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Abstract:

This paper deals with the
accelerations decoupling process of a rolling
missile which is only non-symmetric relatively to
inertias. The consequence of rolling an aircraft is
to prohibit the separation of its motion equations
into independent lateral and longitudinal groups,
and also to affect its stability. Many vehicles
bank or roll to accomplish a manoeuvre which can
result in the presence of high roll rates,
producing cross—couplings and its effects. If the
designer adopts the objective of decoupling the
pitch/yaw channels of the rolling aircraft, he can
gain from the fact that a demanded manoeuvre could
start to be applied at the same time as the vehicle
starts the roll orientation task, saving time and
also avoiding stability complications. Thus, in
this paper a decoupling tecnique for non-symmetric
aircraft is presented, which makes the global
system ( aircraft + autopilot ) behave and have the
characteristics of an axisymmetric aircraft. The
result is that one can then apply all the theory
developed for decoupling axisymmetric aircraft,
using the Complex Summation Method as an wuseful
tool.

Vertical/Horizontal

Nomenclature:

All, Al2, ..., A43, A4L = State space
acceleration and rotation rates;

all, al2, ..., a43, ak4 = State space components of
acceleration and rotation rates, with
feedback;

bll, bl2, ..., b42 = Control components of
acceleration and rotation rates;

= d/dt operator;

components of
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(D+Pj) = (d/dt + Pj) - rotational operator;
= (fz - j fy) - Complex acceleration;

fx = (fzx - j fyx) = Complex acceleration at the
point x in the missile x~longitudinal axis;

fy = y-axis component of acceleration;

fz = z—-axis component of acceleration;

Ix, Iy, Iz = Roll, Yaw and Pitch moments of inertia;

i =T

KFZ, KQ, KFY and KR =

Lo, L, Ly, L¢ =

= Missile mass;

Mys My, Mp, My = Pitch aerodynamic derivatives;

Nys Ny Nn, NC = Yaw aerodynamic derivatives;

Roll rate small perturbation;

Steady state roll rate;

Pitch rate;

Yaw rate;

Elevator and rudder servo time constant;

x-component of transverse velocity;

Steady state x-component of transverse velocity;

= y-component of transverse velocity;

z-component of transverse velocity;

= A point in the missile x-longitudinal axis;

X Xip Xpropulsive = x=direction force and
trust derodynamic derivatives;

Yy Yy Yy = y-direction force aerodynamic
derivatives;

Zys Ly, Zr = z-~direction force aerodynamic
derivatives;

(q + j r) - Complex rotation rate;

Elevator angle;

(w - j v) - Complex -transverse velocity;

Rudder angle;

= Aileron angle;

= (n+ jz ) - Complex control angle;

Feedback gains;
Roll aerodynamic derivatives;
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Subscripts:

Demanded;

In inertial axes of reference;

x = At the missile x-point in the x-longitudinal
axis;

= In the

In the

H Y
W

y-direction;
.z=direction.

N <

1, Introduction:

The fact that an aircraft has a high roll rate
brings with it the introduction of coupling terms
which  prohibit the separation of the ‘'motion
equations into independent lateral and longitudinal
groups, and the six equations must be
simultaneously treated® .

This coupling 1is what is in general terms
referred to as inertial cross-coupling and, as is
stated in most of the literature concerned with it,
has only become of importance since the early
fifties (its effects can be seen through a
simmulation with results presented in Fig.3).



This 1is not the only consequence of coupling
due to high roll rates, but it affects the aircraft
stability, which in general is significantly
reduced as roll rate increases.

The most common aircraft to present this
manoeuvre are remotely piloted vehicles (RPV) or
unmanned vehicles, highly manoeuvrable airplanes or
any aircraft having relatively large rotating
masses.

The basic theory of inertia cross-coupling had
been established ds early as 1948 by Phillips 23,
but it was only considered later by designers when
the problem showed up strongly in flight testing.

There is nowadays a certain amount of
published work on this subject, covering the
stability hazards of the gyroscopic effects, and
other effects such as magnus and asymmetry3,9,10,
11,13,14,16-19,21,23,24,28

In parallel with rolling aircraft studies,
studies of  mathematical terms related to
interconnected systems were developedl’z’s’lz’zo’
22,25,26,

Soon these two fields were brought together
and with the necessity of identifying different
types of couplings there was a great advance.

One of the first proposals for breaking down
the total complexity was introduced by Lange and
Fleming?! , who introduced the concepts of "complex
symmetry" and "frequency symmetry", these being
mathematical in concept rather than physical.

Others, such as Shinar and Merhav identified
"low" roll rates as being those in which inertial
and Magnus couplings may be ignored.

Other authors followed another 1line of
research, which was the study of the influences of
pitch and yaw on the roll motion giving origin to
studies of other subjects such as roll-resonance.

Finally Fortescue /*® jdentified the different
types of antisymmetric cross-couplings in
axisymmetric missiles such as, Phasing Error
Coupling, Magnus  Effect, Control  Coupling,
Rotational Coupling and Gyroscopic Coupling.

The first three of these are aerodynamic in
nature, the fourth one is of a geometric nature and
is observed to depend on the system of reference
axes used, and the fifth is of a gyroscopic nature.

With this classification and when considering
linear systems, each type of cross-coupling can be
separately studied.

The conventional aircraft types which use a

Bank-to-turn steering policy and many cartesian
missiles, which are designed not to roll will
experience high roll torques and consequent roll

rates due to aerodynamic effects at high angles of
attack. These can cause premature loss of stability
due to the pitch/yaw cross-couplings produced by
the roll rate.

Most types of autopilot designs have dealt
with this problem by controlling the roll/yaw
coupling, since pitch in general has good stability
conditions, and basically because most of the
vehicles used have a preferential plane for
application of demanding manoeuvre gs.

If we adopt the objective of decoupling the
pitch/yaw channels, we could gain from the fact
that we start to apply the demanded manoeuvre at
the same time as the vehicle starts the roll
orientation task, and save time and also avoid
stability complications.

This idea was introduced by TFortescue®,7
applied to the axisymmetric missile, and is
followed here (the results of the application of
this idea can be seen in Fig.7).
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Objectives:

The objective is to decouple the
vertical/horizontal aircraft response motions in
non~rolling axes (in this case the vertical and the
horizontal accelerations).

We will be only dealing with gyroscopic and

rotational effects, which are the major ones and
responsible for large angles of attack and side-
s1ip6-9,24,

It is considered that the vehicle has to

respond to commands for manoeuvres in directions
which are specified in Inertial (non-Rolling) axes,
rather than in the vehicle's rolling (Body) axes.
These commands and manoeuvres can be expressed as
components in orthogonal axes, such as vertical and
horizontal directions.

The result is a system which can be
roll without loosing control.

As McGeheel5 says, the roll rates required for
BIT policy in nonsymmetric missiles can be very
high, so the application of the Complex Summation
Method®:7 is extended to the inertially non-
symmetric aircraft case.

This technique is directed towards the control

free to

of RPVs. or other unmanned guided vehicles where
the presence of a man (pilot) with all  this
feelings, sensitivities and response times are not

part of the control loop (autopilot).

The general statement of the problem:

In this study the aircraft is considered
rigid, or at least, their body flexure modes are
very high, and thus there is no interference

between them and the signals manipulated 1in the
autopilot. It is then possible to separate the two
subjects (body flexure and autopilot).

At this stage we could say that the baseline
autopilot should be one which makes the lateral and

normal channels similar, since one of our
objectives 1is to obtain axial symmetry. This 1is
possible by choosing the right baseline autopilot

gains.

Then the system resulting from considering the
autopilot will be vertically/horizontally and
normally/laterally cross~coupled due to roll-rates
and will have a behaviour somewhat similar to the
axisymmetric case.

A system that 1is neither symmetric nor
antisymmetric will be transformed into a similar
and antisymmetrically coupled (SAC) one in order to
be able to apply the methods developed for the
axisymmetric aircraft caseS,7 .

This will be done starting from the point
where the system equations are defined in terms of
body axes.

Mathematically, to obtain a SAC system means
that we want to obtain a system expressed by
complex equations equivalent to the equations which
represent the axisymmetric aircraft.

We then consider the aircraft as two

separate

systems (the lateral and normal) and express the
two outputs, the normal and lateral accelerations,
in terms of demanded and cross—coupling

perturbation inputs.

The acceleration differential equations for
the aircraft, with the original baseline autopilot,
which is the one shown in Fig.2, can be expressed
in the form:

(D% 4+ 26 0D+l ) f, =
=(av1D+avg)%?+(b$¥D+bvof?yx+(cv1D+cv0)r+(dV1D+dV?§31



-normal acceleration differential equation;

( D% + 280D + ©f ) £y =
=(a 21D+a 20) C1+(b 2.1D+b zog'sz +(c MD+° 2’0) q+(d2’1D+d2’?;T;1

-lateral acceleration differential equation.

The equations associated with the forward x-
axis are neglected since the roll rate (p) and the
forward velocity (u) have negligible effect on w,
q, v and ¢ &

In order to transform these equations into
similar and antisymmetrically coupled ones means
obtaining a system defined by one complex equation
in airframe axes (refer to Fig.3), of the form:

[ (D+)? +28quo(D+Pi) + od) fx = [a, (D+P1)+

_ 16pt
+5 {[b | (D+P1)+b g1 £, - [c | (D+P])+e yJ2 - [d | (D+P5)+d v

o' p4,

where the variables are complex, defined as:
o=t fyx s 8=n+3j g
Separating equation (3) into its real normal

and lateral components leads
equations in airframe axes:

to the following

(PP +2Equptad ) fog=(P2by P) £,y +
— [ (2P-b] )D+2 EqugP-by 1 fyx +

+c1Pq+(c1D+c?)r+
+(a1D+aO+d1P T]D+(d1 D+d0-—a1 P) CD (4)
(P42 Egugptwl )f% =(P%by P) £y +

+{(2P-by )D+2 EqugP-by 1 o5+

—-c1 Pr+(cy D+cy ) qt+

—(31D+80+le CD+(d1D+d0—81P) HD (5)
when the roll rate P is constant.

These last two equations (4 and 6) are the

ones we mneed to obtain in order to have a SAC

system, expressed in airframe axes.

Comparing these equations with the original
ones when the baseline autopilot is included (1 and
2 plus autopilot), we obtain the control law needed

in order to transform the original baseline system
into a SAC system,
Once the  ,system is transformed into a SAC

system the decoupling techniques for such type of
systems as for the axisymmetric aircraft can be
applied by using the Complex Summation Method.

2. The Standard Missile

The missile considered here as mnon-symmetric
for studying the cross~coupling effects between the

horizontal and vertical motions 1s based on
different inertias in pitch and yaw only.
The missile is of the tail controlled

cartesian type, fitted with an accelerometer/rate
gyro autopilot as in Fig.l.

] AN
_—.”_- = _%_.}-
| /S

Fig.l - Sketch of the non-symmetric missile used

for cross~-coupling studies.,

3. The Equations of the Missile with High Rqll

Rates
The equations in their algebraic form are:

a) Equations associated with the forward x-axis:

(mD -%y;) u Xy w =X q = Xpropulsive (6)
Ly v +(IxD -Lp p -Lyr = L & N
b) Pitch equations:

(@D -7,) w -uU q +(mP -Z,) v = Zn +Z.¢ (8)
My w +(IyD Mg) q My v -—(Iz—ngP T = Mint+ MC )]
¢) Yaw equations:

=(mP +%y) w +(mD ~Yy) v 4mU r = Ypn +¥;L (10)

Ny w +(Iy-Ix)P q =Ny v +(IzD =Ny) r = Nyn +N-L(11)

In these equations it is considered that the
Magnus effects as well as the control couplings are
present and the missile is rolling with roll rate P
and flying at a forward speed U and all the other
state conditions are zero.

Some other effects are neglected such as the
gravitational forces, the aerodynamic derivatives
Yoo Yy » Zy s Zg, etc., and terms of second and

higher order, the effects of which are small.

To a first approximation and for the same
reasons as for the axisymmetric aircraft, the roll
rate (p) and forward velocity (u) perturbations
will have negligible effect onw, q, v and r, as
was mentioned earlier. This can be said due to the
fact that the non-symmetric aircraft or missile
still maintains geometric axial symmetry.

Since the controlled outputs considered are
the accelerations, it is better to change the state
variables to accelerations and angular rates,
instead of velocities and angular rates and the
result is:

r+bll n +bl12 L
r+b21 n +b22 ¢
r+b3l n +b32 ¢
r+b4l N +b42 T

=Al1 £, +A12 q+Al3 f +Al4
=A21 £7x+A22 q+A23 fyy+A24
=A31 f,x+A32 q+A33 fyx+A34
=ALL fox+AG2 QHA43 fyxtAbl

ZX (12)

¥xX

i shalle Mhe

where All, Al2,
state matrix and bll,

cees A43, A4L
bl2,

are the terms of the
b42 the terms of

sevy

the control matrix, after having transfermed the
equations (8, 9, 10 and 11) in terms of W , § , V
and t to f,, , §, fgy and ¥ using also the
acceleration equations:

fzx = Dw+Pv-(xD+U)q+xPr and

fyx ==-Pw+Dv+xPqgq+D+U) T,

By considering that the lateral states are
inputs to the normal ones and the same for the
normal ones in relation to the lateral ones, we
represent and deal with the equations as if they
were representing two different systems with
coupled imputs (fyy, r and T into the normal
motions f,;, and q} and f,;, q and n into the
lateral ones fyx and r) plus independent inputs (n

and T).

=All £5,A12 q+bll n + AL3 fy+Al4 r+bl2 T
d  =A21 £,,hA22 q+b2l n + A23 £ +A24 T+b22 T (13)

=A33 fyxtA34 r+b32 T + A3l f5x+A32 q+b31 n
17 =A43 fyyhAdh T+bA2 T + AL fox +A42 qtb4l N (14)

and are the independent control inputs of the
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normal and lateral equations respectively.

4, The Equations with Feedback when not Rolling

When the aircraft is not rolling, the system
uses feedback from the rate gyros and
accelerometers as represented by the diagram of
Fig.2.

With this feedback control and when non-
rolling, the equations can be separated into
lateral and normal parts which are algebraically

represented as in the axisymmetric case which
follows:
Normal equations:
D w = Zy/m ¢f w o+ Zn/m n
q My/ly Mg/Iy ¢q Mp /Ty (15)

with the servo equation: § = ( np - n /T (16)

and the autopilot: np= KFZ ( f,p-f;x ) +KQ q (17)
Lateral equatioms:
D v = Y,/m -U v + Y /m ¢
r Ny/Iz N /Iz r NC/Iz (18)
& =(tp-28) /T (19)
and tp = -KFY ( fyD'fyx ) KR r (20)
KQ
q
< +
f n f2x
zD + KFZ >
airframe o
fzp- + z yx
= KFY - >
+ +
KR

Fig.2 - Block diagram of the system formed by the
non-rolling aircraft with autopilot to
increase its stability and performance.

At  this stage we can set KQ and KFZ in order
to obtain a desired steady state gain and damping
for the normal equations and the same for the
lateral ones using KR and KFY.

5. The Equations with Feedback when Rolling

If now we leave the aircraft to roll, the
result of the cross-coupling can be seen in Fig.3.

For the purpose of simplifying the study and
understanding the process it will be assumed that
the servos are ideal.

In this conditions if we apply the feedback of
Fig.2 the equations (13 and 14) after being
manipulated become:

[ D? -(all +a22)D +all a22 -al2 a2l ] £, =

= ( D bll +al2 b2l =-a22 bll ) Ny +

+ (D bl2 +al2 b22 -a22 bl2 ) &; +

+ (D al3 +al2 a23 -a22 al3 ) ﬁyx +

+ (D al4 +al2 a24 -a22 al4 ) r (21)
[ D? -(a33 +a44)D +a33 ak4 -a34 a43 ] ;,x =

= ( D b32 +a34 b42 -ad4 b32 ) 5y +

+ ( D b3l +a34 b4l -a4d b31 ) N +

+ ( D a3l +a34 a4l -a44 a3l ) £ +

+ (D a32 +a34 a42 -a44 a32 ) q (22)

Where the All, Al2, ..., A43 and A44 of
equations (13 and 14) are substituted by all, al2,
autopilot.

At this stage the Complex Summation Method
cannot still be applied because these normal and
lateral equations do not represent a SAC system.

If, somehow, the aircraft control system

(autopilot) could have been modified, resulting in
a SAC system, then the Complex Summation Method
could have been applied. This is what is done in

the following sections, wusing a decoupling
autopilot.
51 + , O + + +
[} -
q T ? T
[}
=T + + +E AN UAANY
f: h
3 o
5l + + + o+ + +
P t
ot + + + o+ + +
b1 ]
a3
-1 = IMUANN U
gar + + + E}* + + +
[] i
+ t + —+— + ¢ i —+
(o} (o1 0,2 Q3 0, 0,2 03
TIME <t/T)> TIME <¢t/T>
Fig.3 - Time responses of the rolling standard
missile with only gyroscopic coupling and

with the standard autopilot included, to a
demanded step input acceleration f,p=0.01

6, The Decoupling Algorithm for the Non-Symmetric
Aircraft Responses in the Inertial Axes

To be able to apply the Complex Summation
Method the equations representing the aircraft plus
the autopilot must have equal characteristic
equations, equal control dynamic coefficients and
antisymmetric cross coupling dynamic coefficients.

A decoupling technique would be obtained by
considering at an early stage the feedback of only
q through KQ to the elevator (Fig.4) and using the
value of KQ already determined in non-rolling
conditions.

It is worth remembering that we want to obtain
the lateral and normal equations with the same
characteristic equation that means the normal and
lateral eigenvalues will become equal.
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The other parts such as control dynamics and
cross—-coupling dynamic coefficients can be made
antisymmetrically coupled by extra feedback.

n < n q
fzx ; fsz
>
airframe fyx é fox1
E=0 ir u
body axes _i‘ 1nertlal

'T‘

Fig.4 - Block diagram showing the aircraft with

pitch rate q feedback only.

With this algorithm, the gains KQ and KFZ,
which were already set for non-rolling conditions,
are maintained in order to keep the non-rolliing
normal motion equations with the desired steady
state gain and damping. With this done, the non-
rolling normal motion equations are the reference
ones when developing the next steps.

With the system gain KQ set and when not
rolling, the system should be represented as in
Fig.5.

n Aircraft + algorithm £

DI zx1
——=——*  to decouple f 41 and [T
*p1 fyx1 fyx1
— .

Fig.5 - Block of the decoupled aircraft system in
inertial axes, considering elevator and
rudder as the inputs.

This system, when rolling, should make the
lateral and normal equations similar and
antisymmetrically coupled in body axes and
decoupled when in inertial axes.

The procedure will be to transform the
acceleration equations, by control, in order to
make the horizontal one similar to the vertical one
in inertial axes.

What we originally have, with only feedback of

q and when rolling, (that is equivalent to using
KFZ=KFY=KR=0) is:
2 ~(all +a22)D +all a22 -anl2 a2l ] f,4 =
= (bll D +al2 b2l -a22 bll) n +
+ apl2 a2l f,4 +
+ al3 (D -a22) fyx +
+ (ald D +al2 a24 -als a22) r +
+ bl2 (D -a22) Cl (23)
and
[ D? -(a33 +a44)D +a33 ab4 -an34 ad3 ] fyy
= (b32 D +a34 b42 -b32 akhh) ;1
+ a3l (D -ak4) f,4
+ (a32 D +a34 a42 —a32 ab4) q +
+ ap34 ad3 foy +
+ b31 (D —a44) n (24)

and what we want to obtain is:
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[ (D+P3) (D+Pj)~(all +a22) (D+Pj)+all a22-anl2 a2l]f,=

§
D
(25)
a complex acceleration equation which is
rotationally coupled in airframe or body axes (when

rolling).
Equation (25) when expressed in inertial axes
will be:

[ D* -( all +a22 ) D +all a22 -anl2 a2l ] £, = &pp
(26)

which is totally uncoupled and is what is wanted.

The (D4+Pj) is the differential operator that
substitutes the D operator for inertlal axes to
rolling axes and the jP term of (D+Pj) is the
Rotational Coupling term 7.

Thus, for this condition of decoupling in
inertial axes, and with P as a constant, the
complex equation (25) becomes:

[D?-P2+j2P D-(all +a22) (D+Pj)+all a22-anl2 a2l] f.=

(27)

where f = (f

< 8y = (np+izg) .

7% _jfyx) and

Substituting the complex variables by their
real and imaginary parts, equation (27) becomes:

[ D? -(all +a22)D +all a22 -anl2 a2l ] (f5 -jfyx)=
= (np+j oy +H -j2P D +j(all +a22)P ]1(f,4 "nyx)

(28)

Now, separating the imaginary parts from the
real parts, we obtain the two real acceleration
equations that we want to achieve:

[ D2 ~(all +a22)D +all a22 -anl2 a2l ] £,
=y +P2 £, -2P D fg + (all +a22)P fy (29)

and

=3[ D? —(all +a22)D +all a22 -anl2 a2l ] f, =
= jtpy 3P fyx -j2P D f,, +j(all +a22)P £, (30)

To find the control law for obtaining these
last equations we subtract member by member the
equations we originally had (23 and 24) from the
equations we want to obtain (29 and 30) and in that
case we have:

For the normal equations:

[ D2 -(all +a22)D +all a22 -anl2 a2l ] £,

-{ » -(all +a22)D +all a22 -anl2 a21 ] £, =0 =

X

+p2 f,x — 2P D £, +(all +a22)P f
-(b?l D +a12 b2l -a22 bll) mot
-apl2 a2l fzx +
-al3 (D -a22) fyx +
~-(al4 D +al2 a24 -al4 a22) r +
~b1l2 (D -a22) Cl (31)

and obtaining:

b12 (D -a22) L; = ny —(bll D +al2 b2l -a22 bll)n; +
+(P? -apl2 a2l) £ +
+[ -(2P +al3) D +(all +a22) P +al3 a22 ] £ +
—(als D +al2 a24 -alé a22) r (32)



For the lateral equations:

[ D2 -(all +a22)D +all a22 -anl2 a2l ] fg, +
~[ D2 (233 +a4l)D +a33 ab4 -an34 a43 ] Foy =
= ¢y +P2 £, +2P D £, -(all +a22)P f,, +
-(b32 D +a3 b42 -b33 abh) z; +

-a3l (D -ab4) £, +

~(a32 D +a34 a4l -a32 a44) q +

-ap34 ad3 £, +

-b3L (D -a4d)n, (33)
and obtaining:

b31 (D -a44) ny ==Zp -(b32 D +a34 b42 -b32 ab4)ly +
+[ (2P -a31)D -(all -a22)P +a3l a44 ] fzx +
-(a32 D +a34 a42 -a32 ad4) q +
+[ (all +a22 -a33 -a44)D -all a22 +anl2 a2l +

+a33 a44 -a34 a43 +P2 ] fyx (34)
These terms are combinations of the aircraft
characteristics, i.e. derivatives, mass, inertia,

etc., and the gain KQ.
Then we have for the elevator:

[ (byl bzl =czl ecyl)D2 +

+(byl bz0 +bzl by0 -czl cy0 =-cyl cz0)D +
+by0 bz0 ~-cz0 cy0 ] ny +

+(byl D +by0) Ny +(ezl D +ez0) oy +

<[ czl £z1 D2 +byl afz +czl £20 +fz1 cz0)D +
~by0 afz +cz0 £z0 ] f,x +

~[ ezl ql D2 +(czl q0 +ql cz0)D +cz0 q0 ] q +

-[ (~byl fyl +czl afyl)D2 +
+(~byl fy0 -fyl by0 +czl afy0 +afyl cz0)D+
-by0 £y0 +cz0 afy0 1 fyx +

+[ byl r1 D2 +(byl r0 +rl by0)D +by0 0 ] r=0 (35)

and for the rudder:

[ (cyl czl -bzl byl)D2 +

+(cyl ¢z0 +czl c¢y0 -bzl by0 -byl bz0)D +
+cy0 ¢z0 -bz0 by0 ] ¢+

+(cyl D +ey0) n_ -(bzl D +bz0) r_ +

-[ bzl fz1 D2-+Elcy1 afz +bzl fz&)+le bz0)D +
-cy0 afz +bz0 £20 ] £, +

-[ bzl ql D2+(bzl q0 +ql bz0)D +bz0 q0 ] q +

~[ (~eyl fyl +bzl afyl)D?+
+(-cyl fy0 -fyl cy0 +bzl afy0 +afyl bz0)D +
-cy0 £y0 +bz0 afy0 ] f . +

+[ eyl rl D® +(cyl r0 +rl cy%?D +ey0 r0 ] r=0 (36)

Where the new coefficients are expressed by:

bzl=-bll byl =-b32

bz0=-al2 b2l +a22 bll by0 =-a34 b42 +b32 as4
czl=-b12 cyl =-b31

cz0= bl2 a22 cy0 = b31 a44

afz= P2 -apl2 a2l
fyl==(2P +al3)

afyl= all +a22 -a33 -a44

afy0=-all a22 +anl2 a2l+
+a33 a44 -a34 a4l +P2

fzl = 2P -a3l

£20 =~(all +a22)P +

fyO0=(all +a22)P +al3 a22

+ a3l a44
rl =-al4 ql =-a32
r0 =-al2 a24 +al4 a22 q0 =-a34 a42 +a32 a44
After having added this control block
(equations 35 and 36) in order to obtain ,similar

lateral and normal accelerations when starting by
only considering feedback of q, we can compare the
output accelerations with the demanded ones in
inertial axes and feed the decoupled system with
the input errors through the gain KFZ (already set
for non-rolling conditions) and,’ in this way,
restoring the baseline acceleration equations as if

the aircraft was not rolling, and so with
acceleration responses independent of P in inertial
axes.

Equations (42 and 43) make up the basic
algorithm for decoupling the vertical/horizontal
accelerations.

A block diagram representing this control
system which decouples the system just after the
feedback of the pitch rate, makes the mnormal
equation similar to the lateral one, and finally
compares the output accelerations with the demanded
ones in inertial axes as shown in Fig.6.

The result of a numerical example simmulation,
after decoupling with the algorithm above can be
seen in Fig.7.

resolver

decoupling

1 congrol 1l

origina
r lgsysce'n "

Body ames  ————jeimrtia)

Fig.6 - Block diagram of the final decoupling
control system.
3 5.
st + 3t + + +
® £
W
EOT + + + O4 } + 3
ot + + + o +
g el
3 5
W
EO } $ - o+ + + +
-+ 3 } re i Il i i
T y 1 —t + { } +
(¢ o, 0,2 03 o 0,i 0,2 03
TIME < t/e> TIME < t/Tt>
Fig.7 - Time responses of the decoupled and

controlled non-symmetric rolling missile,
to demanded accelerations of:
a)f,pr=0.01 and b)fyDI=0.Ol.

7. Conclusions

As conclusion with respect to decoupling non-

symmetric aircraft, we can say that the Complex
Summation Method 1is not a  straight forward
technique to be applied for developing
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Vertical/Horizontal decoupling algorithms.

The Pitch/Yaw channels are not antisymmetric,
nor symmetric, and so their mathematical
expressions cannot be added in complex fashion.

However we know that the Pitch/Yaw channels
have something in common with SAC systems, since
the couplings are processed in a similar way i.e.
if Pitch is coupled by Yaw, Yaw is also coupled by
Pitch but negatively or vice-versa.

These facts give rise to the idea that one
could try to transform the system into a SAC one by
means of feedback.

It has been shown that this can be done, but it
is worth mentioning here that the solution is not
unique. They will all have in common the necessity
of accounting for the presence of the Rotational
Coupling in rolling axes.

The process will always have the function of
decoupling the zeros of the system, i.e. to annul
the effect of a control input into the other
channel, the one that is perpendicular to its
;orresponding channel; ny into fny or Iy into

ZXIBy using Complex Summation, in order to express
the complex equation we want to obtain for the
accelerations in Inertial Axes, we can very easily
identify the necessity of the presence of
Rotational Coupling when in rolling axes, Then, we
can very easily transform the complex equation we

want to obtain into its real lateral and normal
components.

After this, the process of obtaining the
control law to transform the actual system to the

one we want to obtain is a straightforward process.

It can be done by comparing the equations we want
with the ones we have (actual ones) as has been
shown,
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