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Abstract

A head-on gunnery duel between two
aircraft 1is considered as a game. The
combatants have different qualities. One
can decouple the aiming and shooting from
trajectory shaping, while the other one
can not. The opponent’s position, velocity
and acceleration is needed for aiming cal-
culations as well as for calculations of
the break away point, collision avoidance.
An extra difficulty introduced emanates
from the lag in the information from the
radar used for this purpose. The aircraft
which has the decoupling facility wuses
this delayed information to delude the
opponent at the first hand in calculation
of the break point and secondly to destroy
the aiming to some extent.

1. Introduction

Modern fighter aircraft could have a
possibility to use redundant control sur-
faces. This results in for example a capa-
bility of disconnecting the trajectory
control from the direction of the fuselage
pointing and then use this effect in head-
on encounter combat. Consider the follo-
wing scenario: Assume a head-on gunnery
engagement between two aircraft, starting
at two to three kilometers distance. One
has the possibility to some extent to
decouple the control of, the trajectory
from the aiming process and the other one
has not this facility, The purpose for
each aircraft is to aim on the hostile
aircraft as long and good as possible, At
the same time he must be sure that he can
have a safe pass.

Decoupling of aiming and trajectory
shaping can be performed in a couple of
ways. Considering the pitch mode this can
be very well utilized having an aircraft
with a canard configuration, like the
Swedish project JAS 39. There is a
redundancy in pitch control wusing the
canard and the elevons. The canard is very
useful in maintaining aiming, it gives a
fast and direct response., The digital
flight control system, which is almost a
must for this advanced flight mode, makes
this, very fast and precision demanding,
task possible to accomplish.

In an earlier study, ([1] a passive
target (flying on a straight 1line) 1is
assumed, Perfect information and no
delaying components besides the differen-
tial equations are also assumed. A three
dimensional pointmass model 1is wused and
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the process is optimized. An extension is
found in [2] where the target 1is also
maneuvering. A short period dynamic model
in the wvertical plane 1is assumed. The
restriction due to the radar tracking is
indicated in [3], where a simple filter
model of the opponent ‘s states is
simulated.

The mathematical setup should require a
short period model of the aircraft [2] as
the process is of a short duration (three

to five seconds ) including physical
constraints of for example the rate of
deflection of the control surfaces. The

opponent 's velocity vector is not perfect
it has a lag due to the Kalman filter
which needs a certain time to update the
target ‘s velocity and acceleration. This
fact makes the game a bit tricky, as the
decoupled aircraft might trick the other
one to break earlier than he needs. The
filter wused 1in this paper is simple
straight forward and close to the filters
used in practical aerial target tracking
problems. The model used is rather simple
as this study will concentrate on the game
mechanism when including the filtering
problen.

The aircraft in the decoupled mode is
able to modulate the trajectory for
maximum misleading of the opponent and
still maintaining the aiming. This means
he can aim to a closer ©point while
satisfying the prescribed pass distance
constraint. The less able aircraft has to
give up aiming earlier in order to produce
his contribution to the pass distance.
This constitutes a new sort of a game. The
game philosophy can be dliscussed, however,
When taking practical constraints into
account these will steer the discussion to
a few choices.

The purpose of this paper 1is to
describe the concept with a fuselage
pointing aircraft decoupled from the

trajectory, Particularly the effect of the
lag in the measured data of the radar will
be explored including the new concept of
gaming under this incompleteness.

2, Kalman Filter

The models of the aircraft could be
like in [2]. With the purpose to have a
simple optimization performed we assume a
simpler model, also the game is taking
place in the plane (vertical plane without
gravity). For each alrcraft we have,
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zZ = Vg (1)
vy = Acc (2)

A simple Kalman filter is then,

Ze = Vge * Ki'(2zp - 2Zg) (3)
Vgze = AcCe *+ Ky (2p - Zg) (4
Acce = -BrBccgy *+ K3-(2p - 2zg) (5)
2, = 2+ W, w = N(O, @) (&)

where z is the position, v, is the
velocity 1in z-direction (both initially
set to zero), Acc is the crossacceleration
subindex e refer to estimated variables
and w is, white, measurement noise,
emanating from e.g. glinting and signal
noise ratio. The Kalman gains are Kjy; i=1,
2 or 3. The measurement noise is assumed
to be stationary. In practice this is not
the case, since, at closer distances the
glint is deominating and further out the

signal noise ratio will dominate the
measurement noise, which constitutes a
non-stationary process.

As the maneuver, Acc, is not known by

the measuring aircraft, a model of the
maneuver must be used in the filter. If we
assume the target is switching from
maximum turn in one direction to maximum
turn in the other direction, tAccpzyx, it
will possess a Poisson process. An
approximation of this is a Marcov model,
Egs.(1,2,7), where the input is a white
noise, v. This is easier to handle than
the Poisson process.

Acc = B-(-Rcc + v), v = N(O, Accpgx) (7

In the literature like [4 - 7] filters
of this type are studied and there 1is a
theoretic background in determining the
fictitious parameter B from the standard
deviations © and AcCpsx. The filter used
in this paper as well as in most aircraft
implemented filters are theoretically
simpler and the value of B 1is chosen
empirically. The Kalman gains, K;, are
calculated with assumed noises and from a
Riccati equation (see Appendix B). In
practice this is backed up by simulations.
A realistic filter response for a moderate
noise environment is found in figure 1,
where a step in target acceleration at a
certain time is applied. We can notice the
lag in the estimates of both the accelera-
tion and the velocity, while the position
is less affected. Initially, position and
acceleration are zero and velocity is set
to a positive value in this demonstration.

3. Optimal Control Problem

With the purpose to illustrate the
possibility to take advantage of the lag
in the filter a simple optimal control
problem is,

Maximize { z(tg) - zpltyg; 68t) } (83

A smart maneuver by the aircraft with
decoupling facility canm make him aiming
and producing a predicted position, z,(tg;
6t) like a decoy in the other ones system,
which deviates considerably from the real

position, 2z(tg¢), at ty. This forces the
other aircraft to make his avoidance
maneuver much earlier then he otherwise

should have to. Each player will predict
the opponents position, z (tg; 8t), at an
estimated pass time equal to the final
time, tg, determined by the closing velo-
city and present distance. The break time,
ty, is then

ty =ty - 6t (9)

The prediction is based on the measured
variables from Egs.(3-5) and the time it
takes for the aircraft respectively to
accomplish an avoidance maneuver, ¢6t. The
predicted position is then given by,

zpltes St) = zZg(lp) * Voalty) ot +

+ $Accg(ty) -6t -6t (10)

In the cases below a common default
value of 6t is one second. Also, 6t is
called Delta Time in the figures, and the
optimal difference Dbetween z(tg) and
zpltss ét) is denoted by Dz.

3.1 Maximize the object function

The problem is solved for one aircraft
maximazing the object function (8). This
means the other aircraft, if it was there,
will be maximally misled about the first
ajrcraft’s final position. A typical
optimal switching of the acceleration (%50
meters/second?) is given in figure 2,
where we have three switching times. The
very last one might coincide with the
break point in the aiming problem below.
In other cases it might Dbe two or
sometimes only one switch. We can notice
the delay in the estimated acceleration,
although the case in figure 2 has 6t = .25
seconds, a relatively small number.

As expected the maximal miss prediction
grows with the prediction time, see figure
3. The curves are produced for a c& rtain

noise environment. However, there 1is no
measurement noise applied to Eqg.(6) as
this gives non-smooth curves, but the Kj
in the Kalman filter corresponds to a
given o. The knees in figure 3 are due to
the fact that the two first switching
times disappear (goes to zero) at a

certain prediction time value,

3.2 Maximize the _object function with
aiming
A passiv target 1is now introduced

initially flying on & straight line. The
aircraft which has decoupling facilities
uses a small pitch deflection, 68a, added
to the angle of attack in order to achieve
aiming besides to some extent controlling
the trajectory with the crossacceleration,
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Acc. Introduce an additional
Eqs.(1,2) for this aircraft,

equation to

80 = Kgg-(8aypn - Sa), |8al < Sopay (11)

The gain kgo is in the range of .1 -
we use ,2.

.3,
A typical value of dqpay 1s two
degrees. The <wo controls are RAcc in
Eq.(2) and 6oy, where the latter one
controls the aiming as it can not affect
the trajectory and Acc is mainly used for
trajectory shaping subject to the working
range of da. We have a state constraint on
éa, as is shown in Eq.(11), and a control
constraint on the acceleration, *Accpgy:
set to 50 meter/seconds?,

Obviously aiming can not be satisfied
arbitrarily close to the target if we want
to avoid collision. A break has to be
made, the time for this corresponds to tp
above, This time is in the first examples
considered as fixed (3.5 seconds). At
least beyond this point maximum
acceleration should be applied. The
optimal control derived in Appendix B2
execute an acceleration large as possible
including switching subject to the
aimingcondition (C3). Typical control
histories are depicted in figures 4,5,
with 8apay = 2  or 4° respectively. Notice
that the noise comes through particularly
apparent on the acceleration. Obviously,
the acceleration stays longer on it’s
limit when using a larger Sopgx. Also, the
da. is plotted and demonstrates the
effectiveness of the hyperplane tech-nique
applied to this case. The switching
function in Eq.(B12) has a shape as in
figure 6 corvresponding to the case in
figure 5. The adjoints go through large
changes when the different switchingtimes
come through.

Maximal prediction errors versus 4t are

shown in figures 7,8. When no extra
facility to aim 1is present, 1i.e. an
ordinary aircraft, the prediction error

was found to be 6,22 meters independent of

8t. As a comparison we can look back to
figure 3 corresponding to a very large
Sapmax (2infinity). These  observations

together indicate the value of the control
8xjn. At a reasonable prediction time of
1.5 seconds the prediction error goes from
6.22, 55, 100 and 155 meters when &apsy
goes from 0 , 2 , 4 and infinity,

In order to isolate the effect of break
away the break time is swept in steps of
.2 seconds, &t held fixed to one second.
The result of this is seen in figures 9,
10. With no break away (tp = ty = 4
seconds) the prediction error is zero if
Sayax = 0, while a Sapsy of 2° gives about
27 meters. Although, the zg is zero in
both cases.

An acceptable aiming
within 0.3°

error must be
{(the limit at one kilometers
distance) in order to obtain a good hit.
The error is plotted in figure 11, which
shows fe] < ©0.18° up to ty. As the

process is simulated in a computer it is
possible to calculate the real aiming
error, which is also plotted in figure 11.
On the estimated error it is apparent how
the disturbed zp, and v, comes through.

The controls are using this error. The
same run was checked without the
measurement noise applied in Egq.(6). The
error is then very close to zero. The

aiming error profile looks the very same
independent of 8apay as the control of the
error is done equally by 8aj, or Acc.

4, Game Problem

We consider now two aggresive aircraft,
one has one control the Accy and the other
one has two controls the Accp; and the
8aipn. Refer to the aircraft as ACl and AC2

respectively. The most difficult part is
what to base the break on and
particularly, which direction should it

take. This is more detailed discussed in
reference 8, In this paper one plausible
case is studied. The game formulation is;

Both produce at .least a half pass
distance relative to the predicted
position of the opponent at pass and
assume that the opponent does the

same . Break direction is assumed to
be & priori determined., Then both
aim as long they can.
4.1 Maximize the object function
The prediction times used by each
aircraft is a function of the opponent’s

aiming time i.e. the break time.

dtq = tg - Lty (12)

Sty =ty - tpg {13)
where the subindex 1 and 2 indicate AC1
and AC2 respectively. The game will then
be to match the break times such that each
aircraft can produce at least a half of
the given pass distance, which must be a
fair assumption as both care to the same
degree for non-collision. The optimization
is first of all to maximize the prediction
error for AC1l then adjust the break times
till the pass condition is satisfied for
both. From figures 9,10 it turns out that
a smaller typ is needed to achieve a larger
side step distance, 2zf (2{ty) in the
objectfunction (8)). On the other hand the
opponent then get a larger 6t and this
gives an even harder demand on the first
aircraft, as he needs to turn away more as
the prediction error grows (assuming that
the turn is in a proper direction),
figures 7,8, etc.

Both aircraft are supposed to make an
up and a down turn for AC2 and AC1
respectively and produce at least 350
meters, Zgj, away from the predicted final
position ©f the hostile aircraft, 2zp4
(zpj(tgs 6ty) in the objectfunction (8)%,
where j=1 when i=2 and vice versa. In this
case AC2 after a while reaches his
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limitations in both Acc, and 6ay,, which
means he is not able to aim the full time
out., When this happens his break |is
initiated. Hence, AC2 will obtain more
than 50 meters in his contribution to the
pass distance., The flight paths are shown
in figures 12,13 note that there are
different scales in z- and x-direction,
which exaggerates the picture of the
maneuvers. Clearly, AC2 deceives ACl’s
prediction and forces him to make a large
avoidance as 2,5, 1is much negative., The

individual contributions to the pass
distance, 2§35 T Zpio are for AC1 -50
meters whilé AC2 produces around 92

meters or 165 meters duge to limitations in
aiming, |8a] < 2° or 4° respectively. The
breaktimes are tpq = 2.035 seconds and tp,
= 2.9775 seconds using |éa] < 2° and ty; =
1.585 seconds and typ, = 2,655 seconds
using [sa} < 4°.

Using this strategy in determining the

break condition there is a considerable
advantage of having an aircraft with
decoupling facility. Assume the kill-
probability [2], Eq.(14), is a good

measure of how well one aircraft succed in
this duel.

pg = Const-(Ry -Rpreak)>/Ro? (14)
The place where the gun is activated is
Ry, The exchangeratio of Kkillprobabilit
will then be 3.14 and 4.70 using [da| < 2
and 4 respectively in advantage to AC2.

4.2 Aiming errors
As an illustration of the aiming errors

we pick the examples corresponding to
figure 12. Also, the measurement noise in
Egq.(6) is not applied, since we 1like to

isolate the effect on the errors emanating
from the maneuvers. The estimated errors
as well as the real errors are shown for
both aircraft in figure 14. The controls
of the aiming are based on the estimated
errors as before. The results show the
following: The real errors are larger than
the estimated ones but still acceptable
for AC2 till just after AC1 breaks, while
AC1 has difficulties to keep the error
within the $0.3°. The maneuvers by AC2,
which original purpose were to deceive AC1
in prediction of AC2’s pass position, also
affect ACl’s aiming significantly.

5. Summary

The results obtained are based on the
assumptions made in this paper. Simplified
models of the aircraft (pointmasses) and
motion in a plane. Including mere short
period dynamic might somewhat smooth out
the effect of switches in the accelera-
tion. The game illustration will still be
left . The game ingredients are more
clearly visualized when using the simple
models.,

If there is a situation with a predic-
tion time involved, a large error in

prediction of a position can be performed.
Introducing a 8a increases the possibility
of aiming and enlarging the prediction
error for the opponent. A reasonable 6«,
around 2°, will contribute with an amount
in prediction error which is in a practi-
cally wuseful range. The aiming error
depends only on the measurement noise in
Eq.(6) as far as the target is non-
maneuvering.

The filter used is designed for other

purposes than optimizing the predictor
used, Eqg.(10). A better predictor than
Eq.(10) adapted to the filter used might

be possible to find. However, the effects
of the delayed information would still be

a significant contributor to the game
problem discussed.
The break problem is not trivial. It is

reasonable to refer the size of the side
step to the predicted pass position of the
hostile aircraft. Which side of it or the
turn-direction is more questionable. If we
base the turn direction on the a priori
determined direction there is a large
advantage with an aircraft, which can use
a decoupled mode. There might be a
motivation for using a sort of & priori
determined direction, In the onboard
autonomy system there must then Dbe a
calculation of what the opponent might do.

This will 1include a simulation of the
opponent ‘s Kalman filter i.,e. both Kknows
each others prediction of position at
pass.

One definite advantage with the
decoupling facility is the irregular

flight path such aircraft can perform
causing a much larger aiming error in the
opponent ‘s measuring equipment than his
more regular flight path returns to the
decoupled aircraft. It takes a while till
the system can detect that it does not aim
perfectly. Then it 1is to late to switch
strategy. The optimization used here 1is
not designed for this particular deception

aiming problem. Thus, if optimizing with
respect to deceiving the aiming it might
be possible to gain more, A nice target

(passive) would not raise any aiming
problem, while an optimally deceived radar
can easily drive the aiming error out off
what is acceptable for a hit.

The best to do for an aircraft without
deccupling facility is to give up aiming
and concentrate on jamming the opponent’s

aiming. This means the aircraft with
decoupling facility can force other
aircraft not to shoot in the head-on-

encounter, Thus he has removed a threat,
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Appendix: A, Kalman Filter

The theory of the ordinary Kalman
filter applied to the case studied gives
the gains,

Kl = Rllo/Var"W (A1)
K2 = RiZO/Varw (A2)
K3 = Ryjze/VarW (A3)
where Ry;, are stationary values (time
goes to infinity) of the corresponding
elements in the Riccati equation below.

The variances are defined as,

VarW g? (A4)

[

VarV = Accpax® (B5)

In this ¢ase the matrix Riccati

equation turns out to be:

Ryg = 2°Ryp - Ryy Ryq/VarW (R6)
é22 = 2-Ry3 = Ryy-Ryy/VarW (A7)
Ry = -2:B'Ryy - Ryy-Ryg/VarW +

+ VarV (A8)
E‘<12 = Ryp * Ryz - Ryq-Ryp/VarW (R9)
élg = Ryg - B-Ry3 - Ryq - Ryz/VarW (AL0)
ézg = R33 - B-Ryy - Ryp Ryg/VarW (Al11)

The equations are integrated forward in
time, initially starting from zero for all
elements, This is done numerically by an
Euler integration method, When integrating
continuous equations in this way and they
include noise comporient we have to divide
the standard deviations with the square
root of the integrationsteplength.

Appendix: B, Optimal Control Conditions

Substitute Eq.(10) into the object
function (8), the object function to be
maximized turns out to be

vV = Z(tg) - 2glty) - Vy(ty) 8t -
$AcCy(ty) 8t 8t (B1)
That is an interior time control problem.
Forming the Hamiltonian

H =V, v, + VV,"AcC + Vyga [Vye * Kp-(2 +

W - 2Zgl)] * Vvyo-[Rccg + Kyt(2z + w - 25)]

+ VAccy, ' [-B-Accg + Kyi(z + w - 24)] (B2)
The adjoint variables start by a capital

V. The control is Acc¢ and the noise, w, is
considered as zero.
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Bl No_ aiming
Maximizing the Hamiltonian gives the
optimal control to be i

Acc = Accpay Sign{Vyz} (B3)

The differential equations for the

adjoints including the transversality
conditions will then be
Vg = “Vze Ky = Vyze'Ky - Vacce K3
Vyltg) = 1 (B4)
Vyz = “Vz, Vyz(tg) = 0 (BS)
Vae = Vze Ky * Vyze Ky *+ Vpcce'Kss
Voelty) = -1 (B6)
Vyze = “Vzes Vyzel(tp) = -8t (B7)
Vacce = “Vyze * Vacce B
VAcce(tb) = -38t-8t (B8)
We also have
Vze(t) = sze(t) = VACCe(t’) = 0 fOt” all
t >ty (BY)

Bl1.1 The conputational procedure, Assu-
me 4t is given, As the velodcities in the
x-direction of the aircraft ¢can be
considered constant and peérfectly measura-
ble as well as the present distance, the

pass time ty is known. Then we also know
tys Eg.(91). The adjoint equations,
Eqgs.(B4-B8), can then be integrated
backwards in time. Then we pick up the
timevalues when the control in Eq.(B3)
changes sign and store them. These are

called switchingtimes. The state equations
Eq.{(1-5) can now be integrated forward in
time using the stored switchingtimes to
create the control associated with
Eq.(B3). The predicted position from
Eq.(10) and the final position can then be
determined. All this is done in one
backward and one forward sweep. As a
matter of fact this case 1is possible to
solve analytically so far. The numerical
approach is more convenient also to solve
the extended problem below can
not be analytically solvable.

B2 With aimin

First the state constraint in Eg.(il)
has to be included in the optimal control
problem. This is done by thé Hyperplane
technique {9] transferring it to a state-
control constraint,

o - Ayt (8o + Sapay) £ 5“in < See -

Ayt (8a < Sdpax) (B10)
The parameter Ay is chosen as large as
practically useful. Too large might raise

numerical problem, too low will satisfy



the constraint pessimistic and not use the
full working area of it. A value of 4 gave
a distinct approach, with a smooth arc, of
da to it’s maximal value, see figures 4,5,
A larger A, will give a sharper arc,

When t 2 tp we have the same conditions
as in section Bl. Then we have to consider
if the acceleration is on it’s limit or
not. The 6aypy is on it’s limit when the
acceleration is off it's limit and vice
versa. Consider acceleration as the
control variable maximizing the
Hamiltonian and let <{he other control,
Sajp, satisfy Eq.(C3). Form the new
Hamiltonian with the interesting terms
written down,

H = Vyz Acc + Vgo ' (Eps - Acc/vy -
- Kgo'8a) + remaining terms from

Eq.(B2) (B11)

The optimal acceleration will then be

Acc = Accpax Sign{Vy, - Vga/Vx} (B12)

The adjoint equations to be modified
are those for V, and V,,, also an extra
adjoint wvariable for 6a has to Dbe
introduced, Vgy. Two cases have to be
considered with respect to saturation or

not of the acceleration,

The case when |Acc| = Accpgy;

Vz = “Vze K1 - Vyze 'Ky - Vacce K3 *+

Vea (1 + Kpui1) (1/Dt + (vy + vgep)/X)/X,
Valte) = ky (B13)
¢Vz = Vg + Vg (L/D/vy + (1 + Kyy1 /%)
Vyz(tg) = 0 (B14)
Vso = Veo/Dt. Vgolt) = 0 if t > ty (B1S)

where vy, 1is the velocity of the aircraft
(in x-direction), x is the distance to the
target (initially 2000 meters), subindex T
stands for target and Kp,; is the ratio of
target velocity and the mean velocity of a

fired bullet, vpyj. Numerically, Kpyl is
in the order of 0.2. See Appendix C for
the time increment Dt.

The case when |Acc| < Accpax:

oz = Vze Ky - Vyze 'Ky = Vpcce Kz +

* Vyz V(1 + Kpy1 ) {1/Dt + (vy +

+ VT M/ X1/%, Valte) = Kk, (B16)

Vyg = Vg *+ Vyg [1/Dt + vy-(1 +

+ Kpy1)/x1, Vyz(tg) = 0 (B17)

Voo = Koa'(Vsa - Vyz'Vx)'Ro *

+ Vyp'Vy/Dt, Vgu(t) = 0 if t 2 ty (B18)

B2.1 The computational procedure. The
procedure in section Bi.t 1is almost
applicable on these adjoint equations,
Egs.(B13-B18), Besides storing the
switching times during backward
integration the timeintervals while the
acceleration is saturated must be stored
during forward integration and then be
used to determine, which of the sets of
adjoints above is applicable.
Unfortunately, this makes the procedure
iterative., When initiating the backward
integration a guess of time intervals must
be done. Still no need for a more
complicated optimization method.

Appendix: C. Aiming Condition
The two aircraft are closing with
constant velocity (250 meters/seconds
each) in a near <collision course. Then
angles and deviations can be considered
small. The geometry in figure Cl1 is
exaggerated, The gun may point within

téoypax out from the velocity vector., An
aiming error, €, is introduced, which has

to be close to zero on a given tolerance
This error can be
using the

level for a good hit,
derived from figure C1
theoremnm,

sinus

Figure Cl. Aiming Geometry

€ = vy /vy * 8o - (1 + Kpyypd-(zer - 2)/x -

“Kpul "VzeT/VxT (C1)

In order to close the aiming triangle
we have to drive ¢ to zero. As there is no
direct control in Eq.(Cl) we have to make
use of time derivative of € and use the
technique in reference 2, Eq.(7), yielding
the aiming condition
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0 = ¢ + {Acc/vy * kKgu (Sajy - Sx) - (1 +

* Kpup) [(vzeT - vz)/x + (vy + vgp)-
(ZeT - 2)/x*] - Kpyl-AcceT/vyxT} Dt (C2)

where Dt 1is the
supposed to take
zero, - [2]. It 1is

time increment it is
to drive an error to
convenient to rewrite
Eq.(C2) with the controls explicit and
summarize the remaining terms in an
auxiliary function Eps(e),

Acc/vy + Kgo'Sayy + Eps(e/Dt, 8a, zZer,
s Zs VzeT» Vz» VxT: Vx» BCCeT. X, Kgg,

v Kpui) = 0 (C3)
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Figure 11. Estimated and real aiming error Figure 13, Optimal flight paths, éamax=4°
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Figure 14. Estimated and real aiming errors

Figure 12. Optimal flight paths, Soggy=2".
for ACl1 and AC2 vs time.
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