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Abstract

The use of bifurcation methods as a practical tool for im-
plementation during the design and development phases
of high-performance aircraft is investigated. The tech-
nique has proven itself in the research environment as
an effective means of analysing the global nonlinear be-
haviour of manoeuvrable aircraft. The paper reports on
the computer programs that have been developed to al-
low convenient and reliable use of the methods and on
an investigation into the level of complexity required of
aerodynamic models in order that the results produced
by the methods are valid and useful. It is shown that
it is possible for practical results to be obtained before
expensive dynamic testing programmes have been under-
taken; the development of a qualitative dynamic test rig
for wind tunnel scale models to form part of the overall
methodology is suggested in order to apply the technique
with confidence on new aircraft designs.

Nomenclature

SYMBOL DEFINITION

IN TEXT

c vector of m control variables

f vector of n differentiable continuous functions
F Jacobian matrix of j?

g vector of k functions

I, I,,I, aircraft moments of inertia (kg m?)

I, aircraft product of inertia (kg m?)

k reduced state-space dimension (number

of eigenvalues on the imaginary axis)
body-axis rolling moment (Nm)

aircraft mass (kg) or

number of control variables in vector ¢
body-axis pitching moment (Nm)

number of state variables in vector Z
body-axis yawing moment (Nm)

body-axis roll rate (radian s=' or degree s71)
body-axis pitch rate {radian s™! or degree s™!)
body-axis yaw rate (radian s~ or degree s™*)
time (s)

vector of k transformed state variables

I ™
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Vr aircraft total translational velocity (ms™1)

z vector of n state variables

Y, side force in wind axes (due to
aerodynamics, thrust and gravity) (N)

Zoy force along #z wind axis (due to
aerodynamics, thrust and gravity) (N)

«@ angle of attack (radian or degrees)

Jé] angle of sideslip (radian or degrees)

s aileron deflection (radian or degrees)
(positive: left t.e. down)

6, rudder deflection (radian or degrees)
(positive: t.e. left)
6, stabilator deflection (radian or degrees)

(positive: t.e. down)

-9

SUPERSCRIPTS:

bank angle (radian or degrees)
pitch angle (radian or degrees)

derivative with respect to ¢
T transpose (of vector)

ABBREVIATIONS:

ALT. altitude (used in plot titles) (m)

AOA angle of attack (a)

BACTM Bifurcation Analysis and Catastrophe
Theory Methodology

t.e. trailing edge

SYMBOLS USED

P
Q

R

T

ALPHA
BETA

DA

DE / DSTAB
DR

CgQWEa®m

=

ON PLOTS:

roll rate (p)

pitch rate (q)

yaw rate (r)

time (t)

angle of attack (o)
sideslip angle ()
aileron angle (§,)
stabilator angle (4,)
rudder angle (4,)

all eigenvalues in left-half plane (stable)
1 real eigenvalue positive (unstable)
2 real eigenvalues positive (unstable)
3 real eigenvalues positive (unstable)
4 real eigenvalues positive (unstable)
5 real eigenvalues positive (unstable)
1 complex eigenvalue in right-half
plane (possible limit cycle)

1 complex and 1 real eigenvalue

in right-half plane (unstable)

1 complex and 2 real eigenvalues

in right-half plane (unstable)



SYSTEMS OF AXES:

These are defined in Figure 1.

Introduction

The use of bifurcation methods in analysing dynamics of
aircraft fiight motions is no longer a new concept. It orig-
inated in a project commissioned by the Office of Naval
Research in the USA in 1976 undertaken by Mehra and
Carroll of Scientific Systems Inc.?® This project, which
continued until about 1980, was part of a dedicated effort
on the part of the Office of Naval Research to broaden
the understanding of the nonlinear behaviour often ex-
perienced by combat aircraft during high angle of attack

{AOA) manoeuvres.

During the 1980s various reports appeared on the imple-
mentation and development of these methods by other
researchers®*®, whilst Mehra and Carroll themselves re-
ported on their work until about 1982.%7® The develop-
ment of a bifurcation methods programme in South Africa
was started by the author in 1983.21%11

The application of Catastrophe Theory and bifurcation
methods to aircraft rigid-body dynamics occurred fairly
early on in the development of nonlinear dynamics in the
applied sciences but the achievement was by no means
isolated: a new awareness of the important role of nonlin-
ear occurrences in a wide range of events and mechanisms
started to take shape in the 1970s, following on from the
insight of several earlier mathematicians and scientists.
12,13,14 This relatively new field, often now dominated by
the work done in chaotic behaviour, has led to a common-
ality between different sciences in lieu of the earlier trend
towards more and more diversification and specialisation.

In line with this deeper involvement in nonlinear dynam-
ics, use of bifurcation methods has occurred in aeronautics
not only in the context of global rigid-body behaviour us-
ing the aircraft equations of motion but also in detailed
analysis of certain critical motions!®, specific steady and
unsteady aerodynamic stability problems!®1” and aeroelas-
ticity.'®

Notwithstanding these applications of bifurcation theory
in the aeronautical sciences, and the fact that the original
methods of Mehra and Carroll are described in text book
form'®, it is of concern that the methods appear not to be
finding ready acceptance as a tool in the practical design
phase of aircraft projects. This is particularly disturb-
ing in the light of the move towards better understanding
of nonlinear phenomena by researchers: as increasingly
more optimum performance is demanded from new air-
craft so it should be expected that designers make better
use of the nonlinear conditions in which they are iritended
to operate. It is no longer sufficient when studying sta-
bility and handling qualities of agile aircraft to remain
within the bounds of ‘safe’ regions in terms of departure
resistance, spin susceptibility and recovery characteristics
(using criteria such as Lateral Control Départure Param-
eter, Kalviste criteria, etc.20?22) — it is now necessary

to maintain stable and easily controllable flight with rel-
atively low pilot workload during hard manoeuvres, and
any analysis technique that can assist in achieving these
goals should form part of the design loop from as early in
the process as possible.

The problem as perceived by engineers in the industry
appears to be twofold:

1. computational difficulties — the large quantity of
computation required and its sensitivity in terms of
successfully finding all desired solutions to the non-
linear equations result in the technique appearing to
be costly and time-consuming;

2. it is often perceived that bifurcation methods can
only be regarded as useful once a very comprehensive
mathematical model has been defined. This would
require results from expensive dynamic as well as
static wind tunnel tests, probably in conjunction
with free-flight tests, and then full verification of
the model in piloted simulation studies. Clearly, in
this case, bifurcation methods would only start be-
ing useful once the aircraft were already flying.

The objective in this paper is to outline the FORTRAN
computer package that has been developed as a robust,
reliable and easy-to-operate core for the implementation
of the bifurcation method; and to gain some insight into
the level of sophistication required of an aircraft dynamic
model in order for bifurcation methods to provide useful
output. An opportunity for these methods to be tested
on actual locally-used aircraft has not arisen and thus the
work is based on a comprehensive McDonnell Douglas F-
4J Phantom model.

The need for a technique such as bifurcation methods and
the concepts involved in it are dealt with first. Thereafter,
the computer program is described briefly together with a
sample of how it is incorporated in the overall methodol-
ogy. Selected results from the method for different model
complexities are then presented. Finally, some conclu-
sions are drawn in terms of the stage in aircraft design
and development at which bifurcation methods become
useful, the overall implications of the methods being used
in the aircraft design and development environment and
further work required to enhance their effectiveness.

Fundamental concepts of bifurcation methods

Ever since the advent of jet-powered combat aircraft soon
after the 2"¢ World War the trends in design of such air-
craft led to configurations that were more and more sus-
ceptible to adverse handling qualities during manoeuvring
flight. The quest for supersonic and turn-rate perfor-
mance evolved the characteristic long-nosed swept wing
designs with low wing loading and much of the inertia con-
centrated in the fuselage. These aircraft, whilst capable
of generating the acceleration required for combat pursuit
and evasion, were subject to both aerodynamic and iner-
tial nonlinearities, and the result was often the onset of
unexpected motions (such as pitch-up, wing rock, nose-
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slice, post-stall gyrations, etc.2?4%) that limited agility
to a level below the maximum manoeuvring potential.
The effect was not only to impaire combat effectiveness —
by hampering control and weapons aiming and tracking
tasks — but also led to the loss of aircraft and lives.

The enormous effort that has been vested in overcoming
these problems is evident in the superior agility of mod-
ern fighters relative to their predecessors. The majority
of this work has been experimental in nature, with more
and more aerodynamic analyses having entered the arena
as computational fluid dynamics has developed in recent
years. In the realm of flight mechanics most work has con-
centrated on stability criteria intended to ensure that the
aircraft does not enter into dangerous motions; a heavy re-
liance has been placed on simulation using advanced mod-
els with comprehensive aerodynamic data gleaned from
the experimental programmes.?*?® Simulation enables not
only the study of the aircraft behaviour but also the in-
fluence of control systems, piloting technique and physio-
logical factors.

All of these techniques remain relevant and useful but
none of them provides the unified global overview of the
nonlinear dynamics of aircraft motion that bifurcation
analysis does. It facilitates a systematic study of aircraft
behaviour through its entire range of possible equilibria,
for all control parameter variations, from trimmed flight
through to fully developed spin and beyond into chaotic
motions. As such, it provides a global understanding of
the mechanics underlying the limit. cycles, hysteresis ef-
fects and discontinuous motions exhibited by aircraft at
high AOA.

The original technique developed by Mehra and Carroll

was named BACTM, for Bifurcation Analysis and Catastrophe

Theory Methodology. It is a unified approach that, given
a set of continuous differentiable equations, allows a sys-
tematic analysis of the behaviour of dynamic systems.

Bifurcation analysis is the study of new solutions to
a system of equations that ‘bifurcate’ (branch out) from
some known solution as a parameter changes and is ap-
plicable to a wide range of dynamical systems.?

Catastrophe theory — an extension of bifurcation the-
ory — is a mathematical language designed by René Thom!?
to describe and classify the abrupt changes in behaviour
that can occur when a continuous system can have more
than one stable state or path.?” A catastrophe is the jump
(bifurcation) from one state or pathway to another. The
so-called ‘elementary catastrophe theory’ used in BACTM
is limited in application to gradient-type dynamical sys-
tems. Although in general aircraft models containing non-
linear aerodynamics are not of this form, they may locally
resemble a gradient system.

BACTM is founded upon 4 theorems. Mathematical state-
ments (see ref. 1) are not given in this paper but relevant
features are outlined below.

¢ Centre Manifold Theorem. This theorem, which
is the key to the methodology, enables the behaviour
of an autonomous dynamical system z = f (z,¢)
(where Z is an n-dimensional vector of state vari-
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ables; ¢ is an m-dimensional vector of control vari-
ables; T = dZ/dt) in a region of equilibrium where
k of the n eigenvalues of the system Jacobian F
(=0 f /8%) simultaneously cross the imaginary axis
(i.e. where a bifurcation occurs) to be described in
terms of a k-dimensional system of equations §(%, ¢},
as well as n — k linear equations. This effectively
means that:

— bifurcations are revealed through eigenvalues cross-
ing the imaginary axis;

— the bifurcational behaviour of a system of n
equations can be studied in terms of a reduced
system §(#, ¢) of k equations;

— results obtained from the reduced system can
be generalised to higher-dimensional systems by
superimposing linear systems having eigenval-
ues with non-zero real parts.

The theorem also quantifies the maximum possible
value of k for a system of given number of controls,

m. Usually, no more than 2 or 3 eigenvalues are
found to cross the imaginary axis simultaneously in
an aircraft dynamical system.

e Main Theorem of Elementary Catastrophe The-
ory. This theorem classifies all bifurcational be-
haviour of finite dimensional gradient systems for up
to 5 control variables. Aircraft seldom involve more
than 4 controls of concern in stability analysis and
under these conditions only 7 types of catastrophe
are possible (for gradient systems). Global bifurca-
tional behaviour of these 7 elementary catastrophes
is described in terms of their generic functions §(#, €)
{see above) and have been extensively-studied and
documented.}?19%7

Although aircraft dynamic models are not usually
of the gradient form, results from the Centre Mani-
fold Theorem permit information inferred from local
catastrophes to be applied to the overall system.®

e Hopf Bifurcation Theorem. Nonlinear autonomous
dynamical systems of the non-gradient type can have
equilibrium solutions which are closed orbits (limit
cycles). They correspond to pairs of complex eigen-
values crossing into the right half plane as a param-
eter (control) is varied, while the other eigenvalues
remain in the left half plane. The critical point at
which the eigenvalues cross the imaginary axis sig-
nifles the bifurcation from a fixed-point solution to
a limit cycle. The theorem states conditions under
which such Hopf bifurcations occur.

e Global Implicit Function Theorem. This allows
conditions to be determined under which a nonlin-
ear system of equations has a unique solution, thus
signifying a lack of bifurcational behaviour. It ap-
plies only to gradient systems — where bifurcations
coincide with real eigenvalues changing sign - — and
will not therefore provide conditions relating to Hopf
bifurcations.

In using bifurcation analysis for general aircraft systems
it is the Centre Manifold and Hopf Bifurcation theorems
that are of primary relevance. The central issue is the be-



haviour of eigenvalues of the linearised system {Jacobian
matrix) as parameters are varied. The system of equa-
tions must be continuous and differentiable; it is studied
under conditions of equilibrium and the parameters that
are varied are usually control variables.

The first step in implementing the technique is to define
the dynamical system Z = f {%,8). This comprises the 6
equations of motion as well as the kinematic equations for
an aircraft in flight. Typically, £ = (p,q,7, o, 8,V7,9,6)7
where p, g and r are the roll, pitch, and yaw rates respec-
tively; «, 8 and Vr are the angle of attack, angle of sideslip
and total velocity; § and ¢ are the pitch and roll angles of
the aircraft. Typical elements of ¢ would be (6;,6.,6,)7,
i.e. aileron, stabilator and rudder control surface deflec-
tions. Thus, in this case, n = 8 and m = 3. The eight
equations are the standard flight dynamics equations in
which the aerodynamic forces and moments are defined in
terms of stability derivatives, and these in turn are often
tabulated as (nonlinear) functions of a,8 and/or Mach
number.

The basis of the methodology is to generate the so-called
equilibrium and bifurcation surfaces.

The former is an (n+m)-dimensional plot of all admissible
combinations of state and control variables for equilibrium
of the equations of motion (5:‘ = 0). Of course, surfaces of
higher dimension than 3 cannot be plotted or interpreted
easily; in practice, a series of m x n 2-dimensional graphs
of a state variable versus a control variable are drawn.
Information on eigenvalues of F is also required in or-
der to predict bifurcational behaviour. This is achieved
by representing each possible combination of eigenvalues
(i.e. left or right half plane, real or complex — see No-
tation pages) with a symbol which is plotted onto the
equilibrium branches. Such equilibrium plots are rich in
information on the dynamical system and, properly in-
terpreted, can yield predictions of discontinuous motions,
limit cycles and hysteresis over the entire flight envelope.

Bifurcation surfaces are m-dimensional plots of all admis-
sible values of the control variables at which bifurcations
occur i.e. points at which £ = 0 and one or more eigen-
values lie on the imaginary axis. Again, these are plotted
in practice as 2-dimensional graphs of one control ver-
sus another. Studied in conjunction with the equilibrium
surface, the bifurcation surface provides useful informa-
tion on how controls should be varied or control systems
designed in order to either avoid or utilise bifurcational
behaviour.

The use of equilibrium and bifurcation surfaces is best
illustrated by means of a low-order mathematical example
followed by a demonstration on a relatively simple aircraft
model.l""g’w’lg

These surfaces yield information on all possible equilib-
rium points as well as their linearised stability conditions
(which give good insight as to the actual stability of the
nonlinear system). They do not, however, describe tran-
sient behaviour as the system bifurcates from one equilib-
rium branch to another. To complete the picture, there-
fore, simulation is included in the methodology. It is im-
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portant to note that the equilibrium and bifurcation sur-
faces indicate exactly which sets of simulation runs are
necessary in order to feature relevant phenomena. Since
time histories obtained from simulations are dependent
on initial conditions, control sequence and duration of the
run the use of simulations in isolation requires enormous
numbers of runs and even then important phenomena are
easily missed.

Simulation also complements the equilibrium surfaces in
three other respects:

e if the computations for generating the equilibrium
surfaces provide only an indication of possible limit
cycle solutions but not their amplitude and stability
properties then time histories are needed to fulfil this
function;

e if the mathematical model used is a simplified one
then selected simulations enable verification (or lack
thereof) of the assumptions made;

¢ predictions of behaviour directly from the eigenval-
ues using the theorems may in some instances be
difficult: time histories illustrate response in a prac-
tical manner.

Thus by combining simulation with the equilibrium in-
formation yielded by a suitable computer program, an in-
depth and global understanding of the nonlinear dynamics
of the system is realised. This approach affords the flight
dynamicist a vast potential for behaviour prediction, con-
trol system design, departure and spin recovery studies,
improved parameter estimation, etc.

The computer program and its implementation

Program

The program required in order to generate equilibrium
surfaces is essentially a nonlinear equation solver capable
of finding all possible solutions to the algebraic system
1 (Z,¢) = 0 within a required envelope of state and control
variables. The program that has been developed is writ-
ten in standard double-precision FORTRAN in a modu-
lar form and with a strong emphasis on robust solution
methods, versatility, user-friendliness and well-formatted
output. As such it is simple to use and yet able to be
applied to any system of ordinary differential equations.

The solution procedure uses the parametric continuation
method based on Kubitek?® as developed by Mehra et al.?
It has been augmented by incorporating it into the auto-
matic step-incrementation method of Bergan?, by pro-
viding a choice of predictor-step integration methods {to
provide improved performance in regions where the sys-
tem becomes stiff), a more powerful corrector-step solu-
tion algorithm, and other numerical techniques to facili-
tate robustness and convenient solution intervals. Several
routines from the IMSL maths library are utilised.



The program requires initial guesses and checks for two
guesses generating the same solution branch. Input in-
cludes not only the equations of motion f but also the
elements of Jacobian F. Tabular data is currently ac-
cepted for up to two dimensions.

The present version finds eigenvalues of F at each solution
but does not solve for limit cycle amplitude and stability
as the extra computation required to incorporate this fea-
ture would increase program run time considerably.?

The program also solves an augmented (n-1)-dimensional

system of equations made up of f plus an equation in nu-
merical form specifying the determinant of F to be zero.
This generates bifurcation surfaces for jump-type bifur-
cations caused by a real eigenvalue of F' changing sign.
No simple criterion exists for determining manifolds of
Hopf and other bifurcations. Since the determinant is
not analytically specified the additional row of the aug-
mented system Jacobian matrix (required by the solution
algorithm) is generated numerically using Richardson ex-
trapolation on a finite-difference method.®

In order to allow for some intervention and selection be-
fore plotting occurs, the output from the program is made
available to a separate post-processing program and then
to the graphics package. A dedicated simulation package

is used for time histories. All programs and packages are
run on the University’s IBM mainframe computer.

This suite of software forms a highly flexible and practical
implementation of the bifurcation methodology.

Implementation

In order to provide some indication of the approach used
in interpreting equilibrium surfaces sample output from
the program is shown in Figure 2 for a simplified F-4J
model.!! The original model®! is a fully validated repre-
sentation of the actual aircraft’s behaviour in subsonic
flight from trim conditions, through stall, and up to and
including flat spin. It has been reduced in complexity by
setting gravity terms to zero and assuming Vr to be con-
stant. The former simplification decouples the kinematic
equations from the equations of motion; it is justified by
the fact that at AOA up to stall and departure aircraft dy-
namics are largely dictated by inertial coupling and aero-
dynamic nonlinearities rather than by gravity effects.’!
The latter assumption introduces little error in stability
and response calculations as Vr is sjow-varying relative to
the other state variables.! Altitude is also taken as con-
stant.

Note that these simplifications (which have been shown
to be acceptable for the example being presented'!) have
been made for ease of computation {and particularly in
finding initial conditions) and interpretation of results —
they do not reflect any limitation of the methodology or
program.

The model uses the usual dynamic and kinematic equa-~
tions for a rigid body in atmospheric flight. The aircraft is
taken as mirror-symmetric about the z-z plane. Aerody-
namic forces and moments are represented by 28 deriva-
tives and coefficients, most of which are tabulated as func-
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tions of o and one as a function of # as well. Thus the
model incorporates the inertial coupling inherent in the
equations of motion as well as extensive aerodynamic cou-
pling.

The system as implemented, therefore, comprises the fol-
lowing five equations of motion (p,q,# in body axes; &, 8
equations in wind axes):

(I, - L) I, - I? (L —I+1) I

. Tz
o % A A S Y A R
I L.
L N
nL- "t L -,
. Iz - Iz Iu 2 2 1
g = 2=+ Z{M-p)+ M
1, 1, 1,
. (Iz - Ill) Iz + I:, (Iy - Iz - Iz) Izt
= S T .2 B P P
r I;,;I; - Igz Pq + IzIs - Iazu e
Ie. I,
: L+ N
LI, - 1%, LI —I%,
. + rsing) + Zw
& = g — tanf(pcosa + rsine Ve cosB
f = psina — rcoso + mVy

The control variables (which appear inside the aerody-
namic terms of these equations) are &, §, and §,. The cor-
responding symbols used in the computer plots are given
in the Nomenclature.

Figures 2(a) and 2(b) are the roll rate (p) and AOA (a)
projections of the equilibrium surface for the full F-4J sta-
bilator range and §, = 25° and 6, = 0. The title ‘modified
model’ refers to the simplifications described above and
to the smnnthing of tabular data. The ¢,r and 8 curves
are not shown.

The ‘trim’ region of flight is that portion of the graphs
where stability is represented by the symbol S, from 6, =
—7.5° to —3°. Thus roll rate p is in the vicinity of 75°
per second and « about 6° (pitch rate ¢ is about 10° per
second, yaw rate r about 5° per second and § 2°. The
AOA range of stability on these solution curves is 0° to
11°.

If the stabilator were to be deflected beyond —7.5° in the
pitch-up sense (i.e. 6, more negative), the equilibrium sur-
face predicts the onset of limit cycle behaviour (Hopf bi-
furcation). No indication is given by the current program
of the nature of the limit cycle (amplitude and stability).
Assuming that the dynamics remain on this branch of the
curves (i.e. that oscillations are not of sufficient magni-
tude to bring the motion into the domain of attraction of
another more stable branch) then oscillations will occur
for « greater than 11° and up to 20° (B from 3° to 9°).
Roll rate oscillations would start about a mean value of
60° per second and decrease to —20° per second as « in-
creases (pitch rate oscillation would average about 10° per
second and yaw rate would oscillate approximately about

zero: it becomes negative at a &~ 19°, indicating adverse
yaw).



Since the characteristics of the predicted limit cycle are
not known in the absence of limit cycle solution techniques
or simulation, it is not yet possible to define whether the
oscillation represents buffet or wing rock. Certainly its
onset — o &2 11° — corresponds to that of buffet in the
literature, but it is possible that the limit cycle grows in
amplitude as a increases and becomes a wing rock motion.

At 6, = —14° (a = 20°) the solution branch turns back on
itself and becomes unstable. The system must then jump
(bifurcate) to a new solution branch, thus indicating de-
parture. The only remaining equilibrium branch on the
graphs is that denoted by possible limit cycles at an AQOA
of 48° (in line with the zero-gravity simplification no fully
developed spin branch exists in the plots). Again, with-
out knowledge of the oscillatory stability in this region
predictions are uncertain. It appears, however, that some
form of oscillation is likely: a steep spin is possible.

The magnitude of the departure in terms of the change
in variables is p ~ 100°/sec, ¢ ~ 0,7 ~ 110°/sec, a = 28°
and B ~ 8°. Thus the departure appears as a pitch~up
motion with strong divergence in roll and yaw rates (roll
departure and nose slice).

Figure 3 shows results from a simulation run intended to
verify the above predictions and characterise the limit cy-
cle phenomena. The stabilator deflection is initially zero
(corresponding to oscillations about a = 5° according to
the equilibrium curve; this should be followed by a bifur-
cation to the stable ‘trim’ behaviour as 6, crosses —3°).
At time t = 30s, 6, is decreased and is held steady at —6°
from ¢ = 40s to 60s. The stable behaviour predicted by
the equilibrium curves is manifest. Between ¢ = 60s and
t = 70s, 6, is decreased to —12°. The existence of the pre-
dicted limit cycle is.confirmed (¢ from 70s to 120s) and
the rolling oscillation is seen to dominate relative to oscil-
lations in the remaining variables. The motion is clearly
wing rock (amplitude of p about 150° /second), with fairly
marked amplitude in sideslip angle (about 20°).

At t = 120s 6, is decreased to —18° and a very large-
amplitude oscillation develops, with mean values as de-
rived from the equilibrium surface. Phase-plane plots {not
shown) reveal that this post departure motion is approx-
imately periodic with a ‘figure-8’ trajectory. The motion
could be described as a type of steep spin but with exces-
sively high amplitudes in all variables. It can be expected
that in practice gravity would play a significant role at
these high AOA, thus reducing the severity of the oscil-
lations. A time history (not shown) without any of the
simplifications mentioned previously (i.e. gravity, veloc-
ity, and altitude terms included) yields a very close re-
semblance in behaviour to that of Figure 3. As expected,
however, amplitudes of both the wing rock and the post-
departure oscillations are reduced.

Other simulations — not reproduced here — show that
transient behaviour does not significantly affect the dy-
namics and that when 6, is returned from —18° back to
zero, the response is merely reversed, i.e. there is no
hysteresis in this case. Had such hysteresis existed, a
method of returning to trimmed flight would have had to
be sought using other controls, and the bifurcation sur-
face would have proved useful in revealing such control-

sequence recovery techniques.

This example of the implementation of bifurcation meth-
ods by no means shows the full potential of the technique.
References 1, 2, 3, 4, 10 and 19 provide more detailed
studies of aircraft stability and control topics, including
the use of bifurcation surfaces.

Model complexity

The output obtained from the bifurcation method tech-
nique is, of course, dependent on the system equations
(f1 (%,€)) and their data values fed in. The equations of
motion for aircraft flight are standard and available in any
flight mechanics text. Ideally, the form of the equations
used in applying the bifurcation method would be the
same as those chosen to perform simulations of the air-
craft type concerned; in other words the equations would
represent the motion of the aircraft through all its flight
conditions, including extremes of AOA and sideslip, spins,
etc.?®

As mentioned above for the F-4J model implementation
it is often convenient to simplify the system of equations
in order to achieve faster computation, ease the process
of identifying initial guesses for solution branches and to
produce less confusing results that enable easier inter-
pretation. Such simplified models can only be applied

in practical problems when the phenomena being investi-
gated are caused by mechanisms that remain within the
system model — for this reason the reduced order F-4]
model cannot be used for the study of developed spins.

The important aspect of the overall model in terms of
implementation during aircraft design and development
is that of the aerodynamic data. This ranges in nature
from simple semi-empirical predictions for each stability
derivative, or transfer function, in the early stages of de-
sign up to extremely comprehensive data bases obtained
from static and dynamic wind tunnel tests, spin tunnel
tests, free-flight model tests and possibly even full-scale
flight tests. The latter package of information is only
likely to be available once the first aircraft have already
been flying for some time.

Generally, it can be said that the nonlinearities inherent
in the system via the equations are responsible for ‘jump-
type’ phenomena whilst the various aerodynamic nonlin-
earities lead to oscillatory motions.* This would imply
that the shape of the curves on equilibrium surfaces results
from the equations themselves, whereas any oscillatory
behaviour on these curves can be ascribed to the aerody-
namic nonlinearities. Certainly in the simplified aircraft
model with constant aerodynamic coefficients studied in
Refs. 1, 4, 10 and 19 the inertial coupling within the equa-
tions manifests very interesting behaviour and produces
equilibrium surfaces rich in information.

Figures 4 (a) and (b) show the roll rate and AOA equilib-
rium surface projections for the F-4J model, as simplified
above in terms of gravity and total velocity effects, for
6, = 6, = 0 and a range of 6, from —40° to 40° {well be-
yond the actual stabilator limits). In the context of the
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discussion that follows this model will be referred to as
the ‘full model’.

Figure 5 shows the equivalent curves with the stability
derivatives fixed at constant values. The correlation is
disappointing: the only common curves on the p graphs
are the ‘central branch’ and the Y -shaped branch. The
other two C-shaped curves have not been found. This
equilibrium surface enables no conjecture in respect of
the aircraft’s high AOA dynamics to be made (it predicts
a stable increase in a up into spin-type values with no de-
parture whatsoever). The fact that little oscillatory mo-
tion is predicted is, however, not unexpected for constant
derivative values in the light of the statements above.

This particular example shows poor results from the bi-
furcation method for the particular parameter values cho-
sen. It can be deduced, therefore, that implementation of
the technique at the initial stage in design when only pre-
dicted constant values of stability derivatives are available
is unlikely to be feasible.

The aerodynamic data in the full model is tabulated in
terms of & and B. The o tables are for | a |< 45°
whilst some go up to | a |< 110°. The 2-dimensional ta-
ble in which B is the second independent variable covers
| B |< 30°. A bifurcation method run was made in which
it is assumed that, possibly due to less expensive wind
tunnel tests having being run, data is only available for
| @ |<30° and | 8 |< 15°. The p and « equilibrium plots
are shown in Figure 6 and it can be seen that the shape of
the curves is retained. This model ‘simplification’ is seen
to provide the same warnings as to when nonlinear phe-
nomena. are likely to occur as the full model results. The
actual behaviour at values of AOA for which instability
has set in (o ~ 20°, as in the full model), however, does
not correspond to reality because the original ‘steep spin’
branch at a = 45° is no longer stable. In fact, no stable
solution exists for a beyond about 20°. It is, of course, to
be expected that, since the data is limited in ¢, an im-
plementation of this model could provide indications of
possible undesirable behaviour at moderate to high AOA
(up to the stall region) but could not reflect motions at
higher AQA.

It is also of interest to observe the results attainable from
the bifurcation method when static data is available but
dynamic is not. This may arise at a stage when static
wind tunnel tests on a preliminary design model have been
performed but dynamic tests are scheduled for later in the
project. Clearly, the motions resulting from nonlinear ef-
fects are highly dynamic in nature, yet the equilibrium
surface, shown in Figure 7, bears a very strong resem-
blance to that of the full model in terms of predicting the
onset of phenomena as higher AOA is approached: the
shape of the relevant curves is almost identical, although
the ‘steep spin’ mode occurs at slightly lower AOA and
the possibility of oscillatory behaviour exists from a as
low as 5°. The low AOA Y -shaped branch (p graph),
however, takes on a new shape for §, < —2°.

A realistic scenario could exist for which fairly compre-
hensive static data is available but dynamic data — which
relies on a far larger investment in time and money than
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static tests — only takes on the form of estimated con-
stant values. Such results for the F-4J example are shown
in Figure 8. The understanding of the dynamics of the
system that a flight dynamicist could infer from these
equilibrium surfaces is virtually identical to that suggested
by the full model. The only differences would be that
no limit cycle behaviour is shown just before departure
(although simulations for the full model reveal that the
amplitudes of the states in this limit cycle are extremely
low) and that a stable branch exists in the AOA range of
10° to 14° for §, > 5° (at an extremely high roll rate).

A similar run for comnstant values of dynamic data but
for | @ |< 30° and | B |< 15° (not shown) — ie. a
‘combination’ of Figures 6 and 8 — yields, as expected, a
good prediction of the onset of unusual behaviour (except
the pre-departure limit cycle). Unlike in Figure 6, how-
ever, the ‘steep spin’ branch ¢s denoted by limit cycles,
although the position of the curve is inaccurate {a too
high, p too low).

The simple variations demonstrated have been selected in
order to show some relationship between the value of bi-
furcation run output and the aerodynamic data available.
Since the opportunity of applying the technique during
actual aircraft development has not arisen, these levels of
model complexity do not reflect stages in some specific
project. The constant derivatives that have been used in
place of the tables are representative of the full model at
a =~ 5°; the constants that would be available in lieu of
tabular data in practise would be analytical or empiri-
cal estimates, or results from initial low-cost wind tunnel
tests. Obviously, it is assumed here that these estimates
are representative of the true system at some reasonable
AOA.

The accuracy with which lower-complexity aerodynamic
models approximate higher level models will vary from
one configuration to another and from one flight condi-
tion to another. The above results have also been ob-

*tained for 6, = —25°, with similar conclusions having been

drawn. The indications are that as long as reasonably
good static stability derivative data is available and the
dynamic derivatives can be estimated, even as constant
values, then the bifurcation methods will allow effective
and cheap comparison of differing design configurations
and yield useful information on the nonlinear dynamics
of the aircraft.

The sensitivity of the bifurcation technique to model com-
plexity as investigated here has considered only constant
versus tabular data, tabular data up to moderately high
AOA versus tabular data up to developed spin incidences,
and static versus dynamic data. It thus reflects broadly
the level of experimental results obtained at some point in
a design/development programme. The study needs to go
further than this and look more closely at the sensitivity
of the technique to specific stability derivatives so as to
indicate where the most effort is required in the analyt-
ical predictions and/or testing programmes. To a large
extent, of course, this is known since the relationship be-
tween high AOA phenomena and stability derivatives has
been the subject of intensive study over the years.



The deductions made above about bifurcation methods
generating useful results at a fairly early stage in air-
craft design and development — such as when good static
derivative data exists but dynamic derivative values are
estimated constants — has been made with the advantage
of the full model results being available for comparison.
In the practical context this would not be the case. There
is a need, therefore, to incorporate an experimental com-
ponent into the overall methodology, and it is intended
that an investigation be conducted into the design of a
low-cost wind tunnel dynamic test rig to reveal qualita-
tive information on discontinuous and limit cycle bifurca-
tionary behaviour. If successful correlation between such
scale-model motions and full-scale response is obtained
then this, in conjunction with the computational aspects
of bifurcation methods, would form a practical method-
ology enabling the flight dynamicist to make confldent
predictions of behaviour early on in the design phase of
new aircraft.

Summary

The need for a unified giobal technique for studying non-
linear stability and control problems of high-performance
aircraft throughout the flight envelope has been presented.
Bifurcation methods are shown to effectively meet this
requirement. The concepts underlying the methodology
have been summarised and a brief example of implemen-
tation has been given.

It has been noted that, despite a growing need for the un-
derstanding of nonlinear behaviour in dynamic systems,
some reluctance to imlement bifurcation methods exists
in the aircraft design and development environment. This
has been ascribed to the perceived difficulties in comput-
ing the required equilibrium and bifurcation surfaces and
to the belief that highly comprehensive models are neces-
sary.

In response to these perceptions a user-friendly suite of
computer programs has been developed, incorporating a
versatile and robust equilibrium solution program; and
aerodynamic models of varying complexity for the F-4J
Phantom have been used in the program to investigate
the sensitivity of bifurcation methods to the aerodynamic
mode! available.

The results indicate that the methods are likely to be use-
ful provided good static stability derivative data has been
obtained; estimates of some type should be available for
dynamic derivatives but no need appears to exist for very
comprehensive dynamic data in order to produce valid
and practical output. Similar results obtained for other
aircraft configurations, in several flight conditions, would
serve to confirm these findings. Preferably, the methods
should be implemented within an actual aircraft design
and development environment.

The work done indicates further that, to account for the
often counter-intuitive phenomena associated with high
AOA aircraft dynamics, the overall bifurcation methods
methodology would be strongly enhanced by complement-
ing the computational procedures with a simple exper-

imental facility. The aim would be qualitative analysis
of scale-model aircraft response during bifurcationary be-
haviour. It is intended that further work will involve the
development of such a low-cost dynamic test rig for wind
tunnels and the investigation of its effectiveness and via-
bility. The potential thus exists for bifurcation methods
to evolve into a broader experimental/computational tool
to be used with confidence by flight dynamicists.
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Figure 4:
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