.

HW.,U;n;)=

H*(Ui,nq)+H'(U‘,.nu) (19)
The formulation here used for the flux splitting
adopts a modification of the technique proposed
by Haenel et Al. (*©) and it expresses H* and
H~- as functions of the density p , the fluid

velocity u, the pressure p, the sound speed ¢
and the total specific enthalpy h, with no explicit

dependence on the specific heat ratio y. It is

not restricted to any particular formulation for
the equation of state of the fluid under
investigation. In addition, the basic first order
scheme obtained by the substitution of the
upwinded fluxes (19) into (17) satisfies the
condition of constant total enthalpy at steady
state. This property is considered important for
the evaluation of accurate stagnation tem-
perature.

Second order extension

Spatial second order accuracy is obtained by
the introduction of a linear distribution of the
variables on each control volume, as in the
MUSCL approach¢*1’, This effectively results
in replacing U; and U, in the expression for H*
and H- in (19) with the vectors Uy and U
obtained from 'left' and 'right' linear extrapo-
lation at the mid-point of side (i,j)¢®’. The use
of limiters on these distributions is necessary
for stability and in order to avoid spurious
oscillations in the proximity of discontinuities in
the physical solution. The standard procedure

is to adopt the variables (p,u,p) as 'sensors'

for the limiting procedure. However, we have
found that this choice in general does not allow
to satisfy the condition of constant total enthalpy
at steady state. The condition can be instead
maintained by using a formulation in which the
total enthalpy h is employed in replacement of
the pressure.

Time inteqration

Equations (17) form a system of first order
ordinary equations in time, which have been
integrated employing a multistage algorithm of
the type proposed in (*3®’, As we are interested

only in the steady state solution, local
time-stepping has been adopted by letting each
mesh node to advance at the maximum allowed
local time step.

5. The Chemj odel
Equilibrium flow

The Euler solver has been modified in order
to take into account the effect of some chemical
reactions. The assumption of thermodynamic
equilibrium has been made for the computations
presented in this work. The fluid studied here
is air and the chemical model adopted considers
five species, namely O, N, NO, O: and N, and
17 chemical reactions *2’, For equilibrium flow
3 independent equation can be extracted from
the general model, namely

0,620
N,®2N (20)

N,+0,82NO

The resulting laws of mass action may be written
as

Y3 miK,(T)

Ys ms p
§=T_§K2(T) (21)
Yo ms p
Y3 m3
Y.Ys m5m4K3(T)

where the Yi's and the m,'s are the mass fractions
and the molar masses of O,N,NO,0-> and N=
respectively, and T represent the temperature.
The expression for the equilibrium constants
Ki's may be found in reference ¢*3’,

For inviscid flow, species diffusion is normally
neglected. As a consequence, we may write the
equations of conservation for oxygen and
nitrogen nuclei as

2Y, Y, Y .
4+ _._}_+_._:i=2y4
Mty 1My M3

(22)

2Yg Y, Y .
5+ _.._?_4. 3. 2}/’5
Mg mz M3

(23)

where Y., Y s represent the values of Y4 and Ys
when no dissociation is present.
Finally, we have the thermodynamic relation

for the internal specific energy e, which may
in general be written as:

e=e(T,Y,,...,Y¢) (24)

2016



The laws governing chemical equilibrium have
been coupled with the explicit Euler solver. At
each iteration of the multistage algorithm the

Buler code provides an update for p, u, and e.

The corresponding values for temperature and
mass fractions are then computed by solving
equations (21) to (24) employing a procedure
based on Newton's method. The outcome is
then used to update the pressure, using the
equation of state for the fluid, which for a
perfect gas may in general be written in the
form

S }/i
P=pRT) — (23)

i=1 i

where R denotes the perfect gas universal

constant. For more general fluids p may be found
by searching into appropriate tables. In this
work. we have considered only perfect gas
behaviour.

Interpolation from a previous solution

When an adaptation technique is utilised, it
may be convenient to restart the computation on
the new, adapted grid using values interpolated
from the previous solution. In this way we may
expect to reach the new converged result more
rapidly than by restarting the computation from
scratch. It has been found, however, that in
the case of chemically reacting flows the choice
of the set of variables to interpolate is important
for the attainment of the best convergence and
for the robustness of the procedure. The best
result has been obtained by interpolating the
density, the velocity vector and the temperature
and computing the other thermodynamic variables
employing the equilibrium equations.

6. Examples

Several examples will be now presented for
both non-reactive and equilibrium flows.

Non-reactive flow over a double ellipse at
Mach 25

A first case for a double ellipse at Mach=25

and angle of attach a = 30° for a non-reactive

perfect fluid with heat ratio y = 1.4 is illustrated

in figures 4 to 6. Figures 4a and 4b show the
initial mesh with the corresponding solution
obtained using the second-order Euler solver
which has been previously discussed. This
solution shows a strong detached shock forming
in front of the body and a much weaker one in
the 'canopy’ region. The mesh employed contains
approximately 1500 mesh nodes. However, the
mesh spacing distribution is clearly far from
optimal, and the shocks, particularly the weak
one, are badly resolved. This solution has been
emploved in the adaptive remeshing procedure

to obtain a new adapted mesh, illustrated in
figure 5a. The determination of the position of
the main shock has allowed us to bring the outer
boundary closer to the body, thus saving mesh
points. The second mesh has been generated
maintaining the total number of nodes
approximately equal to the previous mesh. It
can be noted how the nodes have been
concentrated in the areas with high gradients
in the solution and the mesh elements have been
stretched to follow the one~dimensional features.
The solution obtained on the adapted mesh is
illustrated in figure 5b. Shocks are better
captured. Finally, a third mesh has been
generated from this second solution, as it is
shown in figures 6a. The number of mesh nodes
in the third mesh has been slightly increased
to approximately 2000. The canopy shock is now
well defined. Some extra refinement has been
provided in the subsonic pocket and density
plus velocity modulus has been employed for the
remeshing procedure. Figure 6b illustrates the
final solution, computed using the mesh of figure
6a.
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solutions (b) employed in the adaptation procedure.
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Single ellipse at 25

A comparison between non-reacting fluid and
reacting flow at chemical equilibrium is now
presented for a single ellipse configuration at

Mach=25 and a=30° The non-reactive flow

solution has been obtained by assuming a value
for the heat ratio equal to y=1.2. The mesh

and iso~-temperature contours are presented in
figures 7a and 7b. The meshes and solutions
here shown are in fact the last obtained from a
three stage remeshing procedure analogous to
the one illustrated in the previous section. The
computed stagnation temperature for the
non-reactive flow Tas¢=13036K agrees with the
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theoretical one. Figures 8a and 8b show the
result obtained by the first-order Euler +
chemical equilibrium solver. Again, the mesh
has been adapted. Density, velocity modulus
and the mass fraction Yo and Y. have been
used as indicators in the remeshing algorithm.
It can be noted that the shock position is closer
to the body in the chemically reacting flow, and
the maximum temperature reached, Tg<=5760K,
is considerably lower than the stagnation
temperature for the non-reactive flow case.
Figure 9a and Sb show the temperature plots
along the body of the ellipse, for the non-re-

active flow at y=1.2 and chemical equilibrium

respectively.
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Figs. 7) Mesh (a) and iso-temperature contours (b) for a non-reactive flow solution at Y= 1.2 on

a single ellipse configuration.
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Figs. 9) Body temperature distribution for non-reactive (2) and chemical equilibrium (b) computations
on a single ellipse.

bl ipse hemj librium

The same double ellipse configuration already computed stagnation temperature is considerably
shown for the non-reactive flow case has been lower. The shock structure is also more complex,
computed with the assumption of flow in chemical due to the strong chemical activity occurring in
equilibrium. The flow configuration is again the shock region, as it is revealed by the

contours for YO and YN, displayed in figures
Mach=25 and a=30. The adapted mesh is 12 and 13 respectively. The complexity of the

flow features in chemical reacting flows can also
illustrated in figure 10a, where the grid used be inferred by the distribution of the element
for the corresponding non-reactive flow size in the adapted meshes for this regime of
computation is also shown (figure 10b) for flow, compared to the ones obtained for analogous
comparison. The iso-temperature contours for non-reactive flow configurations. In the former,
the two cases are presented in figures 1la and the distribution is generally more uniform, due
11b respectively. As it is expected, the shock to the larger extension of the areas where
position is now closer to the body and the gradients in the flow solution are significant.
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on a double ellipse.
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Figs. 11) Comparison of iso-temperature contours for reactive (a) and non-reactive (b) flow

computations on a double ellipse.
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