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Abstract

The present analysis makes the first attempt to es-
tablish and define the generalized constitutive equa-
tions for composite laminated beams with large bend-
ing—torsion coupled deflection, in which the
constitutive equations of the relevant problem for
laminated plates or shells are included formally. The
effects of geometrical parameters of the fiexure on
aeroelastic stability of isotropic bearingless blades are
studied first. For composite blades, the transverse
shear stress is considered in the constitutive equation
and analytical formulae. Then the flutter stability of
flap bending, lead—lag bending, and torsion of compo-
site rotor blades in hover is investigated by using a fi-
nite element formulation based on Hamilton’s princi-
ple. The emphasis is put on analyzing the influences of
layered angles and stacking sequence on dynamic sta-
bilities of composite hingeless and bearingless rotor
blades. Moreover the importances of some new coup-
ling stiffness coefficients, such as Ede, and ER,are
discussed for certain configuration.

Introduction

In recent years, there has been considerable inter-
est in bearingless rotor designs with an eye toward me-
chanical simplicity and increased maintainability. The
bearingless blade has an elastic flexure consisting of
flexbeams and a torque tube to facililate pitch changes.
An example that has been tested in flight and wind
tunel is the Boeing Vertol designed Bearingless Main
Rotor . Generally, the articulated and hingeless
blades are refered to as single—load—path blades and
the bearingless blade as 2 multiple—load—path blade.
This is because the blade loads can be transmitted to
the hub by redundant paths of the flexure in the case of
a bearingless blade. Recently, there have been some at-
tempts to analyze bearingless blades, the most notable
working is that of Sivaneri and Chopra ?. But they did
not seem to investigate systematically the effects of
flexure’s geometrical dimensions on dynamic stability
of the bearingless blade.

Another important recent development is that
composite materials have been used widely in the con-
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struction of rotor blades. Composites have better fa-
tigue characteristics than metals, a factor which is very
significant to rotors. Advanced composites also hold
the promise of lower production costs and lower dy-
namic stresses and vibrations accomplished through ef-
ficient, optimized structures. In 1979, Mansfield and
Sobey @ made a pioneering attempt to develop the
stiffness properties of graphite fiber composite rotor
blades and they also tried to explore the potential of
this model for aeroelastic tailoring. A comprehensive
and important study by Hong and Chopra @ pres-
ented, for the first time, an aeroelsastic model for a
composite rotor blade. However, there is no transverse
shear stress in the researches mentioned above, proba-
bly due to the characteristics of analyzed configura-
tions of composite rotor blades. In addition, the influ-
ence of multiple load paths of composite bearingless
rotor blades on aeroelastic stability has not yet fully
understood, though Hong and Chopra gave some re-
sults about the aeroeclastic stability of a composite
bearingless rotoy in Ref.5.

In preseat paper, the effects of geometrical
parameters of the flexure on aeroelastic stability of
isotropic bearingless blades are first studied systemati-
cally. For composite blades, the transverse shear stress
is considered in the constitutive equation and analyti-
cal formulae. Then, the flutter stability of flap bending,
lead—lag bending, and torsion of composite rotor
blades in hover is investigated by using a finite element
formulation based on Hamilton’s principle. The pres-
ent emphasis is put on analyzing the influences of lay-
ered orientations and stacking sequences on dynamic
stabilities of composite hingeless and bearingless rotor
blades. Moreover the importances of some new terms
or pararoeters are also discussed for unsymmetric con-
figurations.

Strain Energy Of A Composite Blade

The rotor blade is treated as an elastic beam ro-
tating with constant angular velocity Q. The blade spar
is represented by a laminated beam (Fig.1). It is as-
sumed that the beam provides the required blade struc-
tural stiffness, The rectangular coordinate system, x, v,
z is attached to the undeformed blade, the x—axis coin-
cides with the elastic axis, and the y—axis is in the plane
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Fig.1 Composite blade section

Fig.2 Blade coordinate system and deflection

of rotation (Fig.2). The blade is preconed through a
small angle §,. A point P on the undeformed elastic ax-
is undegoes displacements u,v,w in the x,y,z directions
respectirely, and occupies the position P’ on the de-
formed elastic axis. Then the blade cross—section con-
taining P’ undegoes a rotation 6,about the deformed
elastic axis. The angle §,which represents the blade to-
tal geometric pitch including pretwist is given in Refl2,
The orthogonal coordinate system £,n,{ is attached to
the deformed blade such that the £ axis is tangential
to the deflected ¢lastic axis and the n and { axes are the
principal axes of the cross section,

The stress—strain relation for the kth lamina of the
laminated beam is given in Ref 6 as follows
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The equations of motion are obtained using
Hamilton’s principle,

A =] (U~ 8T — 6W)d1 = 2

where 11,07, and 8W are, respectively, the variation
of strain energy, the variation of kinetic energy, and
the virtual work done. The variation of strain energy
for the composite blade is expressed
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and A is the warping function.

The strain—displacement relations for moderate
deflections are take from Hodges and Dowells @,
where nonlinear terms up to second order are retained.
The strain energy expression 6U  can be derived and
written in nondimensional form
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where m, is the reference mass per unit length, and
R is the rotor radius.

The centrifugal force F(x) in Eq.(4) is obtained as

F(X)= EA{u’+v’2/2+w’2/2+kia/§3
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The effective section stiffnesses and the coupling
stiffness coefficients are
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Obviously, all the coupling stiffness coefficients in
Eq.(7) are related to the properties of composite
materials, so they will become zero for isotropic
blades.

Two new constants EAe, and EB,; (see

Eq.(6)), neglected in Ref.4 and 5, are included in
the present expression of energy. For an isotropic
beam, the two coefficients will vanish because the
coordinates #, { coincide with the geometrically
symmetrical axes of the beam’s cross section. For
an anisotropic laminate, however, the geometrical
symmetry can not be regarded as the physical
symmetry of the cross section. Consequently,
EAe,and EB,;ymay not be zero in this case. On the
other hand, EAe,is in the same order of magnitude
as k,;. Therefore, these terms associated with
EAe,and EB,,, especially EAe,, should be included
in the dynamic formulation of composite blades.

The variation of kinetic energy 6T is the same
for a composite blade as for an isotropic blade,
and given in nondimensional form in Ref.7. The
aerodynamic force are obtained using the
quasisteady strip theory approximation. Forces of
noncirculatory origin are also included. The in-
duced inflow is assumed uniform and steady. The
details of the aerodynamic forces in the expression
for oW are taken from Ref.2.

Finite Element Discretization




A approximate treatment is made for the finite el-
ement discretization of a composite blade. The rotating
angles of the cross section of the blade are assumed to
equal the slopes of the beam’s axes. This assumption is
resonable and suitable for the dynamic stability of heli-
copter rotor blades with large aspect ration, so that the
finite element discretization of a composite blade be-
coraes completely similar to that of an isotropic blade.

The blade and flexbeams are divided into a2 num-
ber of beam elements. Bach element consists of two
end nodes and three internal nodes, which result in a
total of fifteen degrees of freedoma @, Each of the end
nodes has six degrees of freedom, namely u,v,v',w,w’,
and ¢. Among the three internal nodes, two are for u
and one for ¢. The distribution of the deflection over
an element is represented in terms of element degrees of
freedom and shape functions,

Hamilton's principle (Eq.(2)) is discretized as

kA
I ($U, 6T, —8W,)=0

[N

(3

where §U,, 6T,and § Ware the virtual strain energy, the
virtual kinetic energy and the virtual work contribu-
tion of the ith—element.

The assembly of N elements yields the equations
of motion in terms of nodal displacements, expressed
as

MG} + [C(OHa} + K(lfg} = {0} 9
where [ML[C] and [K] are respectively the global

inertia, damping and stiffness matrices. These equa-
tions are nonlinear in {q}.

In the present analysis, two typical configurations
are selected to study the aeroelastic stability of compo-
site blades. One model is for a composite hingeless
blade, another for a composite bearingless rotor blade
with the flexure consisting of two parallel laminated
beams (see Figure 3). Here, the torque tube in the
flexure is assumed to be extremely stiff in torsion and
very soft in flexure, so that there is no need to depict
the torque tube in the analytical model (Fig.3b). For
composite bearingless blades, the flexure—beam offsets
nand #.from the axis of the blade are equal to b/ 4
and —b / 4 respectively.

Special displacement compatibility conditions at
the clevis , which connectes the blade with the flexure,
are also the same as that in Ref.2,

Solution procedures

The first step is to obtain the steady trim solution.
The blade steady deflected position is calculated from
the nonlinear Eq.(9), after dropping time dependent
terms. Through an iterative procedure, the solution can
be calculated numerically. There are two major differ-
ences between the trim solution procedure for the
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Fig.3 Analytical models of composite hingeless
and bearingless blades

hingeless blade and that for the bearingless blade:

1. The centrifugal force distribution F(x) is known a
priori only over the outboard blade, and unknown
over the flexure because of the multiple load paths
involved. In obtaining the linear estimation of the
steady equations, it is assumed that the centrifugal
force in each of the inboard beam is in the ratio of
its tensile stiffness EA. Then, at succesive iterations
the centrifugal force distribution is updated using
Eq.(5).

2. The pitch distribution is known previously for the
outbeard blade, and unknown for the flexbeams.
The pitch distribution along the flexbeams is as-
sumed 'to be linear for the first iteration. This distri-
bution is updated at successive iterations based on
the torsional deflection.

The second step is to obtain the coupled rotating
normal modes of vibration about the equilibrium posi-
tion. For this the damping matrix and aerodynamic
terms are removed from Eq.(9), and the equations are
linearized assuming the motion be small perturbation
about the steady position. The resulting equations are
solved as an algebraic eigenvalue problem.

The last step is to calculate the flutter stability. Us-
ing several natural vibration modes, the stability equa-
tions are transformed to the modal space and the re-
sulting normal mode equations are solved as complex
eigenvalue problems. The aeroelastic stability of com-
posite rotor blades can be analyzed through the root
locus plots for eigenvalues.

Results and Discussion

Numerical results are presented for four different
rotor  configurations—isotropic  hingeless  and
bearingless rotors, as well as composite hingeless and
bearingless rotors. The chordwise offsets of the center
of mass, the aerodynamic center, and torsion center
from the elastic axis are considered to be zero. The sec-
tion constants EB,, EB,, and the warping constants
EC,, EC,, are taken to be zero. A precone (f,) of .05



rad, lock number (r) of 5, and solidity ratio (o) of 0.1
are used.

Isotropic Hingeless Rotor Biade

The blade properties selected for the dynamic ana-
lysis of the isotropic hingeless blade are taken from
Ref. 8. Figure 4 shows the steady tip deflections for dif-
ferent levels of thrust C;/ ¢ (or 8). The fundamental
torsional frequency is 5.0 for these results. The results
of Hodges and Ormiston®™  are also shown in this fig-
ure. In Ref. 8, the steady deflections are obtained using
the modal method with five nonrotating beam modes

for each one of the deflections v, w,, and &30. The

agreement between the two results is good except at
high thrust levels where some deviation appears.

Isotropic Bearingless Rotor Blade

The outboard blade and the flexbeams are consid-
ered to be uniform. The offset of the elastic axis of the
flexbeams from that of the outboard blade (5, =—n,) is
taken to be 0.4c, where ¢ is the chord of the outboard
blade. The length of the flexure is 0.25R. The blade
properties are from Ref.2.

To examine the present [ormulation for
multiple—load—path blades, a simple analytical model
is considered, in which the pitch of the flexure is fixed
at zero while the pitch of the outboard is varied. Figure
5 shows the root locus plot of the fundamental
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Fig.4 Steady tip deflections of an isotropic
hingeless blade

lead—lag modes as C;/ o is varied from o to 0.2. It is
seen that the lead—lag mode is unstable for Cp/ o
higher than about 0.06. In this figure, the results from
Ref.2 are also shown. The two results coincide with
each other broadly.

Next, the influence of the geometrical parameters
of the flexure on aeroelastic stability of an isotropic
bearingless blade is studied. Figures 6 and 7 are the
root locus plots of the fundamental lead—lag and flap
modes with beam 2 moving forward (beam 1 fixed) or
beam 1 moving backward ( beam 2 fixed). Figure 6 in-
dicates that with beam 2 moving forward (beam 1
fixed), the multiple—load—path system trends toward
the stable area first, and then rapidly toward the
unstable area for #,»—c¢/ 4 . In figure 7, the stability
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Fig.5 Root locus plot of lead—lag mode of
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Fig.6 Effect of each~beam translation along
y axis on lag—mode stability
{(MF / MB—one beam moved
forward / backward while other fixed)



of flap mode is gradually reduced when beam 2 moves
forward with beam 1 fixed. However, the backward
movement of beam 1 (beam 2 fixed) only slightly
changes the stability of the isotropic bearingless blade
(see Fig.6 and Fig.7).

In analyzing the influence of two—beam distance
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Fig.7 Effect of each —beam translation along
y axis on flap—mode stability
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Fig.8 Effect of the distance between two beams
on stability of lead—lag mode

on the dynamic stability of the bearingless blade, it is
assumed that the geometrical center line (shear axis) of
the flexure remains coincident with the elastic axis of
blade, while the positions of beam 1 and beam 2 may
vary with each other simultaneously. Figure 8 shows
that the greater the distance between the two
flexbeams, the less the stability of lead—lagmode. And
the multiple~load—path system is stable until the dis-
tance (An=n,~n,} isaround 0.65¢.

Composite hingeless Rotor Blade
The structural configuration of a composite
hingeless rotor blade is shown in Fig.3(a). The original

data are the same as those used in the analysis of
isotropic bearingless blades except for:

1. Material constants

E; =30 x 10%psi =03
Ep=3x 10%psi rp.=0.03
G r=1.2x 10%si trr=05

G =0.72 % 10%psi

II. Airfoil characteristics
=570, ¢;=001, ¢, =00, Cp/o=0.1

The fundamental lead—lag, flap, and torsion fre-
quencies for a baseline configuration with zero ply an-
gle are 1.52, 1.14, and 5.09 respeectively. For this, the
laminate consists of graphite laminae with fibers paral-
lel to the blade length. Stability results are calculated
for three selected configurations (unsymmetric,
symmetric, and antisymmetric configurations).

Figure 9 shows the root locus plots of the complex
eigenvalues for lead—lag mode as a function of ply an-
gle for the unsymmetric configuration. In this configu-
ration, the laminae in the top half thickness have zero
ply angles, and the laminae in the bottom half thick-
ness are all oriented at the same ply angles. Seen from
Fig.9, the system with positive ply angles becomes
more stable than that with negative ply angles. And the
maximum deviation between the two curves in Fig. 9
can be up to 15% around. It is clear enough to recog-
nize the effect of the coupling coefficient EAe,, always
neglected before, on the dynamic analysis of composite
blades.
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Fig.9 Root locus plots for composite hingeless
blade with unsymmetric laminate

Figure 10 presents the root locus plots with chang-
ing the ply angle for the symmetric and antisymmetric
configurations. In the symmetric model, the laminae
for the top one—third thickness and the bottom
one—third thickness are all laid up at the same ply an-
gles, whereas the laminae in the remaining inner
one~third thickness are oriented at zero ply angles, For
the antisymmetric configuration, the laminae in the
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Fig.10 Root locus plots for composite hingeless
blade with symmetric and antisymmetric
laminates

outer one—third thickness on both sides are laid up at
antisymmetric ply angles, such as: if the positive ply
angles for the top laminae, the negative ply angles for
the bottom ones. The laminae for the remaining inner
one—third thickness are also oriented at zero ply
angles. From Fig.10, it is seen that

(1) For symmetric configuration the system with the
positive ply angles is more stable than that with the
negative ones, while for antisymmetric configura-
tion the results is just reversed.

(2) The influence of ply angles for symmetric configu-
ration is more significant on aeroelastic stability
than that for antisymmetric one.

Composite Bearingless Rotor Blade

The typical structural model of a composite
bearingless rotor blade is shown in Figure 3(b). The
fundamental lead—lag, flap, and torsion frequencies for
the bearingless configuration with zero ply angles are
1.43, 1.17, and 4.01 respectively. The stability results
are calculated for configurations categorized into three
cases:

In Case I, beam 1 of the composite flexure is the
unsymmetric configuration mentioned above, whereas
the laminae of beam 2 are laid—up at zero ply angles.

In Case II, laminated beam 2 in the flexure is the
unsymmetric configuration, whereas the laminae of
beam 1 are oriented at zero ply angles.

In Case ITI, both beam 1 and beam 2 of the flexure
are the unsymmetric configuration.

The fiber orientations in the outboard blade are
kept at zero ply angles in all the cases above.

Figures 11 and 12 correspond to Case I and 11
respectively. Obviously, either the positive ply angles of
beam 1 in Case I or the negative ply angles of beam 2
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in Case II stabilize the composite multiple—load—paths
system. In general, the variation of ply angles in the
flexbeams changes coupling stiffness parameters first,
and then influences the dynamic stability of the com-
posite bearingless rotor blade.

For Case III, Figure 13 shows three root locus
plots for a composite bearingless blade. The solid and
dotted lines represent positive ply angles and negative
ply angles respectively . The system is in the most stabil-
ity only when the ply angle in both flexbeams is equal
to 30 degrees. The dash and dot line, in Fig. 13, pres-
ents the stability of the configuration, where beam 1
and beam 2 have opposite ply angles, i.e. if the laminae
in beam 1 are oriented at positive ply angles, the
laminae in beam 2 are at negative ply angles. In the
mark ” £ 7 the top "+ refers to the positive ply angle in
beam 1, and the bottom “—* to the negative one in
beam 2. Figure 13 indicates that the flexure configura-
tion with positive ply angles in both beam 1 and beam
2 stabilizes the composite bearingless blade more
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Fig.11 Root locus plot for composite bearingless
blade varying with ply angles in beam 1
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Fig.12 Root locus plot for composite bearingless
blade varying with ply angles in beam 2
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Fig.13 Root locus plots for composite
bearingless blade varying with ply angles
in both beam 1 and beam 2

significantly than that with positive ply angles in beam
1 and negative ply angles in beam 2, though either the
positive ply angle 30 ° in beam 1 (beam 2 at zero ply
angle) or the negative ply angle ~30 ° in beam 2 (beam
1 at zero ply angle) leads the blade’s stability up to the
maximum (see Figures 11 and 12). The characteristics
described above of the laminated flexure are very use-
ful in desingning and modifying new kinds of compo-
site bearingless rotors.

Conclusion

The aeroclastic stabilities of isotropic bearingless
blade, a composite hingeless blade, and a composite
bearingless blade in hover are investigated using a §i-
nite element formulation. Several important conclu-
sions are obtained as follows

1. The geometrical parameters of the flexure strongly
influence the dynamic stability of isotroic
bearingless rotor blades.

2. For a composite hingeless blade, the positive ply
angles in unsymmetric and symmetric configura-
tions make the system more stable than the negative
ones, while the antisymmetric configuration pos-
sesses the completely revered behavior.,

3. The coupling stiffness constant EAe, has some in-
fluence on the stability of composite rotor blade
with unsymmetric configurations.

4. A composite bearingless blade becomes more stable
when the ply angles of beam 1 in the flexure are pos-
itive (beam 2 at zero ply angle ) or the ply angles of
beam 2 are negative (beam 1 at zero ply angle)

5. The flexure with positive ply angles in both beam 1
and beam 2 stabilizes the composite bearingless
blade more significantly than that with positive ply
angles in beam 1 and negative ones in beam 2.

Copyright © 1990 by ICAS and AIAA. All rights reserved.

Finally, it may be deduced that the range of
aeroelastic tailoring for the composite bearingless rotor
blade is wider than that for the composite hingless ro-
tor blade.
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