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Abstract

This paper presents buckling and postbuckling resuits for
compression-loaded simply-supported aluminum plates and
composite plates with a symmetric lay-up of thin +45° plies
composed of many layers. Buckling results for aluminum plates of
finite length are given for various length-to-width ratios. Asymptotes
to the curves based on the buckling results give Nyor for plates of

infinite length. Postbuckling results for plates with transverse
shearing flexibility are compared to results from classical theory for
various width-to-thickness ratios. Characteristic curves indicating the
average longitudinal direct stress resultant as a function of the
applied displacements are calculated based on four different
theories: classical von Karman theory using the Kirchhotf
assumptions, first-order shear deformation theory, higher-order
shear deformation theory, and three-dimensional flexibility theory.
Present results indicate that the three-dimensional flexibility theory
gives the lowest buckling loads. The higher-order shear deformation
theory has fewer unknowns than the three-dimensional flexibility
theory but does not take into account through-the-thickness effects.
The figures presented show that small differences occur in the
average longitudinal direct stress resultants from the four theories
that are functions of applied end-shortening displacement.
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Dimensions of the rectangular plate
parallel to x, y, and z axes,
respectively

Stiffnesses used in Hooke's Law

Plate bending stiffnesses
Young's modulus

Plate stiffness components,
defined in equation (A14) in
the Appendix
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Inplane stress resultants in the plate
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plate
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length
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Value of U at buckling
Displacements inx, y, and z
directions, respectively

Plate coordinates

Functions of y defined in Appendix
Strains in the plate

Buckle half-wavelength

Poisson’s ratio

Stresses in the plate

*Senior Aerospace Engineer,

Associate Fellow, AIAA

5

ntr i

The increasing interest in minimum weight designs for aeronautical
and aerospace structures has generated substantial interest in the
analysis of the elastic stability and postbuckliing behavior of structures
subjected to inplane compressive loads. For thin homogeneous
plates, classical plate theory predicts deformations and inplane
stresses that are comparable to those of three-dimensional elasticity.
Transverse stresses in thin plates are generally small compared to
inplane stresses, and thus, both classical theory and first-order shear
deformation theory give satisfactory results. However, since both
thearies are two-dimensional, they are not accurate enough to
predict transverse stresses directly. Accurate nonlinear theories are
required for the analysis of thick plates in which these transverse
stresses become more significant.

It is often sufficient to use an accurate nonlinear two-dimensional
theory to solve some three-dimensional nonlinear elasticity
problems.” However, when through-the-thickness effects become
more dominant, it is important to use a nonlinear theory that takes into
account such effects. One such theory has been derived in
reference 1 for laminated and thick plates with three-dimensional
flexibility effects. This theory can predict directly the transverse
stresses as well as the inplane stresses by using trigonometric terms
in addition to the usual constant and linear terms representing
through-the-thickness variation of the displacements. However, this
theory cannot satisfy the surface boundary conditions of a plate.

The purpose of the present paper is to present the results of an
investigation of the buckling and postbuckling response of
orthotropic plates loaded in compression. Classical nonlingar von
Karman theory using the Kirchhoff assumptions and three nonlinear
transverse shearing theories are used to predict results for different
values of plate width-to-thickness ratios in the postbuckling range.
The nonlinear transverse shearing theories are: first-order shear
deformation theory, references 2 and 3; higher-order shear
deformation theory, reference 4; and three-dimensional flexibility
theory, reference 1. The idea of satisfying exactly the static
tangential or surface boundary conditions on the external planes of
the plate (or shell) was used in references 5, 6, and 7. The first
papers dealing with postbuckling where the static tangential or
surface boundary conditions on the external planes of the plate were
satisfied are references 8 and 9. The present derivation of the
higher-order shear deformation theory has the advantage of having
noniinear through-the-thickness terms without contributing
additional unknowns to the first-order shear deformation theory. In
addition, it satisfies the surface boundary conditions of the plate.
The essential difference between the higher-order shear
deformation theory and the three-dimensional flexibility theory is that
the higher-order shear deformation theory is a two-dimensional
theory that uses cubic terms, whereas the three-dimensional
flexibility theory is a three-dimensional theory that uses trigonometric
terms in addition to the constant and linear terms that represent the
through-the-thickness variation of the inplane displacements. The
paper presents the derivation of the nonlinear plate equations for
buckling of plates loaded in axial compression for both higher-order
theories. This paper also presents postbuckling results for the
average longitudinal compressive direct stress resultant and
maximum stress resultants as a function of the applied
displacements, and maximum out-of-plane displacement as a
function of the applied end-shortening displacement. The plates
considered in this paper are infinitely long with side edges simply
supported and are loaded in uniaxial compressive end shortening.
The side edges are free to slide along the edges to allow constant
longitudinal strain. Results for the four theories are presented for
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aluminum plates and for composite plates with a symmetric lay-up
composed of many layers of thin +45° plies.

Theory

A brief outline of the derivation of the four different theories
compared in this paper is presented in this section. The derivation of
equations using classical von Karman-Kirchhoff theory has been
presented in reference 9. The derivation of equations using first-
order shear deformation theory has been presented in references 2
and 3. The derivation of the equations for the two higher-order
theories are not given in detail elsewhere, so they are presented in
the appendix. The general approach used in deriving the equations
to be solved is the same as in reference 10. First, the displacement
functions for each theory are identified. Then the nonlinear strain-
displacement relations are written to include the assumption that the
displacements are sinusoidal along the length of the infinitely long
plate. Stress-strain relations are defined for a "specially orthotropic*
plate. Application of the principle of virtua! work leads to ordinary
differential equations and variationally consistent boundary
conditions which are solved using a procedure based on Newton's
method as discussed in reference 11.

The displacements considered for each theory are:

e ok
o 0
ulxy.2)=u (xy)- W.x(x,y)ﬁ

V(XIY)Z) = Vo(le) - w!S(XIY) ﬁ (1)

w(x,y,z) = wo(x.y)
Ol f i

u(xy.2) = uxy) +udxy) %
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v(xy.2) =vo(xy) +|vixy) —%ﬂ (V_%‘_L) +w,§(x,y)) (ﬁ) % ®

w(xy,z) = wo(xy)

Three-gimensional flexibility t

u(xy.z) = uO(xy) + udxy) -I;‘l+ uSix.y) sin_ﬂ'vlﬂ‘_z
v(x,y,2) = v°(x,y) + va(x,y) §+ vs(x,y) sin Fhl “

wix.y,2) = wO(x,y) + we(x.y) cos %

In this paper the zero subscripts correspond to the constant-in-z
terms, the a superscripts correspond to the algebraic-in-z terms, and
the s and ¢ superscripts correspond to the trigonometric-in-z terms.

Both the classical von Karman-Kirchhoff and the first-order shear
deformation theories have inpiane deformations u and v which are
linearin z. Classical theory, however, has the additional assumption

that there is zero transverse shearing (vxz = Yz = 0), thus eliminating
u2 and v@ infavor of derivatives of wO.

The higher-order shear deformation theory considers inplane
deformations u and v which are cubic in z. As explained in
reference 10, the squared-in-z term vanishes and the cubic term
does not introduce any new variables beyond those that appear in
first-order shear deformation theory if the boundary conditions are
satisfied at z =+ /2. The three-dimensional flexibility theory
considers trigonometric terms in u, v, and w beyond the
expressions considered for the deformations of first-order shear
deformation theory.

To account for the applied displacement U,

0 o
u (xy)=- U% +Us(xy)

o o o ®
v (xy) =velyl +Volxy)

To satisfy the assumption that the displacements are sinusoidal
along the length

o 0 .. 2nX
Up = up(y)sin X
®)

o o
V= v2(y)cosg—}’:ti

All the other u coefficients can be expressed as functions of y
multiplied by cos nx/A, where A is the half-wavelength of the
buckled plate. All the other v and w coefficients can be expressed
as functions of y muttiplied by sin nx/A. The strain-displacement
relations used are

1
ex=Ux+ 5 Wiy

avelw, 2
Ey=Viytz Wy
Ez= Wz
Yyz=Viz+ Wiy U]
Txz=U,z + W.x

'ny=U,y+V,X+ W,any

Hooke's law that relates stresses to strains for a "specially orthotropic"
plate is used here

% | [C4yCio O 0 0 O W €x
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Sz | 0 0 Cg 0 0 O [[% ®
Tyz 0 0 0 Cyy 0 O Yyz
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Ordinary differential equations and variationally consistent boundary
conditions are derived using the principle of virtual work, and the
equations are solved by Newton's method. The principle of virtual
work applied to the internal forces of a three-dimensional body
considered here is

a ;b ph2
81’I=f f (oxdex+oydey+o,0ez+ ©
0 Y0 Y-h2

Txyd Yxy+txz® Yxz+Tyz 8 Yyz) dzdydx
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with simple support boundary conditionsaty =0 andy = b.

The half-wavelength A of the assumed deformations for the infinitely
long plates considered is chosen to minimize the buckling load for
each given applied deformation.

The principle of virtual work requires that the geometric boundary
conditions be satisfied. Including additional terms in the
representation of the through-the-thickness variation of the inplane
displacements will lead to convergence and satisfaction of natural
boundary conditions in the limit if a complete set of terms is used. An
alternate approach is to use terms that satisfy the natural boundary
conditions directly. A complete set of these terms also leads to
convergence. For the present problem, the three-dimensional
flexibility theory uses terms that do not satisfy the natural boundary
conditions. For the higher-order shear deformation theory,
coefficients of u and v inthe assumed displacements of equation
(3) are chosen such that vy, =0 and Yyz = 0. The coefficients are
written in terms of the existing unknowns v, va, and w® inaform
which satisfies the natural boundary conditions at the top and bottom
surfaces of the plate. Comparisons of results are valid whether or not
natural boundary conditions are satisfied.

Results and Discussion
The results obtained in this study for long aluminum plates with the
geometry shown in figure 1 are based on values of Young's modulus
E = 10.7 x108 psi and Poisson's ratio p =.33. The results obtained
in this study for infinitely long composite plates with a symmetric lay-

up composed of many layers of thin +45° plies are based on the
stiffness properties

Aqq=Agp= 620340 Ibfin. Aqp=446060 Ib/in.
Ag4= Ags= 50000 Ib/in. Agg= 483520 Ib/in.
Dy4=Dpp=5186 bin. D15=37291 bin.

Aga= 59000 Ib/in.

Dge= 40423 1b-in.
forh=.1in. andfor any value of b,

Buckling results given by the four theories are presented in figure 2
for finite aluminum plates and the results show the variation of the
buckling stress coefficient with width-to-thickness ratio b/h for a
range of length-to-width ratios a/b. Asymptotes to the curves in
figure 2 give N, ., for plates of infinite length. The differences in the

buckling results for aluminum plates with width-to-thickness ratios
less than ten, illustrate the need for including the effects of
transverse shear deformations when determining the compressive
buckling stress of these plates.

Results in the form of average axijal stress resultant NXav versus

applied end-shortening U, for the four theories and different values
of the width-to-thickness ratio b/h, are presented in figures 3a and 3b
for aluminum plates and composite plates, respectively. In figure 3a,
only one curve is shown for a b/h value of 100 since the
corresponding results for each theory are approximately the same.
Even for the thicker aluminum plates there are only slight differences
in the results given by the different theories. The results presented
in figure 3b illustrate the nature of the more compliant +45°
composite plate. The more pronounced separation in the
postbuckling branches of the curves for a given value of the b/h ratio
indicates the reduction in transverse shear stiffness in the composite
plates.

The results show that the higher-order shear deformation theory
gives a better approximation of the effects of shear deformation in
thick plates than the first-order theory, but it is still a two-dimensional
theory. Significant improvement beyond that already obtained with
the higher-order theory requires a three-dimensional theory. The
three-dimensional flexibility theory is an attempt to meet this
requirement. However, the present formulation of this three-
dimensional theory has limitations associated with the assumptions
made on the w displacement of equation (A10). Although it does
include a trigonometric term in z, this term does not satisfy the
bounding conditions at the upper and lower surfaces of the plates,
and therefore does not allow o, to have its proper influence on w.

Additionally, the assumption that the nonlinear terms involving w®

could be neglected because they were small in comparison to similar

terms involving only w® may be questionable. A secondary effect is
the choice of the specially orthotropic material which foregoes the
influence of €, on o,. Neither of these two effects becomes

significant until the effects of shear deformation become more
dominant. Evidence of these limitations are especially noticeable for
results of the three-dimensional flexibility theory at a b/h value of 20
in figures 4b, Sb, and 6b.

The results presented in figures 4a and 4b for the aluminum and
composite plates show that the higher-order shear deformation
theory gives the lowest value of normalized compressive Nymax for
higher values of normalized end-shortening U . In figure 4b, the
results for the three-dimensional flexibility theory at a b/h value of 20
exhibit nonlinear behavior in the postbuckling range. These results
suggest an increase in the importance of the unsatisfied bounding
conditions at the upper and lower surfaces of the plate. Similar
behavior for the three-dimensional flexibility theory at a b/h value of
20 is shown in figures 5b and 6éb.

The results presented in figure 5a show that the normalized Nxymax
as a function of normalized end-shortening U is nearly independent
of the width-to-thickness ratio b/h for the aluminum plates, whereas
figure 5b shows that the effect of the width-to-thickness ratio b/h is
more significant for the composite plates. Results for the normalized
maximum deflection wmax presented as a function of normalized
end-shortening U in figures 6a and 6b, for aluminum plates and
composite plates respectively, show that the value of the deflection
becomes increasingly dependent upon the width-to-thickness ratio
b/h as the value of the normalized end-shortening U increases.
These results indicate that shear deformation effects are more
dominant for the composite plates, especially at lower values of the
width-to-thickness ratio b/h.

Present results indicate that three-dimensional flexibility theory gives
lower buckling loads than the other theories, and produces
acceptable results except when the effect of the missing nonlinear

terms involving w® and the influence of the bounding conditions
become dominant. The three-dimensional flexibility theory has the
potential for permitting the development of a rigorous approach for
obtaining direct through-the-thickness stress components without
the current limitations caused by using additional trigonometric terms
in z in the expansion of the transverse displacement w and by

retaining the currently neglected nonlinear terms involving wC.
Higher-order shear deformation theory has the advantage of fewer
unknowns than the three-dimensional theory and yet it gives
comparable results to those given by three-dimensional flexibility
theory. For the +45° composite plates, results show more
pronounced nonlinear behavior in the postbuckling range as the
plate width-to-thickness ratio b/h decreases. This more pronounced
nonlinear response is a direct result of the increase in shear flexibility
of the more compliant +45° composite plates. The difference in the
order of the approximation of the four theories is most evident for the
+45° composite plate results, particularly for the average axial stress
resultant Nx,,, as a function of the applied displacement U, and for

the maximum out-of-plane displacement w as a function of the
applied displacement U.

Concluding Remarks

This paper presents buckling and postbuckling results for aluminum
plates and +45° composite plates subjected to longitudinal
compressive end-shortening displacements. The side edges of the
plates are simply supported and free to slide along the edges to
allow constant longitudinal strain. The effects of varying plate width
and thickness on the buckling stress coefficient is described. The
buckling results for aluminum plates with width-to-thickness ratios
less than ten, indicate that including the effects of transverse shear
deformation is important when determining the compressive buckling
stress and these effects should be included. Postbuckling results
for plates with transverse shearing flexibility are compared to results
from classical theory for various width-to-thickness ratios.
Characteristic curves indicating the average longitudinal direct stress
resultant as a function of the applied displacements are calculated
based on four different theories: classical von Karman theory, a first-
order shear deformation theory, a higher-order shear deformation
theory that satisfies the bounding conditions at the upper and lower
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surfaces of the plate, and a three-dimensional flexibility theory that
can predict the transverse and inplane stresses directly.

Present results indicate that the three-dimensional flexibility theory
gives the lowest buckling loads for the four theories considered, and
produces acceptable results except when the effect of the missing

nonlinear terms involving the coefficient wC of the trigonometric term
in the expansion of the transverse displacement w and the
influence of the bounding conditions becomes dominant. The
three-dimensional flexibility theory has the potential for permitting the
development of a rigorous approach for obtaining direct through-the-
thickness stress components without the current limitations caused
by using additional trigonometric terms in z in the expansion of the
transverse displacement w and by retaining the currently neglected
nonlinear terms involving w®. The higher-order shear deformation
theory has fewer unknowns than the three-dimensional flexibility
theory but cannot predict transverse or inplane stresses. The figures
presented show that, for postbuckling of aluminum plates, small
differences occur in the average longitudinal direct stress resultant,
in the maximum values of the other stress resuttants, and in the
maximum transverse displacements calculated when the effects of
transverse shear flexibility are included in the various theories. For
the +45° composite plates, results show more pronounced nonlinear
behavior in the postbuckling range as the plate width-to-thickness
ratio b/h decreases. This more pronounced nonlinear response is a
direct result of the increase in shear flexibility of the more compliant
+45° composite plates. The difference in the order of the
approximation of the four theories is most evident for the +45°
composite plates results, particularly for the results for the average
axial stress resultant Nx,, as a function of the applied displacement
U, and for the maximum out-of-plane displacement w as a function of
the applied displacement U.

Appendix
Governing differential equations are derived in more detail in this
appendix for the two higher-order theories considered in this paper.
i - ri

The displacements used in this theory are given by equations (3) as

a 2
u(xy.2)=u(xy) + u%«y)—%(%ﬂ +w.§(x.y)) (ﬁ) z

a 2
o a 4h Ivixy) L., © )(z z (A
=v (x, XY) = — = w6 =] =
vixy,2) =v_(xy) +|v(xy) 3( 4w,y ) | () [ 2
w(xy.2) = wo(x,y)
Substitution of equations (3) into equation (7) gives the strain-
displacement relations
_,.0 02  az 4(z3(, a,,0
gy =Uyg +%W’x + u,xlh— —E(ﬁ) (u,x +w,xxh)
cv0.,1w02 Az _4a/zy3f,a,.,0
sy_v,y+2 w,y v,yh 3(h) (v,y+w,wh)
[ o o a z
Yxy=Uy+Vix+ w,xw,y+(u,y+v,3ﬁ— (A2
3
4 [z a a [o]
5(}?) (u,y+v,x+2w,xyh)

e

e 5]

The assumption that the displacements are sinusoidal along the
length leads to

u=-UX4 ud(y) sin?—}’fl v = By) +v3y) cosz—;fx-

u?=f(y) cos X V=) sinZX

w® =wi(y) sin%

Stresses are determined from Hooke's law according to equation (8},
and stress resultant forces and moments are determined by the
following integrals through the thickness

P, h/2
Nx°+NxZCOS—: =fh/2 oxdz

21X h/2
NYo+ Ny2 sin=——= =f cydz

A hi2
h/2
i X
NyzosmT = Tyz|1- dz
-h/2
h/2 (A4)
42z
Nxzocos"—;- = | V-5 dz
h
-hs2
on h/2
Nxyo sm—-—x =fh/21:Xydz
X h/2
My 8in== =f o oxzdz
h/2 , 3
MX1sin"T"_ ——-hox(h- dz
-h/2
. h/2
My sin——= = oyzdz
Yo A f—h/z

hr2 3 h.
h2
Mago 555 =Lh/2 By 2
h/2
Myy,c08 E)% = Lh/z —% hty (ﬁ) dz

Substitution of the stresses and strains into the vjnual work
expression, equation (9), and performing the variation leads to the
differential equations
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where D” = ——”'in. B” =——1_. |n2
5b 21 b2

and the superscript (') denotes differentiation with respect to y.

The stiffnesses of the plate are given by

h/2

h/2
Aij:f Cide Dij=f
~hr2 ~h/2

where the C;J- are the stiffnesses in equation (8). Using the definition
Bo =w40 " gives the following two differential equations, which

complete the set of equations (14 equations with 14 unknowns)
without squares of derivatives of the unknowns as required in the
solution procedure (reference 11).

2
CijZ dz *0

wl =5,
,_ vy =
Bo =—_h_ —[ng(Myo—My1)—D22MY1+

— — a — — J—
(Dgp Dy -Dpp D12)l:]—1f+( Dop Dip = Dpp Byp) - (A7)

e | ——

The boundary conditions at y=0and y=bare

=0

o_ a_ _
us=uq=0, Nyo—N e )

yp =0 wi=0, My, =M
Three-dimensi ibili

The displacements used in this theory are given by equations (4) as
uixy,2) = Pxy) + u?(xy) ﬁ +u’(xy) sin JIhl

vix,y.2) = VO ey) + v3xy) ﬁ +vS(xy) sin % {r9)
w(x.y,2) = wo(xy) + wE(x,y) cos %

Substitution of equations (4) into equations (7) and neglecting the
nonlinear terms involving w® gives the strain-displacement relations
&y = Uy 0.1 w°2+u,al+u,s sinBZ
2 5 *h h
= 1wle4v3z 1:;
gy v +1 w,y + v,y +v,y sin
€, = —l wC sin &Z
h

z

U a, z S Sy oin TZ.
yy—u,y+v + Wy +(u +V’x)g+(“'y+"'x)s'"h

(A10)

=W, 0,u + WS+ T 0% cosBZ
Vxz =Wix h w.x h h

a
sz=% +w,3 +(lr':—vs+w,§) oos’;]—z

The assumption that the displacements are sinusoidal along the
length leads to

== U-’é + ucz’(y) sin—axﬂ = Vg(Y) + V%(Y) ooszgl
=v(y) sin—’%

vi= vﬁ(y) sinlv'i‘-

=iy cos%

u® =u3(y) cos”Tx

(A1)
wl = wc{(Y) sinJI)%‘-

wC= w(1: y) sin%

Stresses are determined from Hooke's law according to equation (8),
and stress resultant forces and moments are determined by the
following integrals through the thickness

2nx 2 0
Nxo + Nx2 cosT = L oy dz

h2
N, sindFX - J ol dz
or oo e Y
. h/2To
Y24 Joh2 Y2
N
XZ1 J.

(A12)
d
= 10 dz
_h2 X2

N in2Tx W2 o d
sin2xX = Ty 0z
¥2© A thz xy

1759



Mx1 = j_:i (Gxa(ﬁ) + oxs sin%z)ﬁdz
My, = J_://z (o;’(ﬁ) + o; sinﬂhl)ﬁdz

h/2
M, = ( a (2} 28 inmz)z
xy4 thz txy(h)+txy sint2 ) Z dz

Lxq = J +cs sm"z) sinkZ gz
h/2 h h
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Lyzqy = f Tz cos2ﬂ-l dz
Lxzq = J T cos21L dz
h/2

Lxyq = J—h/z ("-xy (h ) Ty sinEI%) sinfhl dz

where the form of the stresses are

o = o + oal +oysinEZ Tyz"“?z +t§,zcos%

= z nkZ 0 L
o'y y + c;h +o’§sm h T sz +’L'XZCOS
orz=cs‘s.,_sin"‘z xy"‘xy tiyl-+§ysm1L

Substitution of the stresses and strains into the virtual work
expression, equation (9), and performing the variation leads to the
differential equations
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The stiffnesses of the plate are given by

h/2 h/2
Aii =f Ci]dz Hii =j CUCOSE;—dZ
=h/2 -h/2 h

h2 2., h/2 >
K--=j C - Sin Eh—dz D«=J’ C.z°dz (A14)

U otz
h/2 2 2
J“ = f Ciizsinﬂdz L= I CijCOS RZ dz
-h/2 h -h/2 h

where the Cij are the stiffnesses in equation (8). The definition B =
w40 is not used in this theory due to differences in the formulation
of the theories. Instead, the following definition of B4 is used

a L

vy W yZ A H
By= {_—h—{ﬁL Q- llkLN Xz ) I_1]/(I_|4_4__4A)}. (A15)

44 44 44 44
N

1/{” 1 Yz/(A44_H44)

Hag 2 /\Hgy Igq
which results in the completely defined set of equations (16

equations with 16 unknowns) without squares of derivatives of the
unknowns as required in the solution procedure.

The boundary conditionsusedat y=0and y=bare

c
-0

=u§=0, N, =N,

yo —0 W1—W1—0 M

=Ly, =0 a9

c
po
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Fig. 1 Plate Geometry.
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Fig. 2 Critical axial stress resultant, Nxcr’ versus plate length-to-

width ratio, a/b, for different width-to-thickness ratios, b/h, and
ditferent theories for aluminum plates of finite length.
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Fig. 3a Average axial stress resultant, Nxav' versus applied end-
shortening, U, for different width-to-thickness ratios, b/h,
and different theories for aluminum plates of infinite length
where U/a is finite.
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Fig. 3b Average axial stress resultant, Nx qy Versus applied end-

shortening, U, for different width-to-thickness ratio§, blh
and different theories for+45 ° composite plates of infinite
length where U/a is finite.
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Fig. 4a Maximum transverse stress resultant, N , Versus

applied end-shortening, U, for different width-to-thickness
ratios, b/h, and different theories for aluminum plates of
infinite length where U/a is finite.
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Fig. 4b Maximum transverse stress resultant, N , versus

applied end-shortening, U, for different width-to-thickness
ratios, b/h, and different theories fort45 ° composite plates
of infinite length where U/a is finite.
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Fig. 5a Maximum shear stress resultant, N , versus

applied end-shortening, U, for different width-to-thickness
ratios, b/h, and different theories for aluminum plates of
infinite length where U/a is finite.
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Fig. 5Sb Maximum shear stress resultant, N , versus

applied end-shortening, U, for different width-to-thickness
ratios, b/h, and different theories for#45 ° composite plates
of infinite length where U/a is finite.
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Fig. 6a Out-of-plane displacement, w, versus applied end-shorten-
ing, U, for different width-to-thickness ratios, b/h, and
different theories for aluminum plates of infinite length
where U/a is finite.
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Fig. 8b Out-of-plane displacement, w, versus applied end-shorten-
ing, U, for different width-to-thickness ratios, b/h, and
different theories for&45 ° composite plates of infinite length
where U/a is finite.
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