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Abstract

A madel for compntation of the time-averaged
sibsonic flow field over a nacelle and a wing in-
duced by a propeller has been developed. 'The slip-
stream model is based on classical propellee theory
awd is included in an existing panel program. The
geometry of the slipstream is determined by the
nacelle. The influence of the propeller is given hy
a combined momentum-hlade clement theory. No
experimental data are necessary. The computed
pressnres and velocities are compared to windtun-
sel data for two angles of attack and two geome-
tries: an axisymmetric nacelle and a wing and a
non-axisyimetric nacetle and a wing.

1 Introduction.

The prediction of the influence of the propeller slipstream
on the flow is important in the design phase ol a vew pro-
peller driven aircralt. The flow pattern over the nacclle
aud the wing is affected considerably by a tractor propelicer
momted on the wing in pacticular at take-off conditions.
Panel methods are a standard tool for acrodynamical com-
putations around three-dimensional conlignrations at snb-
sonic speeds, see e. g. [11]. Usually panel programs are
wrilten to solve potential flow problems. but they can be
amended Lo handle also the vortical llow hehind a rotating
propeller. The advantage of panel methods s that they are
casy to nsc and inexpensive in terms of CPU time. When
a propeller slipstream capability is added Lo a panel pro-
grant the extension should also have these two properties.
The flow in the slipstream is much more complicated than
ordinary freestvecam llow and simplitications in the compn-
tational motde] are vecessary. Thus, we cannot expect to
obtain the same acenracy in the predictions with the slip-
streant as we are used to withont the slipstream. This is
true also lor windtunncl experiments.

In this paper we describe a propeller slipstream model
which has been incorporated in an existing panel program
[L1]. The time-averaged flow behind the propeller is gen-
erated by a system ol vortices lollowing classical propeller
theory [16]. "I'he strength of the vorlices is determined by a
combined momentnm-blade element theory. The propeller
data needed in the simulation are the nuniber of blades, the
geomcetry of the blades, the speed of revolution ete. No sup-
porting windtunnel experiment is necessary. The geometry
of the slipstream is approximated taking the surface of the
nacelle into account. This is important in order to phtain
realistic pressuces on the nacelle. 'Uhe velocities in the slip-
stream determined by Vhe model ave introduced together
wilh the [reestreain as onsel flow in the panel method. The
variation of the total pressure inside the slipstream is given
by one of two implemented options based 'on 1momentuur
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theory,

The computed pressures and velocities are compared
to windtuuuel measurements {rom FEA [21].[22]. The cou-
liguration geomelries are an axisymmetric nacelle with a
wing [22} and a non-axisymmetric nacelle with a wing [21].
The non-axisynimetric nacelle is such that the shape of
the innermost sections of the slipstyeant is changed by the
prescuce ol the nacelle. The Mach number is 0.45 and the
angle of atlack a is 0° or 5°. The chosen propeller data
cotrespond Lo a take-off case with a contribution from the
stipstream in the reestream direction ol more than 60 %
of the freestrean speed. ‘I'he ¢, valies on the wing and
nacelle and the velocities in the slipstream outside the na-
celle are compated. The agreersent iu the simplest case,
the axisynunetric vacelle at o = 0°, is quite good. ln the
more complex flows around the non-axisynnnetric nacelle
the influence of the slipstream on the wing pressuces is
overestimated in comparison with the experiments.

The time-averaged llow over a nacelle and a wing be-
hind a propetler has heen computed previously using panel
methods, nontinear potential equations and the Buler eqoa-
tions. Tn [1]2181[0].[12]. (23] & panel method is the basis
for the development of the shipstream model. The slip-
stream is modeled analytically in [1].J2] and [12]. The con-
figuration in these papers is a vacelle with a wing. The
compubed pressares in (2] are compared o experimental
data at the wing. A propeller panel model is presented
in [9]. “The model is applied in [23] to a complete aircraft
conlignration with aft-mounted pusher propellers and the
compntations are compared to windtinnel resnlts. In [8]
the same model s developed to predict the low over a
nacclle and wing behind a tractor propeller. Propeller sim-
ulation codes for higher Mach numbers nmst be based on
solvers of nonlinear equations. In [5] a program lor solution
of the transonic small perturbation equation is extended
to include slipstrcam ellects. The computed pressures are
compared to expertments for a swept wing and a nacelle.
The full potential equation is used in [18] and [20]. "The
confignration in [18] is a wing and in [20] a nacelle and a
wing. Comparisons ave made with measurements over the
wing in both papers. The slipstream elfccts are modeled
analytically using windtunnel data in [5], [18] and [20]. 'The
Buler equations and a slipstream delined by experiments
are solved over a wing in [24) and a nacelle-wing cobina-
tion in [3] and [19]. The caleulated pressures are compared
to experimental results on the wing.

In all the references above the nacelle scction is fairly
small in comparison to the propeller dise and there is vo
experimental validation of the computed nacelle pressures,
Many of the methods are ot satisfactory il the nacelle
modifies the slipstream geometry considerably behind the
propeller. T most cases the calculations rely on experi-
mental data or analytical approximations of the slipstream
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properties. No velocities in the flow field are compared to
measurements but only e, values on the wing suilaces.

I'he rest of Lthe paper is organized as lollows. i the next
section the physical and mathematical background for the
slipstream model is given. Then the computational method
is described in section 3. The geometry of the slipstream is
determined in the first step. In the second step the singn-
tarity distribution iu the slipstream is compuled, the onset
flow al the solid surfaces ol the conliguration is calculated
and then the panel wethod is invoked to obtain the com-
plete flow field. Comparisons with windirnnel experiments
arc made in section 4. The couclusions are drawn in the
final section.

The anthor has had many fruitlul discusstons with Berk
Arliuger on the subject of this paper.

2 Background in physics and
mathematics.

This section is divided into two parts. We begin by deriving
the basic relations for the represcntation of the vortical How
inside the slipstream. Then the blade element theory and
the coupling to the slipstream model are reviewed.

2.1 The slipstreamn model.

Il we are interested in the titme-average ol the influence
of the propeller on the downstream nacelle and wing sur-
[aces, then the classical model replaces the discrete pro-
peller blades by a continuum of propellers on a disk [10].
Therclore, the slipstream consists of a continuum of pro-
peller wakes and the velocity is a stooth time-independent
vanable,
Let v be the velocily of the flow

Vo= (v, Uy, Vs )'1"

® a scalar potential and A a vector potential, In inconi-
pressible flow it {ollows [rom the continuity equation that
v is divergence free

V.v=0 (1)

By HUelmbholtz’s decomposition theorem v can be split into
two parts vy and vy with the properties

V=V, + Vy,
vi=VxA, V.v, =0, (2)
v2=V(I), VX\’):U.

The rotational part of the flow in the slipstream is repre-
sented by vy and A and the irrolational part, e. g.-in the
[reestream, is represented by ve and ¢. The potential @
consists of two terms: Uhe freestream potential € and the
potential due to the submerged body iu the ow &,

o=+, (3)
1t [ollows [rom (1) and (2) that
Vv=V.vy=Ad =0 (1)

The equation (1) is solved for ® by the panel method in
[11]. The method is of the same type as e. g. VSALRO [15]

and PANAIR [6]. 'The boundary coudition on @ is a Dirich-
let condition at the iuner boundary of the configuration.
This condition is usually chosen to be ®.,. Lel (£,7,C)
be a point on the conlignration swrface C aud (w,y,z) an
arbitrary point in space. Define
r=(v—&y—n:-0)",
=)= e =2y = (= O

and introduce the notation

b = Ve(l/r) = =V, (1/r) = £/,

The dillerentiation in the operator V is made with respect
to the (x,y,z) or the (£,7,¢) variables depending on the
index. 1In the panel wmethod [14] ®; in (3) is written as
an integral over € of the swlace singularity distributions
e (€., C) (doublets) and a¢:(€,7,¢) (sources and sinks)

) 1 .
b ey, 2)= Er-/c(/l.('n-b~a/r) dc. (5)

The boundary condition ou the velocity v at the solid sur-
[aces is

v-n=vy-n+vy-n=0>0, ()
whete n is the normal of the surface. In (5) a¢ is equal to
the jump in v - n at C. In the inletior of ' the velocity is

vi+ V= v+ Vi
Thus, by (6)

oc = —(Vi+ vax) 10 (7)
The doublet distribution ge in (5) is determined such that
®; satislies the Dirichlet condition

O, =0 (8)

in the interior of (.

The representation of the irrotational part of the flow
is described above. We now turn to the vortical How gen-
erated by the propeller. Let (& 1,¢) be a point in the slip-
stream §) bhehind the propeller. Introduce a volume doublet
singularity distribution @(&,1,¢) € R? in §2 and deline A
to be

|
= — [ jixbado. 9
A an,,xb(sz (9)

Tusert the identity
Ve x (jifr)= Ve x jifr +b x i,

into (9) and integrate by parts applying the following gen-
cralization ol Gauss’ theorem lor an arbitrary vector a

/V§ xa«lSl:/n x adS
0 15

to obtain

A =g /n (Ve x jifr — Ve x (jir)) d =

T dn
(10)
1 1
= — "'l!l——/ ji/rdS.
4”/“V§><p/1¢ P SllX/t/I ds,

where S is the surface of  and n is its normal. With the
volume and surface vorticity, I' and I'g,
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=V, xjl, Tg=nxj. (1)

the vector potential A in (10) can be written
- L rpan l/rr/’zﬂ' (12)
T dr Ja e Tar Js A -

By (12) the rotational part of v is

vi =V, xA=

| | ,
Tar e T ryail— = Ve T /r)dS.
= L VX @y = = [V ey
(13)
litroduce the relations

Vo x (O/r)=VoxT/r+ V. (1/r)xT=-bxT,
Ve x (Ls/r) =Tg x b,

into (13) and we have derived the Biol-Savart law
. 1 i}
vy = — be(lSI——/[‘bed.S. (14)
d7 Jo dr Js
The vector potential A is solenoidal since

]
= . V. it—i-V. 1 = ().
Ve A= /n(b Vo X fiji-Vyxb)d=0

One can show that
Vaxv=Voxvi =V, xila,y,z)=T, (15)

thus confirming the interpretation of Lin (11) as a vorticity
distribution.

We have found that the rotational How with velocity v,
can be written as the curl ol a vector potential A, This
potential A can be represented by a doublet density [T in
the volume § occupied by the slipstream where i £ 0 and
Vxvy £ 0, cf. (9), (10) and (15). An alternative is to
introdnee a vorticity distribution I' in 2 and T's on S as in
(14). The relation between T, T'g and ji is given by (11).

The inlluence of A outside §) is small such that v, van-
ishes rapidly in R*\ £2. Moreover, we kuow from the theory
of panel methods that

lim V@, = 0.
P
Thus, the correct boundary condition at oo
vV = vq)co = Vix
ontside O 1s satisfied. The houndary condition at the solid
surlaces (6) is also Mlfilled. The tofal velocity v is di-

vergence {ree (1).
problem.

We have a solution v thal solves our

The outline of the computational method is as {ollows:

o Determine fi in the slipstream Q or T'in Q2 and I's on
S by the combined momeutum-blade element theory
described in the next subsection.

o Compute the rotational part vy ol the flow by (14)
and (11).

o Jusert vy and the freestream speed vy into (7). Then
solve Lhe integral equation defined by (8) and (5) for

735

the doublet surface distribution g

o Clompite @ in (3) and its gradient. and nse (2) to ob-
tain the total velocity v. By Bernoulli’s equation and
the jump in the total pressure al. the propeller disk
¢, can be caleulated inside and outside the slipstream

(1.

2.2 The momentum-blade element
theory.

The combined momentum and simple hlade etement theory
employed to determine the vorticity i the slipstream s
described brielly. For a detailed account see [10].13] and
[16).

Let the 2 axis in a cylindrical coordinale svstem coin-
cide with the propeller axis and let the ¢ coordinate deline
the azimuthal position. The distance {rom the propeller
axis is 7. T'he components of v are

v = (g vp, )T

The notation in this subsection is as {ollows. The total
thrast ol the propeller is 1" and 7" is the thrast of an
avttlns of the propeller disk. The density of the air is p.
the number ol blades is n, and the speed ol rolation at r
is wr. The two-dimensional propeller section has the angle
3 between the disk and the zero It line and the unknown
induced angle ol atlack is o; as illustrated in lig. 1. Uf the
[reestrean How is parallel to the propeller axis then the
vorticity 1" shed by the continttum of propellers is constant
in the azimuthal direction 0. With « # 0° ' is a [unction
ol both » and 0.

Let 2w be the increase in the axial velocity Tar down-
stream in the slipstream at distance r from the propeller
axis. Assume that the freestream is parallel to the axis.
Then the momentum theory and the delinitions of Vg and
¢ in fig. 1 give the thrust from the annulus al » of width
dr

AT = p2rr dir)(vgn + w)2w =

(16)
= p(2rr dir}(vaa + VR cos ¢)20 Vg cos ¢,
where
Vpng = IV«Z,},',
V= ‘I'%,X, + (wr)?.
wy
V2o,

Figure 11 The angles and velocities at a propeller blade,



Let ay be delined by the sectional Lift coeflicient ¢ and

(L7

Then by blade clement theory the litt dL of a propeller
blade section with chord ¢ is

¢ = ag( — ¢ — a;).

I
dL = 5/)",?(?(1,0(/:} - ¢ —0;), (18)
and the thrust from ny blades is
AT = nyd L cos . (19)

Let d7' in (16) and (19) be equal and solve the resulting
equation for a;.

Assume that the strength of the vortex lament leaving
the trailing edge of the blade section is I and that the angle
betweeu the disk and the filawent is

¢ =+ a (

The total vorticity dI' shed from the trailing edges of the
blades al 7 is given by the Kutta-Joukowski theorem
dinensions

in two

dU = dL/{(pVy), (21)
and the vortex strength is l
I'= dl/(2zr dr). (22)

This I is transformed further in section 3 to fit the reqnire-
ments of the vorticity distribution in (11) for computation
ol vy.

I more accurate data on e of the blade scctions are
available then the simple formula (17) for ¢; can be replaced
in (18). A correction of ¢; is always introduced based on the
local Mach number, of. [13]. The blade elemeut approxina-
tion above is truly (wo-dimensional and three-dimensional
effects are nol modeled. As a remedy the lilt in the tip
region is modified smoothly such that ¢; = 0 at the tip. of.

[13].

2.3 The pressure jump..

According to incompressible propeller theory the axial speed
is continuous but the static pressure is discontinuous when
the flow passes the propeller disk, see [16]. T'wo different
ways ol obtaining the size of the pressire jump will be pre-
sented in the case when the [reestream is parallel to the
propeller axis.

In the fiest alternative the pressnre discontinity Ap s
devived from the theory in the previous subsection. At a
distance » from the propeller axis Ap is

Ap =dT/(2rr dr), (23)

where the thrust is
g | -2
dl' = srepVielercos ¢ — cqsin @),
The sectional dvag coeflicient is here ey Using (23) the
¢p coellicient is modified by a constant value Ac, in cach

streamtube starting at the propeller disk. This value is
determined at the disk to be

1
Ac, = A[}/(;pl'gm). L
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Iar downstrean in the fully contracted slipstream the
static pressure is equal to the freestecan static pressure po,
gee [16]. The sccond alternative is derived Irom this fact.
The velocity in the slipstream far downstream is denoted
by v.. Neglectivg v, it follows lvom Bernoulli’s equation
that

I [ ‘
P 5000 + i) = p ot gpler +vg) (25)
in the slipstreamn. The pressure coeflicient is by (25)
1. s , ; .
e = (n=pa) [(50) = (02,4 vy — (V24 03)) /vha,. (26)

Introduce
Vap = Ugne + 20

into (26) to obtain

(vz + vi))/ v+

& = (Ve —

F((2w0)? + dvgew + v3) /vl =

o (24 (200/ 09 )N 2w/ v200) + (0ag/ 0250)%

(27)
The usual pressnre coeflicient is cp in (27) and the Jast
two terms correspond to Ac, in (24). The lormula for the
static pressure nsed in [{2] is (27).

From the Euler equations it follows that there is a pres-
sure gradient in the radial direction in a stationary rotating
flow Held
dp  pod

28
dr r (28)
By the delinition of ¢, and {28) we have
9 o 2
dey _ 2 <'_"> > 0. (29)
dr 7 \Ugnc

The eqnation (29) can be integrated in the radial direction
in the far downstream slipstream from the outer boundary
into the mterior to obtain the variation éc,(r) of ¢, due to
the rotation. The theory leading to (26) and (27) does not
include this offect. Hence, by adding éc,(r) to ¢, in (27)
the right behavior of p in the fully contracted slipstrcam is

achieved. This term is usually small.

3 Computational model.

The solulion process is split into two separate steps which
are indepeudent of each other. First, the outer boundary
and the inner structure ol the slipstrean is generated by
following streamlines starting at the propeller disk. These
streamlines are computed by the pancl wmethod [H]. In
the second step the flow field about the configuration is
determined following the outline at the end of section 2.1,

The coordinate systen in this section is the same cylin-
drical system as in section 2.2, The propeller axis is a
part of the 2 axis aud freestream flow perpendicular to the
propeller disk has o = 0°.

3.1 The slipstream discretization.

The slipstream Q is divided into a numiber ol non-overlap-
ping cells (Micld panels™) wip, i =10 L) =10,
k= 1,....n, see lig. 2. The index ¢ runs in the « direc-



Figure 2:

The discretization of the slipstreasn around a
nacelle. In this case [ > 6, m =8 and n = 2.

tion, j in the 0 direction and k in the » divection. The
slipstream is unbounded in the positive 2 direction, but
in the computations we extend the slipstream to & = .
only, such that { and the volume ol eacl w;;;. ave finite. If
®ena 18 chosen sulliciently {ar downstreany then the infln-
ence of this limit is smalt on the flow in the neighborhood
of the confignration. Then £2 can he written

Q= U Witk

i=1.1
i=1l.m
k=1L,n

The cells w;ijp are distorted cubes delined by their 8 corners,
gsee lig. 3. There is a doublet density fj, associated with
each Wijke

In order to compute fiijx a nmmber ol simplifications
are introduced. A vortex tube is defined by a number of
vortex filaments in Lhe same way as streamlines deline a
stream tibe. According to the fiest vortex theorem [4] the
circulation around a vortex tube is constant along the tube.
10 B is an arbitrary cross section of the tube and dB is its
boundary, theu by Stokes’ theorern and (1)

/ﬁBv.dl:fB(vXV)'D(/B:‘/HIVD(IU:

(301
=/ (Vx i) ndB = / - dl = const.
B JIB
Clonsider the exlindrical surface generated by ascl of stream-
lines leaving the propeller disk at distance r from the axis
and the corresponding surface gencrated by the vortex fila-

Figure 3: The "field panel” w; i and its local coordinate
system.
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ments. At o = 02 the assumption is that these two surlaces
remain identical downstream of the disk. Furthermore, at
a = 0° the vorlicity created by the propeller is independent
ol 6. Since BB is arbitrary in (30) it follows thal if o = 0°
and the angle between the streamlines and the vortex lil-
aments is constant on cach surface, then equation (30) is
true also for the stream tnbes from the propelier. The cir-
cumnference of a stream tube is alinost constant. Therefore,
by (30) our first simplilication is

ﬁijk = /_L‘Il\v L = lﬂ "'ﬂl‘ﬁ (3]‘)

i. e. jl is constant in the stream tubes from the propeller.
At o = 0° we have in addition

Fie =k, g = Lom. (32)

We now turp to the componeuts of jij; delined in the

local coordinate system in lig. 3
ik = (ks f1ikos k)"

The axes of the local system in cach cell are not always
complelely aligned with the axes ol the global cylindrical
system. I follows from analogy with wing wakes thal g,
is small. The first component jijz, is taken to be constant
inw;jr. For reasons to e explained later we choose a lincar
varialion of ;g in the radial divection in wijr. Lot vy and
¢ be the local » coordinate of the bottom and top surface
ol wir v lig. 3. The widths of these surlaces in the local
0 direction ave ty and ty, vespectively. Then

tiko(r) = fixef(7),
(33)
{0} — r—-rQ tg
Jry=1+ ri=7rg (731). 1) !
The velociy v,y at a point (2, ., z) induced by jig in cell
wijr with surface s is by (L)

[ Al
4—7{_ /W'Jk l‘jk x b dw

L

Am Sspn

Vijk =

(34

F,”']\. x b ds.

With definitions analogons Lo (11) v can also be written

1
Vijk = G/w k(V X Jig) X bdw
| : (35)
1 e -
-—T?;/S,Jk.(ll X jiji) x bds.

Rewrite the fiest integral in (34) in the same way as (9) is
rewritten (o (10). It follows from (33) that Ty is constant
in win. Thus,

V x ij = (.
We have arvived at a new expression for v, without vol-

ume integrals

]
Vi = —=—— {n x I‘J‘)\./I‘ + T % by ds. (36)

AT Jsijr

The vorticity densities T, and Ty are approximately con-
staul on the surfaces r & const. Hence,

Viik R Lt (n xTy) / V/rds+ T % bds
’ 4 Isipn ! .



The volume integral in (35) has heen transformed to a sur-
face integral (36),(37). The advamtage with surface inte-
grals in (37) is that the same subroutines that were devel-
oped for the evaluation of the integrals in the panel pro-
gram [I] can be reused.

We simplily the representation of the slipstream vor-
ticity further by only taking the coutribution from Ly in
(37) into consideralion. The interpretalion of this is that
there is a surface distribution of vorticity

L =mx fi

on cach cell face. There is an important computational
advantage in using swrlace vorticity instead of discrete vor-
tex filamments. The velocity is singnlar al the center of a
filament but only the derivative ol the velocity is singular
when a vortex surlace is crossed.

Since we let pje, = 0 and 4 is constant in the 2
direction in a stream tube, the singulavities on the cell faces
a = const. will cancel except for the face on the propeller
disk. The contribution from the faces with ¢ & const. will
also cancel il the 75 density is constant in the azivmthal
divection and is small il o # 0°. The induced velocities
caused by the vorticity on the laces with » = const.

Vst —H ko .
\ . s =
11 — I . ~ 5 S l T Ty,
sik = sjkg | = ¢ Hika s0 = { =
[\ . 0 —l, 1T =1y,
ajkr

caunol be neglected. At the bottom of the cell in fig. 3 we
have
Lojkr = fijno,

aund ai, the top

Lyjre = —ftjrato/1s.
The choice of ji;; in (33) is motivated by the second vortex
theorenn in [4] applied to each cell. The amount of vorticity
on the bottom face in the @ direction

I‘sjk;vllu = ﬂjlc(?l()v
appears on the top fdce in the opposite direction
Lyjralt = —fijrlo.

Suppose that for each column of colls in a stream tube 4,
and 7, are coustant. Since the vorticity of every cell w;jy, has
the ahbove property, then the whole slipstream  satisfies
the secoud vortex theorem [4], i. e. a vortex lilameut never
ends o the fHuid but closes onto itsell, ends al a boundary
or goces Lo infinity.

The system ol helical vortices in the slipstream is mod-
cled by a vorticity I'; on cylindrical surfaces starting at the
propeller disk. The vorticity is composed of ring vortices
Fye and axial vorticity 1y, 1t follows from (37} that Py,
is respousible for mwost of the acceleration ol v in the
direction and Iy lor the swirl in the ¢ direction.

The vorticity 1" in (22) fromn the combined momeutum-
blade clement theory in section 2.2 is trawferred to the
surface voriticly ' tn (37) in the following way. Aller the
simplilications above we are interested in T'y . on cxlinders
starting with a circular section at the propeller and follow-
ing the streamlines from the disk. Let the ditection of the
discrete vortex lilament be 1 [vom the trailing edge ol the

propetler blade. The vorticity shed over the distance v df
is v df. The smrface corresponding to a vortex of length
dl is dardf. The avgle is ¢ between the Glament and the
disk, cf. (20). Then the surlace density (I, g) is

I'sin 4 ’
I'rdddl = I :)[;15,’ v d0(r d0/ cos ) =
Sy o ‘
(! t’]‘;” V) (rdoy? =
! derdl = Vs Lr 1 df
I/tany | @O =Ap, | deral

The level of approximation in the panel method is low
with flat panels and constant a¢ and pe on cach panel,
Compressibility effects ate approximated by the Gothert
rule.

3.2 The slipstream geometry.

In the previous subsection the representation of the rota-
tional flow in the discretized slipstream by means of sin-
gularity distributions was described. We continue with the
generation of the cylinders defiving the geometry of the
slipstream 2. Different choices of () are possible and (his
choice is independent of the representalion in section 3.1.

‘I'he sinplest slipstream geometry consists of a num-
ber ol coucentric cylinders with their center on the pro-
peller axis and radius rg, k= 0,...,n. This is the strategy
adopled in many ol the papers referred to in section 1. The
influence of the slipstream on the nacelle is not. very accu-
rate in Llis approach. A moce ambitions model is Lo let
both the nacelle and the wing participate iv the shaping of
the cylinders. This will probably be a rather complicated
process, see [7]. We have chosen a middle way between
these two extremes by letting the propeller disk, the na-
celle surface and a trailing sting determine the geometry of
the slipstream. The sting is added to the base of the na-
celle to model the flow better in that region and to simulate
windtunnel conditions.

The eylinder sutfaces in the slipstream geometry ave the
streanm surfaces emanating from circles on the propller disk.
The streamlines defining the stream sutfaces are calculated
by the panel method [14]. 1 the velocity component v,
from the slipstream is small in comparison to v, then the
generated stream sutfaces ave faitly representative of the
the trne stream surfaces in (2. If the slipstream velocities
.are stronger then the deviations ave larger, e. g. in the
radial direction where the contraction ol the slipstreant is
ignored. Note that if @ = 0° then there is no need to follow
the ¢ or switl component of the streamlines, since jij, and
L', are constant for j = L, ....m.

The procedure to obtain the streamlines is as follows.
Pavel the propeller disk with mn pauels in the azimuthal
direction and n in the radial direction. Lach panel corner
r¥ is the initial point of a streamline. At a point il the
velocity v caused by the freestream and the simplified
conliguration .is caleulated by the pancl method [14]. A
suitable time-step Aly is chosen. Then the iteration from

N=90
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is continued until g is passed.

The slipstream evlinders are partitioned into panels.
The velocity vy due to the slipstream is computed al the
midpoint ol every cell wiji. This velocity is the snm of the
contributions from the singularity deusitics in all the cells
in 2. By linear interpolation belween the velocitios vy
al the midpoints, vy at au arbitrary point, e. g. the panel
midpoints of the configuration surface, can be computed.

4 Computational results and
comparisons.

In the low speed windtuunel experiments in [21] and [22]
two configurations with a wing arc tested. One model has
an axisymmetric nacelle and a straight wing with sym-
metric profile mounted symuictrically on the nacelle. The
other model has the same wing but the nacelle is non-
axisynnnelric with the propeller axis located over the wing,.
A detailed description of the geometry ol the models is
found in [21). The pressures and velocities around these
configurations computed by CRAY X-MP are copared to
the measured values in this scetion.

The axisymmelric nacelle and its wing are pancled in
fig. 4. The propeller has four blades and its position and
size are depicted in fig.” 8. The wing profile is NACA
63(10)4 — 012, "The discontinuily in the static pressure at
the propeller disk is determived by the condition on the
pressurce in the fully contracted slipstream, see sectjon 2.3.
7 The discretization of the geometry ol the non-axisym-
metric nacelle and its wing is found in fig. 5. The geomelry
of the windtunnel model is modified m the computations
for the {ollowing veason. The slipstrcam model in section
3.2 assumes that no streamlines from the propeller disk

Fignre 1 The discretization of the axisymmetric vacelle
with wing.

Figure 5 The discretization of the non-axisymmetric na-
celle with wing,.

739

Figure 6: A side view of the modificd geometry in the com-
putations with the non-axisyimmetric nacelle with wing.
"The original geometry is indicated by dashed lines.

hit the nacelle surface. This does not seem to be the case
with Lhe original geomelry. The frontal part of the nacelle
is therelore chauged to snit the computations better, see
fig. 6. 'T'he assumption is that the How over the wing is
not allered very mneh by this change of geometry. The
prapetler and wing profile are the same as above.

The cylindrical surfaces representing the slipstream ge-
omelry are generated arvound the nacelles without wings,
cf. section 3.2, The cross sections of the cylinders in the
6 — 1 plane at o = 0° al a Jew @ staljons arc shown in lig.
T loy the axisymmetric and non-ax

svimmetric nacelle,

The Mach number in the experiments and the compn-
tations is 0.15. The propeller thrust cocllicient Cp and the
advance ratio J are delined by

Cr=T/(pN2D"YY, J =1 JAND),

where N s the rotational speed of the propeller and 1 is
the diameter. The value of Cp is abont 0.22 and J is (.70,

llignre 7@ The cross sections of the slipstrean cylinders
around the axisymnietric (left) and the non-axisymmetric
(vight) nacelle. The sections are from right behind the
propeller (top), the middle of the pacelle (imiddle) and the
end of the nacelle (bhottom}.
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Figure 8: The ¢, valites al o = 0° al diflerent sections on . . . .
5 " Figure 9: The ¢, values at o = 0° al different sections on

the wing with the axisymunetric nacelle, The computed ) R .
: the axisymmetric nacelle. The computed values are marked

values are marked by O and the experiuental values by * . ,
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Figure 10: The ¢, values at o = 0° at dilferent sections
on the wing with the non-axisymmetric nacelle. The com-
puted values are inarked by * and the experimental values
by .
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Figire 12: The ¢, values al o = 5° al different sections de-
fined iu fig. 10 on the wing with the axisymmetric nacelle.
The computed values are marked by * and the experimen-
tal values by ¢,
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Figure 11: The ¢, values at a = 0° at different sections

delined in fig. 9 on the non-axisymmetric nacelle. The
cotputed values are marked by * and the experimental
values by .

In the first example the pressures on the axisymmelric
vacelle and its wing are compited and compared to the
experimental values. The propeller rotates in the vegative
0 direction. At o = 0° the How lield is anti-symmetric
around the propeller axis. The llow above the starboard
wiug is identical to the flow below the port wing and vice
versa. This anti-symmetry is reproduced very well in the
computations. The auti-symmetry is not perfect in the
windtunnel data. In fig. 8 the ¢, values on the port wing are
compared. 11 the two meastred valnes Trom the starboard
(t51) and port (%) wing that should be cqual are a little
apart, then both values are plotted and combined by a
line. The nacelle pressures are displayed in fig. 9 looking
upstrean. The fength of an artow is proportional to the

N:

¢, scale 0.0 10
-

Figure 13: The ¢, values al a = 5° al two sections defined
in fig. 9 on the axisymmetrie nacelle. T'he computed values
are marked by * and the experimental values hy .



¢, value at Hs Tool. The markers on the arrows are placed
al the nacelle surface if ¢, is positive and away from the
swrface il ¢ 1s negative. The agreement between caleulated
and experimental data is good i this case.

The ¢, values for the non-axisynimetric nacelle and the
wing at o = 0° are plotted and compared in figs. 10 and
11. The port side is to the left and the starhoard side is
to the right in the ¢, plots. The extension of these plots in
the r direction is indicated in the conliguration overview
al the top. The eflect of the slipstream is overestimated in
the computations in comparison to the experiments.

The results al o = 5° for the axisynunetric confign-
ration is shown in figs. 12 and 13, We have chosen the
sanie slipstream geometry as in the case o = 0°, but the
momentim-blade clement theory is modified to handle an
o dillerent from 0. Also here the effect of the slipstream
is greater in the calewdated values than in the measured
values.

The velocitics in the flow field outside the vacelles over
the wing are corupared in fig. 11 at o = 0°. The velocities
around the axisymmelric nacelle are anti-syimnuetric snch
that v at 0 = 15° is cqual to v at 0 = 3(5° and so on. The
mnerical solution has this property but there are small
deviations from anti-synnnetry in the experimental data.
The velocities are proportional to the abscissa iu fig. 14.
Note thal the abscissa scales ave diffrent in the ¢, and the
g plots. The ordinate is the distance from the propeller
axis divided by the propeller radins. The velocity is almost
discontinuous at the onter boundary of the slipstecam. The
ditlference between the caleulated and measured velocitios
are ol the same order in the @ and  directions.

5 Conclusions and discussion.

A computational model of the slipstream hehimd a pro-
peller has been developed and implemented o an existing
panel program environment. ‘T'he vortical flow in the slip-
streany is represented by a surlace vorticity distribution I'g
on cylindrical snrfaces approximating the infternal structure
of the slipstream. 'Uhe vorticity I's is compiited by a com-
bined momentum-blade clement theory. The caleulations
are compared to windbnnnel results for two conligurations:
an axisymmelric nacelle with a wing and a non-axisym-
metric nacelle with a wing. lu the liest case al o = 0°
the computed pressinres and veloeitios agree well with the
experiments.  The inlluence of the slipstream on the ¢,
values on the surfaces of the non-axisymmetric configira-
tion is greater in the compidations in comparison with the
weasurements. The results for the axisyrumetric nacelle at
a = H° are good on the nacelle and of the same guality on
the wing as in the non-axisymmetric case.

There are sevetal possible explanations to the diserep-
ancies between the computed and the experimental data.
The following assmnptions and approximations may be ma-
jor or minor sources ol error in the computational model.

o The geometry of the slipstream is nol dependent on
llow generated by the propeller. Tence, there is no
contraction ol the slipstream geometry caused by the
propeller as predicted by classical propeller theory.
By computing the outer boundary and the inner strie-

ture of the slipstream in an iterative lashion the con-
traction ol the slipstream could be modeled, see e, g.

(7).

e Il is clearly visible in windtunnel experiments that
the wings change the shape ol the slipstream geome-
try. The synmoetry between the port and starboard

sides of the geoetry is lost. The inclusion ol sucl a

possibility in the present approach seems very com-
plicated.

e T'he combined momentum-blade element. theory of
the propeller behavior is stimple. Nevertheless it seems
to work at least for simall Mach numbers and o = 0°,
More advanced theory is possible which can be com-
plemented by windtunuel data, see [13).

* One can show that the compniations of ¢, is sensitive
to errors in the slipstream velocity vy, The ¢, value s
calculated by the usual formula hased on Bernoulli's
eqnation and then corrected by the jump at the disk.
Often two nuwmbers of similar size are subtracted to
obtain ¢, leading to cancellation of terms. The rela-
tive error in the resull is nch greater than the rela-
tive errors iu the two terms.

e When o # 0° then I'g is no longer constant in the
0 direction. The variable Iy is transported down-
stream in a helical manner. This eflect can be in-
cluded in the present code in a relatively simple way.

¢ The model geometry in the windtunnel experiments

is not exactly the same as the geometry in the come-
putations. The necessary change of the non-as

sym-
metric nacelle may be important to the flow over the
wing.

¢ There are a nimber of numerical approximations roade
i the implementation of the slipstream model. As an
example we mention the conservation of tle vorticity
density ‘which is only approximate in the computa-
tions.

o ‘I'he geomelry ol the nacelle does not affect the per-
fortmance of the propeller in the blade element theory.

Finally, we remark that there are errors also in the
windtunnel experiments. The deviation from anti-symmet.-
ry for the axisymmetric nacelle o = 0° provides a measure
ol that uncertainty.
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