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Abstract

The solution of the compressible Euler and
Navier - Stokes equations via an upwind finite vo-
Tume scheme is obtained. For the inviscid fluxes
the monotone, upstream centered scheme for conser-
vation Taws (MUSCL) has been incorporated into a
Riemann solver. The flux vector splitting method
of Steger and Warming is used with some modifica-
tions. The MUSCL scheme is used for the unfacto-
red implicit equations which are solved by a New-
ton form and relaxation is performed with a Gauss-

-Seidel technique. The solution on the fine grid is
obtained by iterating first on a sequence of coar-
se grids and then interpolating the solution up
to the next refined grid.

Because the distribution of the numerical er-
ror is not uniform, the local solution of the equa-
tions in regions where the numerical error is lar-
ge can be obtained.

The choice of the partial meshes, in which
the iterations will be continued, is determined by
the use of an adaptive procedure taking into ac-
count some convergence criteria.

Reduction of the iterations for the two dimensio-
nal problem is obtained via the Tocal adaptive mesh
solution which is expected to be more effective in
three dimensional complex flow computations.

Introduction

During the last decade a wide variedy of nume-
rical methods for the solution of the Euler and the
Navier - Stokes equations has been developed. Most
of these schemes make use of the eigenvalues and
eigenvectors that belong to the coefficient matri-
ces of the Euler equations. These methods find the
sign of the eigenvalues and make use of this infor-
mation for the discretization of the equations. In
the recent past many upwind shock capturing schemes
for the computation of t?e Euler equations have
been presented(!,2,%:6,7

Most of these methods are very different in
form but all of these can yield accurate results
even though no grid refinements and no control of
any parameter have been used. Details for the for-
mulation of such approaches can be found in the 1i-
terature and some of these are reported in Refs: 2,
4,5,6. In this paper the monotone upstream centered
scheme for conservation laws{7) (MUSCL) has been
used for the calculation of the conservative varia-
bles at the cell faces. This upwind scheme has been
incorporatedinto a very robust, locally one dimen-
sional Riemann solver (3). The above method is used
for the calculation of the inviscid fluxes. Another
known approach for the calculation of the jnviscid
fluxes is the flux vector splitting method(¢) which
makes use of the homogeneity property of the Euler
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equations. In this approach the fluxes are split
into backward and forward contributions by split-
ting the eigenvalues of the Jacobian matrix of.the
flux into positive and negative parts. Thg splYt
fluxes are then differenced regarding upwind dis-
cretizations. In the present paper second order
accuracy is used for the definition gf the.1ef§
and right states at the cell faces, in conjuction
with the flux vector splitting. Validations of the
flux vector splitting methods have been reported
in the past(1° .

In this paper a modified flux vector split-
ting with second order spatial accuracy and the
MUSCL scheme in conjuction with the Riemann solver
are used.

An upwind scheme is also used for the calcu-
lation of the viscous terms{®/.

The numerical solution, either for the Euler
or for the Navier - Stokes equations, is obtained
after a number of iterations. Many implicit methmt
use the unfactored eguations and find the solut1pn
to the steady state using a Gauss-Seidel re]gxahpn
technique( 3%,%). The present method is an impli-
cit relaxation scheme which allows high CFL  num-
bers.

Inspite of these techniques the cost for the sglu-
tion of the Navier - Stokes or the Euler equations
is high. Thus, many times the ca1culatjon of com-
plicated flows is jmpractical in a design environ-
ment. On the other hand, the flows are nonuniform
concerning the gradients(12)  Nonuniformities are
especially present near the boundaries and in
shock waves. Therefore, a Targe part of the flow
field has converged during the iterations while
more time steps are needed for "strong" regions
where the convergence criteria are not satisfied.

In this paper the solution of the equations
is obtained at first on a sequence of -coarser grids
and then interpolating the solution up to thenext
finer grid. After the smoothness of the solution
on the finest grid and using prescribed convergen-
se criteria, blocks of the grid are choosen for
the local solution of the equations. The adaptation
of the partial grid distribution is obtained using
some convergence criteria and an optimum number of
grid points which are needed for the local solut-
jon.

The above method is expected to be more ef-
fective for complex .calculations in meshes with a
large number of grid points,{i.e 3D flow)in which
the points of the partial meshes will be a smaller
fraction of the whole grid, than for the two di-
mensional problem.

Governing .Equations and time integration

The governing equations are the time depen-
dent Navier - Stokes equations. These equations
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can be written in conservation form and for a gene-
ralized coardinate system as:
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The Euler equations are obtained from the abo-
ve equations by eliminating the viscous flux vectars
R, § and retaining the inviscid flux vectors E,G.
Body fitted arbitrary coordinates £,Z are used.

The Jacobian of the transformation &=Z(x,z),T={(x,2)
from Cartesian coordinates x,z to generalized coor-
dinates 1is written as:

J sz‘c ZE'&C
The quantities p,p,u,w,e represent the density the
pressure and the cartesian velocity components and

the total energy respectively. The viscous stresses
are:
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and the heat flux vector:

9= “KTy » 9= =KT,
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M,K are the viscosity and heat conductivity coef-
ficient and T the temperature. The indices ( )g,
( )C’( )x,( )Z denote partial derivatives with

respect to £,0,x,z except for the stresses
the heat flux vector.

The formulation of the governing equations is com-
pleted by the perfect gas equation of state.

p= (y-1)pi )
where i is the internal energy and vy is the ratio
of the specific heat capacities of the fluid.
To reach the steady state solution asympotically,
an implicit procedure is used which allows high CFL
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numbers (3}(s}{*). The first order in time, discre-
tized, implicit form of eq. (1) is written as:
n+l
U - n+l n+l _
T+EE +GC =0 (2)
where Einnv+ Evis
G=G1'nv+ Gv1's

A Newton method can be constructed for Un+l by 1i-
nearizing the fluxes in eq. (2) about the known ti-
me level n.

n+l

" = gM"ay
n+l

6"t = M. au

The last relations yield the eq.(2) to the
following form:

49 + (A"00)g + (Cn.AUE - - (Eg+gg) = RHS (3)

A,C are the Jacobians of the flux vectors E,G :
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AU is the time variation of the solution:
py = gttt n
n n . . 3)(w)
The terms (A AY) (C 'AU)Z are discretized

at the volume (i.k up to second order accuracy in
space. For exampie the term (AnAU)E is written

as:
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A*, A7 are the diagonal matrices of the positive
and the negative eigenvalues of the Jacobian A,
respectively. The above matrices are defined as fol-
Tows: -

A= max{0,A), A = min{0,A)
where A is the diagonal eigenvalue matrix:

s 0 0 1 2

A= diag( AK , AK R AK , AK )

with elements
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The above e]ements def1ne the eigenvalues of the
matrix A,C for x=Z, k=7 respectively. The vectors
AU are extrapo1ated consistently on the right hand
side. For the finite volume face (i+i,k), AU is
extrapolated up to second order depending on the
eigenvalues.T,T"1 are the matrices of the left and
the right ewgenvectors, respectwve]y The solution
of the system of equations (3) is obtained by a
sequence of approximations denoted by gV such that
1im gV » yn*tl  where v>1isthe subiteration ?t?t?.
The equations are solved by a Newton method *

The Newton form is obtained by the Tinearization
of the equation (3) around the known subiteration
state v, as follows:

v+1 n__v
+ v vtl, _ U -
R AN MR T C I Py o
v v
- + = RH
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qV, qV+l are the solution vectors at the subitera-

tion states v,v+l respectively. The solution at
the level v+l is updated as:
qv+1 q +A v+l
Inviscid fluxes

MUSCL approach

For the inviscid fluxes on the RHS
of eauation (3) a linear, locally one-dimensionai
Riemamn solver (Godunov type differencing) is
employed at the finite volume cell faces. The sta-
te which is used for the Riemann solution d??§n?§
on the sign and the size of the eigenvalues
A mean value is obtained at the cell faces as fol-
Tows:

Usy 2 [« 1+E

The index j denote the number of the
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+
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The left (1) and the right (r) conserved sta-
te variables are gbtained by an upwind-biased
interpolation (7)() which is known as MUSCL ty-
pe approach.

A general MUSCL - type scheme can be defined as

= S ((1-
(Updap = Us 7 ((1oKS)TEH (14KS)Bg)U,
(U)5as = Uy - 3 ((1KS)Egh (13KS)T)U; 4

The symbols A and v denote the forward and the
backward difference operators:

ey = Ujigm Uy

Vels 7 Uy - Uiy
S is the van Albada type sensor (7) for the dete-
ction of shocks and other discontinuities

20V
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(Bg)2+(vg)2+e

where £ is a small number to prevent division by
zero. Such limiters as the above, called flux 1i-
miters, originate from the theory of almost mono-
tonic solutions {TYD methods) and are applied to
hyperbolic systems in multi-dimensions. The para-
meter K defines the spatial accuracy of the appro-
ximation.K=-1 corresponds to the fully upwind se-
cond order scheme and K=1/3 to the third order bia-
sed scheme,

The above MUSCL-type infegpo]ation was incor-
porated into the Riemann solver'“’/ for the evaluation
of the conservative variables at the cell faces.

Flux vector splitting

The flux vector splitting method(s)is used as a se-
cond approximation for the inviscid fluxes.

) The fluxes are split into negative and posi-
tive parts in accordance with the eigenvalue sign.
The inviscid flux vector E at the cell face is

written as:
- + - - + =
(Einv)i+2 =E (Ui+§) +E (U1+%) -
(At Ty uT, o+ Tt
i*3 i+3

The splitting of the fluxes is made in accor-

dance with the eigenvalues Al . AZ. The splitted
eigenvalues are defined as:
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where H,S is the total enthalpy and the speed of
sound respectively apd k=g,C.
The variables U1+,, U1+5 are defined for second

order spatial accuracy as:
v

Tey = Up + 05 (U, U, )
v, =u + 0.5 (U,
i+ 7 Vil Wiy = Yisp)

Transonic flow over circular arc =-airfoil

The inviscid flow over a circular arc-airfoil
with thickness 10% is studied using the above two
methods for the discretization of the inviscid flu-
xes. The free stream Mach number is 0.85 and the
angle of attack zero. For sipplicity the half com-
putational plane is considered, with symmetry con-
ditions on the upstream and on the downstream side
along the x-axis. Initially are shown the experi-



ments on a coarse grid 54X25(fig.1). For all the
above test cases no grid refinement has been used
near the shock region. In figure 2a, 2b the Mach
number distribution is shown for the flux vector
splitting and the Riemann solver with the MUSCL
type scheme respectively. From this figure is shown
that the sharpness of the shock is better with the
MUSCL upwind into the Riemann solver. The pressu-
re coefficient distribution is presented in figure
3. It is noted that no blending term(®) (*°)vas added
to the eigenvalues in the flux vector splitting ap-
proach.

In order to examine the grid dependence of the
Riemann solver with MUSCL upwind two finer grids
have been used, without clustering in the shock re-
gion. The first is a 64X25 mesh and the second a
96X35 mesh. In figure 4 the pressure coefficient
distribution is compared for the two finer grids
64X25 and 96X35 respectively. From these compari-
sons it is shown that with the MUSCL upwind,incor-
porated into the Riemann solver, accurate results
can be obtained without very fine meshes. Finally
in figure 5 the isomach lines are plotted for the
finest mesh 96X35. The last approach is used in the
next paragraphs for the Tocal adaptive solution of
the Euler and the Navier - Stokes equations.

Viscous terms

The viscous terms are discretized using cent-
ral differences for the £,7= const cell faces and
an upwind discretization for the cross derivat}vss
terms, which have been proposed by Chakravarthy!®
et al, is applied. Similar treatment has used by
Schmatz( *). Because fictitious mesh points are nee-
ded for boundary cells simple linear extrapolation
is used for the evaluation of these points.

Fig.1l: Mesh (54X25) around the circular arc-air-
foil

Fig.2a,b: Iso-Mach lines for Flux vector splitting
and MUSCL (mesh 54X25)
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Fig.3: Comparison of the pressure coefficient distri
bution for the two methods,mesh (54X25)
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Fig.4: Comparison of the pressure coefficient dis-
tribution with MUSCL for two different me-
shes (64X25) and (96X35)
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Fig.5: Iso-Mach lines for the finest mesh 96X35
Solution with the Riemann solver and MUSCL

upwind

The mesh sequencing technique

The varying mesh sequencing technique is ba-
sed on the use of sequence grids of coarse-
ness{11)(1%) In this method the coarser grid le-
vels make an initial guess for the fine grid and
act also as a treatment to the initial transient
phase. The solution of the equations is obtained
at first on a sequence of coarser meshes and then
interpoiating the sotution up to the next finer
grid. When the fine grid with mesh size h is given
the choice of a coarse grid, with mesh size H, it
is often straightforward. The coarse meshes are
constructed discarding lines of the finer meshes
in each direction. The coarsening ratio H/h=2 is
usually optimal. It is the smallest recursivelly
convenient number, and it is already big enough
to make the coarse mesh computational work quite
small relative to the finest mesh work. The use
of the larger H/h ratio doesn’t degrade any fur-
ther the numerical convergence. In the computatio-
nal code the coarser meshes and constructed as uni-
form meshes and act over the domain with no par-
ticular relation to the fine grid.Thus, a finite
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volume on the coarser mesh is constituted from,
four cell volumes of the finer mesh. For inviscid
flows the grid refinement on the coarser meshes
isn’t necessary nor is it for viscous flows if the
finest mesh has been constructed with enough clus-
tering of the mesh lines in regions with large gra-
dients.

The construction of a typical coarse mesh is
shown in figure (6a). Another way is to coarsen in
terms of the cell taking every second cell of the
fine mesh as a coarse cell. Then the coarse mesh
values will be placed at coarse-cell positions ana-
logous to their positioning on the fine cells.Thus
the volumes of the corse mesh are a subset of the
volumes of the fine mesh but the coarse grid points
are not a subset of the correspondence on the fine
grid. In our computational code the first procedu-
re, (four cells of the fine grid gives one cell of
the coarse grid) is implemented.
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Fig.6a: Construction of a typical coarse
mesh

Fig.6b: Boundary cells on the mesh seque-
cing technique

The most sensitive part of the method is the
interpolation procedure. The interpolation is obtai-
ned for each variable independently from the other.
The values of the finer mesh can be obtained from

& weighted average of the values of the coarser mesh.
For example, the values of volume A (fig.6a) at the
fine grid can be obtained as:

=1
A° T (9U1¥3U,+3U5+U,)

where 1,2,3,4 are volumes of the coarse mesh.

The transfer of the values can also be obtained
by a rule which takes into account the cell area of
the volumes. This rule has been used for the multi-
grid methods by other authors. Numerical experiments
have shown that there is no difference in the effi-



ciency of the numerical convergence using the abo-
ve two methods. Special treatment is given to the
interpoiation of the boundary points. Because the
numerical method is a finite volume scheme, we
need to find the values of the variables on the
first cell over the boundary. Bilinear extrapola-
tion is used for these volumes (fig.6b).

Up = 0,9375 Ul - 0.1875 U4+0.3125 U,- 0.0625 U3

E 2

The same technique can be used without changes
for the solution either of the Navier-Stokes or the
Euler equations. Another advantage of the mesh se-
quencing originates from the use of the relaxation
procedure. As we mentioned in the previous para-
graph some sub-iterations are needed for the rela-
xation method. In the coarse meshes the number of
sub-jterations can be less than the correspondence
number on the fine grid, because the convergence
rates are better on the coarser meshes.

Local adaptive mesh solution

Presentation of the procedure

As it was mentioned in the previous paragraph,
the numerical solution of the equations is not
necessary in obtaining the whole flow field during
the 1iterations. This fact originates from the nonu-
niformities of the flow variations towards a stea-
dy or an unsteady solutionti?/, Thus, local itera-
tions can be used in regions where the variations
are large. This t?ch?ique has been used in a sim-
ple form by Cline'?3/in the UNAP code while an
analytical study of the numecha1 disturbance was
recently presented py Panaras;?/for the case of thin-
tlayer Navier-Stokes equations

Another fact, which is shown in the present
work, is that the adaptation of the partial meshes
can optimize the computational work.

For this reason prescribed convergence crite-
ria can be defined in order to control the constru~
ction of the local meshes and the strategy of the
solution during the numerical convergence. These
convergence criteria can be physical or numerical.
In the present paper numerical criteria are defined
to terminate the calculations. These are the dif-
ferences of the calculated conservative variables.
On the other hand, the adaptation procedure impie-
ments the above criteria and also the convergen-
ce rates.

The adaptation of the local solution starts
after the mesh sequencing technique when the nume-
rical convergence meets one prescribed criterion.
In this stage some partial meshes are constructed
in different places of the flow field. Moreover, the
method automatically defines the criterion for the
new adaptation after some iterations. After each
adaptation the equations are solved on the partial
meshes. The values on the boundary cells of the pa-
rtial meshes are calculated considering characteri-
stic boundary conditions. Another way is to freeze
the values around the partial meshes but the effect
of the above implementation is in progress.

After the sufficient convergence of the partial
meshes the solution can be repeated on the finest
mesh. In this case the flow will be disturbed, but
the convergence rates will be very fast, especially
in the Navier-Stokes calculations. On the other hand
if the convergence rates after the converged local
solution are bad, the adaptation can be repeated
until the solution is achieved on the finest mesh

by fast convergence rates.

This dependends upon the prescribed convergence ra-
tes on the finest mesh and upon the input adapta-
tion levels.

The generation of the numerical disturbance
and the application of the local adaptive mesh te-
chique are also presented in the next paragraph for
the inviscid and laminar viscous flow.

Results
Inviscid flow

The transonic (M=0.95) inviscid flow over a
non 1ifting NACA 0012 airfoil has been studied using
the above technique. The inviscid fluxes have been
evaluated using the MUSCL type approach. The two
coarser Tevels, used of both the Euler and the Na-
vies-Stokes equations for the calculation, are pre-
sented in figures 7a, 7b and a partial view of the
finest grid around the airfoil is shown in figure
7c.

A

2004



Fig.7a,b: Coarser meshes and partial view around
the airfoil

Fig.7c: Partial view of the finest mesh

The generation of the numerical disturbances
are shown in figure 8. The propagation of the nu-
merical disturbance is studied using the changes
A(pu) and A(pw) of the conservative variables.

The AQi (i=1,2 for pu, pw respectively) have been
enlarged by a factor 10% - 108 for presentation
in the plots.

Initially (Fig.8a) the disturbances are large
in the whole flow field but especially in the re-
gions where the two shock waves are generated. For
this test case there is a shock wave in the trai-
1ing edge and a second in the wake region. For this
figure the max (3AU.), (where AU, are the changes
of the four conservitive variab]és), are 9X107° |
In figure 8b, where the above criterion is 1.3X10°
the numerical disturbances are large only in the
shock wave and the wake regions and only small dis-
turbances are presented over the airfoil near the
trailing edge. From this plot it is jmplied that
the local solution can be applied now to these re-
gions where the disturbances are Jarge. In figure
8c the disturbances appear in the same regions but
they are eliminated near the farfield boundary.The
disappearance is stronger (fig. 8d) when the max

(38U;) is 1.2X10 4_Dur1ng the above convergence the
partial meshes are constructed by an adaptation me-
thod. Gradually the
minated (fig. 8e).

disturbances are completely eli-
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Fig.8a-e: Numerical disturbances for the invi-
scid transonic flow (M_=0.95, a=0)

For this test case the convergence histories of the
max (AU.) are presented in figure 9 for the case of
the sin&]e grid, and for the cases of the mesh se-
quencing with and without Tocal mesh solution.
From this figure it is shown that with the local
solution the convergence rates are faster than the
mesh sequences only. The curve is almost vertical
because the ratio of the number of cells on the par-
tial meshes over the number of cells on the whole
grid is very small and as a result the computatio-
nal work units (1 work unit = 1 time step on the
finest grid) are few. Because of the maximum change
of the conservative variable on a single cell is
plotted, instead of the mean one,oscillations are
caused on the convergence history. These are obser-
ved on the trailing edge for the present test case.
In figure 10 the Mach number contours are shown
for the inviscid test case (M =0.95, 2=0). An obli-
que shock wave is formed at the trailing edge and
a second shock wave is observed on the wake region.
The results have been compared with the correspon-
dence results from the AGARD test cases ‘'7/, Figu-
res 1la and 11b indicate excellent agreement for
the pressure coefficient and the Mach number distri-
bution along the airfoil surface. In figure 12 the
Mach number distribution behind the trailing edge
indicates the secondary shock wave.
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Fig.9: Convergence history for the inviscid
transonic flow (M_=0.95, a=0)
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Fig. 10: Iso-Mach lines for the inviscid flow
(M_=0.95, a=0)
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Laminar viscous flows

The first test case is the supersonic laminar
viscous flow (M =2, a= 10%, Re =106) over a NACA 0012
airfoil. The flow was ca]culated using a 137X37 mesh
(108 points around the airfoil).

The outer boundary is Tocated 9 chords from the
airfoil and the first mesh Tine has a distance of
5.107% chords from the surface and the wake line.
The grid around the airfoil is C-type and is genera-
ted by the Sorenson method 16) Thus, we can con-
trol the spacing between the mesh Tines from the
boundary and the angles at which mesh lines inter
sect the boundaries. A partial view of the mesh
around the airfoil is shown in figure 7c.

The genaration of the disturbances are shown
in figures 13a-e initially, the distrurbances are
larger in the region of the bow shock, in the boun-
dary layer and the wake of the flow field. After a
number of jterations, the disturbances disappear
from the region of the bow shock and propagation oc-
curs on the downstream of the flow. On the upper si-
de larger disturbances on the surface near the tai-
ling edge are presented. This doesn’t happen on the
Tower side. Thus, the adaptation procedure of the
local solution takes into account a larger portion
of the mesh on the upper plane than on the lower pla-
ne. Finally, the disturbances are limited to the wa-
ke region and die out when the convergence is achie-
ved (figures 13d,e). In figures l4a-c some levels
of the local solution are schematically shown. The
iso-Mach lines are presented 1in figure 15a and the
pressure coefficient distribution in figure 15b.
The results are compared §1th the correspondent
of the GAMM - workshop In figure 16 the conver-
gence histories for this test case are plotted. As
we can observe, the local solution improves the mesh
‘sequencing technique and gives an important reduc-
tion of the computational time, compared with the
single grid. After the repeated calculation on the
finest grid the convergence rates are very fast. It
is noted that no difference was apparent in the
results after the calculation on the finest grid.
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Fig.1l3a-e:
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Numerical disturbances for viscous
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Fig.l4a-c: Zones of the partial meshes for the lo- Fig.16: Convergence histories for viscous laminar
cal adaptive solution flow

The Tast test case is the transonic laminar
flow (M =0.85, Re=500, a=0) over a NACA 0012. The
iso-Mash lines are plotted in figure 17a and the
pressure coefficient distribution in figure 17b.
The behaviour of the convergences are similar with
the previous test cases. The computational work
with the Tocal solution is small enough.

The local adaptive mesh solution doesn’t in-
crease the reguired computer storage. This is an
important advantage for the solution of the Euler
and Navier-Stokes equations on small computer sys-

tems.
Fig.15a: Iso-Mach lines for M_=2, a=10, Re=106 08 09
1
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Fig.17a: Iso-Mach lines for M _=0.85, a=0,Re=500

Fig.15b: Pressure coefficient distribution M =2,
a=10, Re=106
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Fig. 18: Convergence history (M_=0.85, Re=500, a=0)

Conclusions
The MUSCL type approach can be used for the
inviscid fluxes with very accurate results. The
grid dependence proves that the MUSCL upwind, in-
corporated into the Riemann solver, can give ac-
curate results even on coarser grids.
The solution of the Euler and Navier-Stokes

equations can be obtained with smaller computatio-
nal effort, using the local mesh solution. The lo-
mesh solution improves the known mesh sequen-
cing technique. The adaptation procedure constructs

cal
meshes with the minimum number of cells. On the
other hand,
tion criteria for the local solution is needed.

The repeated solution on the finest mesh after the

convergence on the partial meshes is not necessary.
be combined with other ef-
fective methods such as multigrid or adaptive grids.
proportional to the fi-
nest mesh size. Therefore, in large scale calcula-

The above technique can
The computational gain is

tions, such as the flow around a full aircraft or

generally in three dimensional flows, the best ef-

ficiency is expected. In this paper results for

the inviscid and laminar viscous flows are presen-

ted. The discretization of the viscous terms via
the upwind scheme obtains
present lTaminar flows.

The above methods will be expanded to turbulent

further investigation of the adapta-

accurate results for the

flows after the introduction of a turbulence model.
Furthermore a combination of the local adaptive
mesh solution and the zonal approach is intended.
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