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Abstract X Track angle
There is an increasing number of flight mechanics studies X Turn rate
where the influence of manoeuvre type has been found to be of Xe Track angle at exit from tum
importance, most notably the recent upgrade to the U.S. Mil. Xom Maximum turn rate
Spec. requirements. Another recent development has been the Flight path ang]
wider use of inverse simulation where a modelled flight path is Y g p gle
used to drive a helicopter mathematical model in turn producing 6o Main rotor collective pitch angle
tlﬁe control actions fquir;‘d to fly it. fAtll'xthﬁulgh the inhf:;et[)lce of 0,, Tail rotor collective pitch angle
the manoeuvre on the performance of the helicopter cen . o 1s . .
established, there is lit?le information on the actual form of the 61, Main rotor longitudinal cyclic pitch
manoeuvre, or on how mathematical representations may be 0,, Main rotor lateral cyclic pitch
constructed. The aim of this paper has been to categorise the o Density of air
various types of manoeuvre commonly used in helicopter . .
military operations, then develop algorithms capable of defining Q Rotational speed of main rotor

them mathematically. Several manoeuvres are fully modelled in
the paper, and it becomes apparent that the techniques used may
be applied to any number of different manoeuvres. By way of
validation, data from flight tests has been used for comparisons
with modelled flight paths and manoeuvre parameters. Methods
of grading manoeuvres are also presented along with a
discussion on the choice of suitable mathematical functions.

Nomenclature

Cr Thrust coefficient

C, Weight coefficient

g Acceleration due to gravity
h
k
m

Height above xy plane
Fraction of manoeuvre in entry and exit transients
Mass of helicopter
ng, Flight path load factor
n, Load factor normal to flight path
n, Load factor tangential to flight path
Nty Thrust factor
Dy, Collective factor
R Rotor radius
R Radius of circular track
R, Radius of equivalent circular track
s Distance around track
t Time
T Main rotor thrust
tm Manoeuvre time
A" Flight velocity
Viax Maximum velocity attained
A, Acceleration along flight path
X, v, z Helicopter position in earth axes
X, ¥, z Component velocities in earth axes
X, ¥, z Component accelerations in earth axes
X.,¥.  FHlight path co - ordinates at exit from turn
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1. Applications and Origins of Standard
Manoeuvres for Helicopters

For all aircraft their performance in the execution of a
variety of standard manoeuvres is a significant element of their
assessment. Fixed wing aircraft, to take obvious examples, may
have various aspects of their performance assessed with respect
to :- take-off, landing, and turning and vertical loop. Rotorcraft
have a versatility that has led to their use in a variety of
applications each of which may possess its own characteristic
manoeuvres. Take-off and landing are also, of course,
necessary manoeuvres for rotorcraft, Figure 1, for example
shows the take off requirements as specified by the Federal
Auviation Authority, [1, 2]. Before a helicopter is certified
airworthy, the manufacturer must show that the requirements
specified by certifying body (the FAA in the United States, for
example) can be met. In the case of the take-off manoeuvre
shown in Figure 1, the manufacture must determine the normal
take-off distance in a range of atmospheric conditions
(temperature and altitude) and configurational conditions (centre
of gravity position, one engine inoperative etc.) given that a
height of 50ft. must be reached. To some extent, therefore, the
certifying body has defined the shape of the manoeuvre. In the
landing case, a certain amount of forward speed is desirable to
avoid the vortex ring condition, while, in the take-off, safety
considerations may require a certain angle of climb in order to
maximise the chance of survival in the event of engine failure.
This condition is shown in Figure 1 where safety regulations
require the manufacturer to show that the helicopter can perform
a safe landing should there be an engine failure at the Critical
Decision Point (CDP) during take-off.
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Figure 1: FAA Take-off Regulations
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In the military sphere of operation there has been
considerable development in the battlefield helicopter where
many standard manoeuvres are employed. The manoeuvres can
be conveniently grouped into four headings :- obstacle
avoidance, concealment, weapons aiming and delivery, and
target acquisition and tracking. As examples of these we have,
in Figure 2, the Pop-up manoeuvre to avoid an obstacle of a
certain height by overflying it, followed by Figure 3 illustrating
a Side-step which is a repositioning manoeuvre between areas of
cover. Figure 4 then shows the Bob-up which is a vertical
repositioning manoeuvre which is used for weapons delivery
especially when the helicopter is equipped with a mast mounted
sight. Finally, Figure 5 shows a ground target acquisition
manoeuvre known as the Tear-drop Turn. The precision with
which these manoeuvres are defined varies between
applications. The recently published handling qualities
specification [3] contains several manoeuvres, defined in terms
of the required flight path, which must be achievable with Level
1 handling. The basic manoeuvres of the handling qualities
document are Mission Task Elements (MTE’s) and, as their
name suggests, they are considered to be the building blocks of
an operational mission as far as handling qualities are concerned
- representing those parts of the mission where the quality of the

max vm

Figure 5: The Tear-drop Turn Manoeuvre

helicopter handling is a key parameter. The Bob-up, Side-step
and Pop-up (also known as the “Dolphin®) are incorporated in
the list of MTE’s along with several others including the
Quick-Hop, Figure 6, ("Rapid Acceleration and Deceleration”).
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Figure 2: The Pop-up Manoeuvre
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Figure 3: The Side-step Manoeuvre

Figure 4: The Bob-up Manocuvre
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Figure 6 : The Quick-hop Manoeuvre

It is apparent that both the authors of the FAA regulations,
and the Mil. Spec. Requirements have gone some way towards
producing precise definitions of manoeuvres. In particular,
several of the MTE’s in Reference 3 are described in terms of
flight path, attitude and velocity limits. Although this gives
good insight into what the manoeuvre should look like, there has
been no attempt to produce mathematical representations of
them. Of course, the descriptions given by Hoh et al in
Reference 3 are more than adequate for handling qualities flight
test purposes, however there are two other important
applications where a complete mathematical and/or numerical
description is required : classification and grading of
manoeuyvres, and inverse simulation. This paper will focus on
the modelling of helicopter manoeuvres for application to inverse
simulation studies and for manoeuvre classification and grading.
A study showing how manoeuvres may be classified is given,
by necessity, in Section 5 after the manoeuvre defining
techniques have been presented in Section 3, and validated in
Section 4. At this stage, however, more insight into the
requirements of manoeuvre-defining algorithms might be gained
by first discussing exactly what is meant by inverse simulation.

2. Inverse Simulation

Inverse simulation can be defined as the computation of the
control inputs to a dynamic system necessary to produce a
desired output state. In the case of helicopter flight, the output
state can be expressed in terms of a flight path, and the
calculated inputs are, of course, the pilot’s control

displacements; main rotor collective, 6, longitudinal and lateral

cyclic, 0, 0,, and tail rotor collective, 6, . This form of

simulation is ideally suited to helicopter flight where, as
demonstrated above, there are a large number of standard
manoeuvres employed. A computer package capable of
performing inverse simulations for helicopters, HELINV, has
been developed at the University of Glasgow [4], and has been
used for several flight mechanics studies [S, 6, 7]. One of the
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most recent applications [8] has been a study which has
confirmed the validity of the inverse simulation algorithm, and
also contributed towards the validation of the mathematical
model used - the Royal Aerospace Establishment’s (RAE)

_HELISTAB model [9]. A complete discussion of the inverse
simulation algorithm would be inappropriate here, but full details
are given by the authors of References 4 and 5. It is important,
however, to detail the requirements that the manoeuvre defining
algorithms must fulfil.

2.1 Requirements for Manoeuvre Defining Algorithms for

Inverse Simulation

The basis of HELINYV is the ability to calculate the control
displacements required to produce a predefined unsteady flight
condition. It is necessary that before the control angles are
calculated, the rotor thrust, and its direction, must be found.
This will require knowledge of the velocity and acceleration of
the helicopter, from which the force and moment components

(inertial, gravitational and acrodynamic) may be estimated. The
first, and most basic requirement of the manoeuvre-defining
algorithm is therefore that it must be able to compute the
velocities and accelerations of the helicopter throughout the
manoeuvre. As the simulation is in the form of a time response,
it follows that the velocities and accelerations must be expressed
as functions of time.

The only other major requirement of the
manoeuvre-modelling algorithms is that the analytical functions
defining flight path definitions must display a realistic degree of
continuity. In the case of a helicopter inverse simulation, the
flight path acts as the input to the system. It follows that if the
input is discontinuous then it will act on the system in a way
similar to a series of step inputs, and it has been shown [6] that
the effect on the vehicle response can be unrepresentative. Lack
of appropriate smoothness in the flight path is most likely to be
observable in responses in regions of the flight path where
curved and linear sections are joined.

A contributory part of the success of this package has been
the modelling of this series of realistic Nap-of-the-Earth (NOE)
manoeuvres, and the following section outlines the methodology
used to produce the algorithms. Although the algorithms were
created for use with HELINV, it will be shown in Section 5 that
they can be used more generally for manoeuvre related studies.

3. Mathematical Modelling of Helicopter Combat

Manoeuvres

It is often convenient in flight-mechanics modelling to set
up earth fixed and body fixed origins and frames of reference.
This allows the flight condition of the aircraft to be expressed in
the earth axes frame, hence, independently from the dynamics of
the vehicle. The velocities and accelerations expressed in earth
axes can be transformed through the Euler angles, [10], Figure
7, to give their body fixed equivalents, and vice versa.
Conventionally, the earth origin is located arbitrarily with the
earth x-axis pointing northward, the y-axis eastward, and the
z-axis pointing vertically downwards. In this paper, for
convenience, the origin is positioned at the entry to the
manoeuvre, and it is assumed that at the entry point, the
helicopter’s flight velocity vector is pointing in the earth x-axis
direction. The position of the helicopter is taken to be the
location, in the earth fixed frame, of the helicopter’s centre of
gravity. This is also normal practice as the body fixed origin is
located at this point. To create a mathematical representation of a
specific manoeuvre, the problem is then to express trajectory of
the helicopter’s centre of gravity position (x, y, z) within the
earth axes system. If the flight velocity profile of the helicopter
is also specified (preferably as a function of time) then it is
possible to determine the components of earth axis velocities and

Ze,2,

Figure 7: Euler Angle Transformation Between Earth and

Body Fixed Axes Systems

accelerations (as functions of time) through the whole
manoeuvre. This is necessary as the earth axes velocities and
accelerations may then be transformed to the body fixed frame,
hence allowing the aerodynamic and inertial forces and moments
of the vehicle to be calculated.

3.1 A General Flight Path Definition

Before modelling specific manoeuvres, it will be useful to
introduce the basic theory by describing a general three
dimensional manoeuvre such as the climbing turn shown in
Figure 8(a). Figure 8(b) shows the manoeuvre track which is
taken to be the projection of the flight path in the xy plane, and
Figure 8(c) shows the altitude change around the manoeuvre.
The angle between the velocity vector and the x direction in the

x-y plane is known as the track angle, x, and the angle between
the s-axis and the velocity vector in the x-s plane is the angle of

climb, y. From Figure 8 it is apparent that the components of
velocity in the earth fixed axes can be related to the flight

velocity, V, and flight path angles ¥, v, by the expressions

x =V cosy cosx 6))
y =V cosy siny 7))
z = -V siny 3)

The component accelerations of the helicopter are then found by
differentiation to be

% = V cosy cos - Vysiny cosy - V X cosy sinx 4)
¥ =V cosy sin - Vy siny siny + V X cosy cosx &)
Z=-Vsiny - Vy cosy 6)
where

V = acceleration along flight path

y = rate of change of flight path angle

X = turn rate
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a) The 3-D manoeuvre
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¥ Cos ¥

b) The Track

¢) The Altitude

Figure 8 : A General 3-Dimensional Manoeuvre

If it was possible simply to write analytical expressions for x, y,
and z as functions of time then, of course, equations 1 - 6 would
not be required. This situation does not always arise, and, as
will be demonstrated later, it is often easier to specify the flight
velocity, the turn rate, and the altitude as functions of time, so

that
x=fi(® M
z= fz (t) (8)
V=1(1) 9)

By integrating equation (7) the track angle X is found as a
function of time. The z-axis velocity and acceleration can be
found directly by differentiation of equation (8). Rearranging
equation (3) gives

ERIE:
= -smm | = 10
e s [V] (10)
and by differentiation
i= _zV -Vz an
V2 cosy

As the velocity, V is also expressed as a function of time,
equation (9), it is possible, using equations (1, 2, 4, 5), find the
other component velocities and accelerations. Hence, any
manoeuvre can be fully defined given the functions (7 - 9). The
form these functions take depends on the geometry of the
manoeuvre, as following examples will show.

3.2 The Pop-up Manoeuvre

As mentioned previously, the Pop-up manoeuvre, shown
in Figure 2, is used for obstacle avoidance in NOE flight where
the helicopter has to clear an obstacle of height, h, from a
distance s. As described above, in order to develop a
mathematical representation of this manoeuvre it is necessary to
express tum rate, altitude and velocity as functions of time.
Since the Pop-up manoeuvre is performed in the x-z plane (i.e.
in two dimensions), there is no turn rate leaving only the flight
velocity and altitude to define. It is important to consider the
required flight path continuity before selecting the functions for
altitude and flight velocity. It is not unreasonable to impose the
condition that at the entry and the exit from the manoeuvre the
helicopter should be in a level trimmed flight state. Considering
first the flight velocity, this implies constant velocity at the entry
to and exit from the manoeuvre (V=V, at t=0, and V=V, at t=t,,
say) and no acceleration at these points. Effectively, the
velocity-defining function then has to satisfy four boundary
conditions, and the simplest appropriate analytical function
becomes a cubic polynomial, which can be shown to be of the
form

t ) t )}
V(t)=[-2[—] +3[—} ](V;-Vl)+V, (12)
tn tn

The altitude function is similarly defined by considering the
required conditions at entry and exit. The simplest set of
boundary conditions are

z=0, z=0

Dt=0, z=0,

(13)
it=t,, z=-h, z=0, Z=0

As well as giving the correct height change, setting the first
derivative to zero ensures level flight, equation (10), and the trim
state is ensured by setting the second derivative to zero. As
there are six boundary conditions, a fifth order polynomial is the
simplest suitable function, and the altitude-defining function is
found to be

t ) t) t)
z(t)=[-6[—] +15[——} -10[——] ]h (14)
ty tn tn
It is apparent from equations (12) and (14) that if the height, h,
velocities, V, and V, and time ¢, are specified, then the
manoeuvre may be defined, however, it is much more

convenient to specify the manoeuvre distance, s, the height and
the velocities, then calculate the manoeuvre time. This is
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possible by first noting that
V=yx2+y2+22 (15)

and, in the case of a Pop-up flown in the direction of the earth
x-axis,

s=j‘0“‘ JVE-Z dt (16)

This equation can be solved numerically to obtain the manoeuvre
time t,, given s, h, V| and V,. Other manoeuvres in the x-z
plane can be defined in the same manner, indeed, the method of
choosing boundary conditions then fitting a suitable polynomial
can be adapted to suit other velocity, altitude or turn rate
functions as will become apparent:

3.3 Linear Repositioning Manoeuvres

There are three linear repositioning manoeuvres commonly
used in NOE flight : the Quick-Hop, Figure 6, the Side-Step,
Figure 3, and the Bob-Up, Figure 4. In each case the helicopter
begins and ends the manoeuvre in a trimmed hover flight state,
translating over a specified linear distance in between. If it is
assumed that the helicopter’s body x-axis is in line with the earth
x-axis, then the Quick-Hop manoeuvre is flown along the earth
x-axis, the Side-Step manoeuvre is flown along the y-axis, and
the Bob-up is flown along the z-axis. It is then apparent that the
same definition may be used, with minor modifications, for each
type of manoeuvre. As the manoeuvres are flown without
deviation from a straight line there can be no turn rate, and the
component velocity along the appropriate axis is simply equal to
the flight velocity, so that

Quick - Hop x(t) = V(1)
Side -Step y(t)= V() an
Bob- Up Z(t) = V(1)

To define the manoeuvre it is therefore sufficient to specify the
flight velocity function, the first stage being to consider the
boundary conditions which must be‘applied. As the manoeuvre
is to begin and end in a trimmed hover flight state the four
boundary conditions of zero velocity and acceleration at the entry
and exit must be applied. During the manoeuvre the helicopter
accelerates to some maximum velocity, V, .., then decelerates
back to the hover. For convenience it is assumed that the
maximum velocity is reached midway through the manoeuvre
(V=V .« att=t,/2). This condition and the four entry and exit
conditions gives a fourth order polynomial as the simplest
analytical function :

t) t) t ?
V(t)=[16[—] -32[—] + 16[——] ]Vmax (18)
tn ty tn
As in the Pop-up, it is more convenient to specify the
translational distance, s, over which the manoeuvre is to be

performed rather than the time taken. Using this information to
calculate the manoeuvre time by integrating the velocity gives :

15s
- 19)
™ B

Hence, by simply specifying a translational distance, s, and the
maximum velocity to be achieved, V., it is possible to
calculate the manoeuvre time, t,, from equation (19), then by
integration of equation (18) the flight path co-ordinates can be
found.

3.4 The level Turn Manoeuvre

This example differs from the previous two in that here it
is necessary to define a turn rate function. The most basic turn
would simply consist of a circular arc which, noting that

. V()
= 20

where R is the radius of the circular flight path, would give a

constant turn rate assuming constant velocity. Using a circular
arc poses the problem of continuity at the entry and exit sections
of the manoeuvre where the circular flight path (with a finite
value of turn rate) joins linear sections (with zero turn rate).

&
£

f.() \ \ )

Turn Rate

L 1 4’
ts t, tm Time

Figure 9: Tum Rate in Level Turn Manoeuvre

This problem is overcome by imposing transient sections on the
turn at the entry and exit points.as shown in Figure 9, where the
circular section and exit transients are reached after t and t,
seconds respectively. The resulting flight path is shown in
Figure 10 where the broken line indicates the equivalent circular
flight path of radius R,, R, is the radius of the circular section,

4
X VZ

-

Figure 10 : The Level Turn Manoeuvre

X » X,» and x; are the track angles swept out in the entry

transient, circular section, and exit transients respectively. Itis
convenient to define a parameter, k, which indicates the
proportion of the manoeuvre spent in these transients, so that

X1 =kxe X2 = (1-2K)x, X1 = k¢ (21)
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where X, is the track angle at the exit of the manoeuvre. The
whole manoeuvre is assumed to be flown at a constant altitude
(i.e. z(t) = constant), and as in the previous examples, it is
assumed that the manoeuvre is initiated from a steady, level
flight state. If a turn rate time history of the form given in
Figure 9 is desired, then the manocuvre must be performed at
constant velocity, i.e. V=V, and this is the case which will be
discussed here. The more general case which allows velocity to
be varied through the manoeuvre is discussed in Reference 11.
As both velocity and altitude are held constant, the manoeuvre
may be defined simply by specifying an appropriate function for
the turn rate. Referring to Figures 9 and 10, it is evident that
there are three distinct sections in the manoeuvre (entry transient,
circular arc, and exit transient), and it follows that the turn rate
must be specified individually in each.

a)  The Entry Transient

As in previous examples, the starting point is to consider
the required conditions at the beginning and end of the section.
As before, at the start of the manoeuvre a steady trim condition
is required which gives a zero turn rate and acceleration
condition at the entry to the manoeuvre. At time t, where the
circular section is reached, the turn rate has increased to some
maximum value dependent on the velocity V, (=V,=V,) and
radius of the circular section, R_ so that the boundary
conditions, referring to Figure 9, are given by

i)t=0’ X.=0y i=0
(22)

V.

it=1t, x=§c—=)'(m, Xx=0

A cubic polynomial is the simplest appropriate function, and
applying these boundary conditions, it is found to be of the form

3 2
>'<(o=[-2[tmi] +3[;:-] ]x,.. 23)

Noting that the track angle swept out in the transient can be
found by integrating the turn rate over the time t;,

1 = kx. = l'; x(9) dt (24)

the time in the entry transient, t,, is found to be

t=—— 25)

b) The Circular Section

Tumn rate is constant in this section, and, as in equation
(24) by integration, the time t, is found to be

tp =t +({(1-2K)% )/Xm (26)

¢)  The Exit Transient

In this section the turn rate boundary conditions are
defined as

Dt=t), X=Xm, X=0

@7
it=t,, x=0, x=0
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This gives the required turn rate at the entry to the transient, and
a straight line flight condition at the exit. As in the entry
transient, a cubic polynomial is used to satisfy these conditions.
The polynomial is of the form

X(®) =26 -3(t, + )€ +6tatrt- Bty -tﬁt%][ﬁ%h

(28)

Integration of this turn rate function between t, and the
manocuvre time t, yields

et (29)

Xm

It is apparent that if the constant velocity, V, the transient

fraction, k, the exit track angle, X, and radius of the circular

section R, were specified, then it would be possible to calculate
all of the polynomial coefficients and times, hence the
manoeuvre could be fully defined. This will not however, allow
any control] over the exit position. The most convenient way to
specify the manoeuvre is by considering the equivalent circular
path, Figure 10, and specifying the equivalent radius, Re, hence
ensuring that the required exit position is reached. An iterative
scheme to calculate the circular arc radius, R, is required to

achieve this: an initial guess of the value of R is made (based on
the input value of Re), the turn rate and component times
through the manoeuvre are then calculated using equations
(23-29), and by integrating equations (1) and (2) with y=0, the
exit co-ordinates are obtained.

X, = Resiny;, = J:m V(t)cosx(t) dt
(30)
ve = R (1-cosx) = J: V(t)sinx(t) dt

From the above examples it is apparent that any manoeuvre
may be specified by the use of simple polynomial expressions
for the key parameters of altitude, turn rate and flight velocity.

In the above examples the lowest suitable order of polynomial
was always chosen to give the lowest suitable derivative
continuity. Greater continuity can be achieved by increasing the
order of the polynomial, and the effect this has on the
manoeuvre profile is discussed in section 6. Before this is done,
it is important to establish the validity of the mathematical
representations. This may be achieved by comparing the
modelled flight paths with data from flight tests.

4. Validation of Manoeuvres Against Flight Data

Validation is an important part of any modelling exercise.
In this case, flight path data from agility flight trials has been
used to validate the modelled trajectories by direct comparison.
The flight trials were performed at the Royal Aerospace
Establishment, Bedford, using a Westland Lynx helicopter and
involved tests on a series of different manoeuvres. During the
trials, the aircraft’s states and controls are measured and
recorded onboard, whilst its position relative to the ground is
measured and recorded by a kinetheodolite tracking system. The
positional co-ordinates are recorded at constant time intervals,
and using numerical differentiation it is possible to determine the
earth axis component velocities of the helicopter, and hence,
using equation (15), the flight velocity can be determined. This
information is now used to compare the flight paths from actual
helicopter manoeuvres with those derived numerically in Section
3.



The first comparison made is of data measured in tests
involving two linear repositioning manoeuvres: Side-step and
Quick-hop [12]. In these trials, the pilot’s objective was to fly
the helicopter, from a hover condition, over a specified step
length, then back to the hover again as aggressively as possible,
whilst maintaining a constant height. This is equivalent to the
definitions of the Quick-hop and Side-step discussed in Section
3.3. By examining the velocity profile from the flight trial the
maximum velocity attained, V,,,,,, was established and as the
step size, s, is also known, there is enough information to
produce a mathematical representation of the manoeuvre. In this
case little information will be obtained by comparing flight paths
as they are simply straight lines. Instead, as the linear
repositioning manoeuvres are defined from their velocity profile,
it is more appropriate to compare these. Figure 11 shows
comparisons of the fourth order polynomial used to specify the
flight velocity and the actual velocity from both Side-step (Fig.
11a) and Quick-hop (Fig. 11b) flight trials. In both cases it is
apparent that the basic form of the helicopter’s velocity profile is
reproduced by the quartic function, however, there are small
differences in the slope of the curve which will produce slightly
different acceleration profiles. It is also noticeable that the,

30,
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Flight Velocity (knots)

BRE
Time (s)

a) 200ft Side-step to the Right

40

Flight Velocity (knots)

Time (s)

b) 300ft Quick-hop

FLIGHT DATA
4th ORDER POLYNOMIAL

Figure 11 : Comparison of Flight Velocity from Flight Data
with that Modelled by a 4th Order Polynomial

assumption of maximum velocity at the mid point of the
manoeuvre is valid.

The second set of data presented here was measured
during trials aimed at studying the agility of helicopters in
turning flight {13]. In these trials the pilots were instructed to
perform turns of a specific radius by using markers on the
ground for visual cues. The pilot was also instructed to maintain
both a constant height and flight velocity through the
manoeuvre. As with the linear repositioning manoeuvres this
appears 1o be suitable for comparison with the turns defined in
Section 3.4. Flight path data (positional co-ordinates) were
obtained for a flight test where the pilot was instructed to fly a
400ft (122m) left hand turn at a constant velocity of 70 knots.
From the data it was apparent that the pilot had actuaily flowna
turn of radius 118m, shown as a series of triangular symbols on
Figure 12. Thus the equivalent radius of the modelled turn, R,

is taken to be 118m, the exit track angle X_, is 90 degrees, and

the constant flight velocity, V. is 70 knots, leaving only the
transient factor, k, to be determined. The most appropriate value
of k is determined by varying it and comparing the resulting
flight path with that measured in the flight trial. This is shown
in Figure 12 where two modelled flight paths (k=0.1 and 0.2)
are plotted alongside the measured flight path. It is clear that the
value of 0.2 for k is the more suitable, indeed this gives a very
good comparison between the actual and modelled flight paths.

y(m)
-100 =80 -B0

120

L 80

L &0

x(m)

4 2"Flight Test Data \
Modelled Flight Path : k = 0.1

Modelled Flight Path : k = 0.2 AL 40

+ 20

.

Figure 12 : Comparison of Track from Flight Trial with
Modelled Flight Path

The examples shown here all suggest that the modelling
techniques used give valid results. Without the availability of
more flight data, particularly for height change manoeuvres such
as the Pop-up, it is difficult to give a conclusive statement as to
whether the techniques shown will be valid for all manoeuvres.
The results so far are, however, encouraging.

5. Methods of Grading Manoeuvres

One result of a precise definition of a manoeuvre is that the
ability of a helicopter to perform that manoeuvre can be
assessed. This assessment can prove useful on three levels.
Firstly, and the most basic consideration is whether the installed
power can actually achieve the accelerations and decelerations of
the helicopter inertia that the flight path requires. The second
factor to be considered is whether the aerodynamic design of the
helicopter will release that performance for use in executing the
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manoeuvre. Finally, an assessment of handling qualities will
determine the ease with which the pilot can achieve the specified
task. The first of these considerations can be approached simply
from a definition of the flight path, and a simulation study
incorporating a suitable model can supply the answers to the
second. As yet the third consideration, that of handling
qualities, is beyond the scope of non-piloted simulations and
even stretches current flight simulator technology. In this
section some criteria are introduced for grading manoeuvres in
terms of severity. First this is done solely from flight path
information and subsequently in combination with a helicopter
simulation. No attempt is made to evaluate handling qualities as
the simulations do not include a pilot.

5.1 Load Factors and Manoeuvre Severity Factor

The most common approach adopted when attempting to
grade a manoeuvre is to examine the load factor. It is intended
here to refer to a ’flight-path load-factor *which is derived from
the ’specific-force’ of the manoeuvre, that is, the force per unit
mass required to balance gravity and produce the flight path
acceleration. This leads to the definition of the flight path load
factor, By, according to

It is also of interest to identify the two basic components of this
force - the tangential component, n,, for measuring the specific
force along the flight path and the normal component, n,
associated with the curvature of the flight path

@3n

n = ———
t g [ x2 +$,2 +72
n, = /o -n} (33)

The three load factors for a Pop-up manoeuvre where the
distance, s, to an obstacle of height, b, 25m, is 200m, flown
with entry and exit velocities, V, and V, of 80 and 60 knots is
given in Figure 13 plotted as a function of time. Having defined
the flight path load factor we now have a simple basis for
grading the severity of a manoeuvre. There are several ways to
grade manoeuvres, two possibilities are shown here.

2

-

Load Factor

Time (s)

Flight Path

Tangential

Figure 13 : Load Factors in a Pop-up Manoeuvre
(s=200m, h=25m, V=80 knots, V,=80 knots)
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Maximum Flight Path Load Factor (nmmx)

Firstly, the manoeuvre may be graded simply from the
value of the maximum flight path load factor, ngpy,y, likely to be
encountered. This is illustrated in Figure 14, where a Dfprmax
values have been calculated for a series of similar Pop-up
manoeuvres, where in each case the obstacle height was 25m,
and the velocity was kept constant throughout the manoeuvre.

3.

B

150 200 250 300
Distance to Obstacle (m)
V = 60 knots —=-==-— V=280 knots

V = 100 knots

Figure 14 : Maximum Flight Path Load Factor in a Series of
Pop-up Manoeuvres (h=25m)

Figure 14 shows the variation of ngp,, against the distance to
the obstacle for three constant velocities. The plots follow the
expected form : low values of g, at the lower speeds and
larger distances. The second possible method of grading
manoeuvres involves integrating the flight path load factor over
the duration of the manoeuvre. More specifically, a Manoeuvre
Severity Factor (MSF) can be defined as

1 e ,
MSF. = — f (ng, - 1) dt (34)
tn 7

which represents the root mean square value of the departure of
the flight path load factor from unity. Figure 15 shows the
variation of MSF over the same series of manoeuvres as those in
Figure 14. The same trend is evident : low speed longer
distance manoeuvres being less severe. This second criteria,
Manoeuvre Severity Factor, can be considered more suitable as
it takes into account the possibility of sustained high load factors
through the manoeuvre.

5.2 Thrust Factor

The introduction of a mathematical model of a helicopter
enables the flight path to be used to drive an inverse simulation.
The results of the simulation incorporate both aerodynamic
effects and rotational inertias and their influence can be observed
in the comparison of ng, and the thrust factor, nry,, which is
defined as the ratio of thrust to weight coefficients.

NiTh (35)
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- = V = 100 knots
Figure 15 : Manoeuvre Severity Factor for a Series of Pop-up

Manoeuvres (h=25m)

Figure 16 shows such a comparison for a Pop-up manoeuvre
(s=200m, h=25m and V=80 knots, as in the example above)
where the thrust factor throughout the manoeuvre has been
calculated using a mathematical model of a Westland Lynx
helicopter in the inverse simulation. At the entry and exit
portions of the manoeuvre there is good correlation between the
two plots. This is to be expected as in these regions the angle of
attack of the helicopter fuselage is low, hence the aerodynamic
forces and moments are also low. During the manoeuvre, as the
angle of attack increases and the aerodynamic forces and
moments become significant, there is a noticeable difference
between the flight path load factor and the thrust factor. It is
also possible to use maximum values of the thrust factor and
measures of its departure from unity to quantify manoeuvre
severity.

———y

3
Time (s)

Flight Path Load Factor
Thrust Factor (C/Cy)

Figure 16 : Flight Path Load Factor and Thrust Factor fora
Pop-up Manoeuvre (s=200m, h=25m, V=80 knots)

5.3 Collective Factor

The closest that this type of analysis can approach pilots’
control actions is to generate control movements from the
inverse simulation and attach suitable criteria to them. In the
spirit of the discussion above, it is appropriate to relate the thrust
factor to the collective displacement. Defining a collective

factor, ng, as

8o
eouim

0

N,

(36)

where 0, . is the main rotor collective pitch angle at the

trimmed entry to the manoeuvre, it is possible to compare the
previously defined flight path load and thrust factors with one
representing what the pilot actually has to do to fly the
manoeuvre. In Figure 17 the same Pop-up manoeuvre can be
used (s=200m, h=25m, V=80 knots), and data for a Westland
Lynx helicopter was used in the inverse simulation. A major
influence in the discrepancy is the inflow through the rotor and
the collective ratio varies significantly from the thrust factor.
Gradings of manoeuvre/helicopter combinations based on
criteria attached to the collective ratio go some way to measuring
the control movements demanded of the pilot by the particular
helicopter configuration. Comparisons can be made for a single
helicopter over a range of manoeuvres, or a variety of helicopter
configurations over a series of manoeuvres.

Factors

[
Time (s)

Collective Factor Flight Path Load Factor

_—-—— Thrust Factor

Figure 17 : Flight Path Load Factor, Collective Factor and
Thrust Factor for a Pop-up Manoeuvre
(s=200m, h=25m, V=80 knots)

6. The Effect of Polynomial Order on Manoeuvre

It is apparent from Section 3 that the methods used to
create mathematical representations of helicopter flight paths rely
to a large degree on the use of polynomial functions. Asa
general rule, the lowest order polynomial which gives a constant
velocity and zero acceleration state at the entry and exit points
was chosen. It is of cotirse possible to choose polynomials of
greater or lesser order, and the effect of doing so is discussed in
this section.
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The example taken is of the Pop-up manoeuvre, In
Secti_on 3.2 it was shown that a 5th order polynomial gave the
required "trim” continuity at entry and exit for the Pop-up. If the
zero acceleration requirement is neglected, two boundary
conditions are lost, and a cubic polynomial is sufficient to define
the manoeuvre. Another alternative is to apply the further
conditions that the rate of acceleration (often referred to as
jerk”) is required to be zero at entry and exit, the extra two
boundary conditions giving a 7th order polynomial. The
resulting flight paths are shown in Figure 18 along with the
original 5th order polynomial trajectory. As the order of the
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Distance (m)

5th Order — -~ - = 3rd Order

- T T 7th Order
Figure 18 : Effect of Polynomial Order on Flight Path Shape for
Pop-up Manoeuvre

polynomial is increased to produce higher order continuity at the
entry and exit points, it is apparent that the flight path has
become flatter at these regions. The flight path then has to have

. higher curvature in order to give the correct height change. The
consequence this has on the maximum flight path load factor is
shown in Figure 19. There are two points of interest concerning
this plot. Firstly, the cubic polynomial flight path gives a linear
load factor - this is because the second derivative of a cubic
gives a constant slope. The other point of note is that as the
order of the polynomial is increased the maximum flight path
load factor also increases. In the above example a cubic
polynomial was used to define the Pop-up, the result of this
being discontinuities in acceleration at the entry and exits
rendering this representation unsuitable. It is evident that
whichever of the above criteria for grading the manoeuvres were
applied to the higher order polynomial path, the result would be
a higher severity factor. '

In Section 4 comparisons were made between flight data
and modelled flight paths. In each case good correlation was
achieved using the minimum order polynomial for a trim state at
entry and exit. In this section it is shown that other polynomials
may also give these requirements but with important
consequences on the severity of the manoeuvre. Without the
benefit of flight data for the Pop-up manoeuvre it is impossible
to say which order of polynomial gives the most accurate
representation. However, in the light of the results from the
validation exercise performed in Section 4, the use of the
minimum order polynomial (in this case of order 5) in the first
instance should give a good mathematical model of the flight
path.

Flight Path Load Factor

0 2 by [
Time (s)

5th Order _-— =
7th Order

3rd Order

Figure 19 : Effect of Polynomial Order on Flight Path Load:
Factor for Pop-up Manoeuvre
(s=200m, h=25m, V=80 knots)

7. Conclusions

The following conclusions can be drawn from the research

carried out in the field of manoeuvre modelling and classification
presented in this paper.

1. A need for mathematical representations and classification
of helicopter manoeuvres for use with inverse simulation
packages, certification and handling qualities studies has been
identified. Of these three applications, inverse simulation is the
most demanding in terms of the required definition, a full
numerical profile of the flight path being required. A less
quantitative description may be required for the other
applications which, at present, rely more on flight testing than
simulation.

2. Ithas been shown that any manoeuvre can be defined by
specifying the altitude, velocity and turn rate of the helicopter.
The component velocities can be integrated to give the position
of the helicopter.

3. The most convenient approach to adopt when modelling
manoeuvres is to use simple polynomial curves to represent
either the flight path itself or any of the vehicle velocities. Other
functions such as trigonometric, for example, may also prove
suitable.

4.  There is good agreement between the assumed polynomial
form and flight data for the manoeuvres where data is available.

5. Manoeuvres can be graded in terms of their severity. In
order to do this a flight path load factor has been defined as
being the specific force required to perform the manoeuvre.
Further, by considering the variation of the flight path load
factor through the manoeuvre it is possible to define a
Manoeuvre Severity Factor. This gives a severity grading to a
manoeuvre which is independent of the helicopter dynamics.

6. Having examined the effect of altering the order of the
defining polynomial, it can be concluded that the most suitable
polynomial is the lowest order one which gives the required
entry and exit conditions.
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Finally, a request should be made to those concerned with
forming performance and handling qualities requirements.
When manoeuvres are specified, the needs of simulation studies
should be borne in mind. There is no need to go to the extent of
defining precise trajectories, but there should be a complete
statement of entry and exit conditions, and the conditions to be
applied at significant internal parts of the manoeuvre. If this is
done then the combination of manoeuvre modelling and inverse
simulation can be a valuable design tool.
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