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Abstract

The paper describes how to derive accurate and
reliable solutions to the equations of three-
dimensional elastomechanics on domains of general
shape. Use of the proposed computational
procedures makes it possible to efficiently
perform the three~dimensional fracture mechanics
analyses needed for damage tolerance design of
aircraft structures.

The h~p version of the finite element is the
numerical method employed. The exact solution may
close to edges and vertices be expanded in series.
The terms in the series consists of unknown
constants and functions which characterize the
solution in areas where crack nucleation and
propagation often takes place. Under certain
conditions these constants may be used to predict
growth and unstable fracture in metals and ceramic
materials. For edges we develop a new method for
calculation of polynomial approximations to the
mode I, mode II and mode III edge intensity
functions. For vertices we define intensity
parameters named vertex intensity factors and
vertex-edge intensity factors. Computational
procedures are developed with which all intensity
parameters can be determined with an error which
decreases exponentially with increasing number of
degrees of freedom. Numerical examples
demonstrating the reliability and accuracy
obtainable when solving three-dimensional problems
are given.

1 In ion

Damage tolerant design and fatigue design are
analytical procedures. Component testing and full
scale testing are required to verify the
analytical procedure used. Application of the
MIL-A-83444 design code for damage tolerant design
requires that designers safely should predic% the
growth of three-dimensional cracks in complex
aircraft components. The prediction of stable slow
crack growth and the onset of unstable crack
growth are in practical cases based on a linear
elastic fracture mechanics analyses. Effects of
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material non-linearities due to high loads in the
load spectrum are considered in the crack growth
analysis by use of socalled crack retardation
models.

Over the past decade it has been possible to
solve three-dimensional linear elastic fracture
mechanics problems using the finite element
method. The time-consuming task of creating three-
dimensional meshes has however prevented routinely
use of these methods in the damage tolerance
analysis of aircraft structures. Further the
reliability of the numerical methods available
which not always is satisfactory has only recently
been adresses in the engineering community (see
for example (1) and references therein). The
accuracy of the computed data depend on the
properties of the exact solution and the finite
element method used.

In this paper a computational procedure with
which three-dimensional linear elastic fracture
mechanics problems routinely may be solved in a
reliable way is devoloped. All fracture mechanics
parameters (including also vertices) may be
extracted from the finite element solution with
an error which decreases exponentially with
increasing number of degrees of freedom used.

2 Diff ia] .

We consider a domain V' (for example se i)
Figure 1) which is a union of s ??omains v .
The ‘surface of each subdomain V is a union of
. . . af .
piecewise analytical subsurfaces S (a function
is said to be analytic if all derivatives are
finite and the function can be expanded i?i?
Taylor series). Two ¢r more subsurfaces S .
intersect a?j?dges Y J at a qonstant angle m(j).
The edges v form piecgwise smooth(g?t least
C continous) curves in R . An edge 7y is either
closed or terminates at two vertices. Nonclosed
edges star%k?nd end at a vertex. Vertices are
labelled A .



Figure 1 Cube-shaped domain with edge-crack

and stresses may be found. In practical design,
the main objective often is to derive precise
information about the behaviour of the solution in
the neighbourhood of vertices and edges.

The domain V = VWUS has in each subdomain
linearly elastic material properties. The strain-
displacement relations are for linear kinematics
given by equation (1). The equilibrium equations
are given by equations (2). For an isotropic
material the constitutive equation are defined by
the equations (3) in which p and G are Lame'’s
constants. For an anisotropic material the con-
stitutive equations are given by equation (4).

1
g,. =5 (u, ., +u, ) (1)
i3 2 i, 3 .1
c,. . +tX =20 (2)
i3,3 i
c,., = ud, ¢ + 2Gg, | 3
ij K kk ij 3)
c,,=C,, & 4
ij ijkl k1 4)
The Latin indices take the values in the set
{1,2,3}. The usual summation convention is used.
3, .is the Kronecker symbol. ¢,.,£,, and u, are

i \ R i
cagte51an stress, strain and égspigcement com-
ponents respectively.

From the equations (1)-(3) the Navier equa-
tions (for isotropic materials) in the unknown
displacement field u. are obtained as,

i

Gu, ., (L+Gu, . .
i,33 j,ii i

(5)
For an anisotropic material the corresponding
equations are,

+ X

. 0
i

C., _.u, 6

imlj J,1im (6)
Boundary conditions considered are prescribed

homogenous displacements on S € S and prescribed

surface tractions Ti on ST < §, that is

(7)
and
(8)
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where v, is outward normal to ST'
J

The tractions 'I‘i are assumed to be zero close
to edges and vertices where intensity factors/
functions are to be computed. We assume that the
tragtions or displaceme?ts which are prescribed on

(1 , = (1 .. :

S are analytid on S ag%i?lmllarlly Xi are
assumed to be analytic on V .

0.1
Denote by H (V) the Sobolev space,

0

Hl(V) = {u,CHl(V)!u,=O on § } (9)
i i u

The exact solution to the equations (6) with
boundary conditions (7) and (8) is the Ei?imizer

of the quadratic functional F(u) over H (V),

where

F(u) = 1/2B(u,u) - Q(u) (10)

with

B av 11
(a,u) j Cimljuj,lui,m (i

v
Q{u) = (12)

!

The strain energy in the system is 1/2B{u,u).

u X, dv + j u,T,ds
11 3 1 21

T

3 p . : luti

The properties of the exact three-dimensional
solution to the Navier equations under conditions
defined in section 2 will briefly be reviewed. We
know that there exists only one solution (deter-
mined except for a rigid body motion) which has
finite energy (this solution we are seeking).

This solution is analyiic everywhere on v except
on the edges. The solution is singular (singular
imply that some derivates are unbounded) along the
edges and at the vertices.

The character of the solution can be discussed
in the way that the solution is split into the
singular part and the regular part (regular imply
that all derivatives up to a given degree are
bounded) . The singular behaviour is different
along the open edges (ie excluding the vertices)
and in the neighbourhood of the vertices.

Consider first, the behaviour of the exac?j)
solution close to smoothly curved open edge Y
(Figure 2). A detailed mathematical treatment is
given in [5,6].

The edge is for clearity assumed to be located
in one plane z=0 in a local cartesian coordinat?j)
system. The two faces terminating at the edge ¥
are assumed to be,stressfree and intersect at a
constant angle o along the edge. A local cur-
vilinear coordinate(system (x.,x_,%x_) which is
fixed to the edge ¥y I' where the“x_ Zaxis is lo-
cated in the plane of the edge perpendicular to
the edge is used to characterize the behaviour of
the exact solution close to the crack front.



(3)

Figure 2 Edge Y located in plane z=0 in a
local Cartesian xyz-system

The displacements in the xi-direction may
close to the edge (for noninteger A) be written in
the form,

M l(m) [
v2n (m) (m)
ui - z KI (x3) X x X in e,xI ]
m=1
(m)
A
K(m)(x ) X r 11 x ¥ [9,k(m) +
II1 3 IT1i II
(m)
A
(m>(x ) X r 13 X ¥ . \e, (m)) ]
IIT 3 IITi IIT
+ U, (r,0,x) (13)
i 3

where Ui are functions of higher smoothness. The
value M depends in general on the imposed load and
the neighbourhood we seek the solution as well as
required accuracy.
(m) (m) (m)
In equation (13) A A A
quation {13) A Ayp v Apgg

eigenvalues and W(T), W(m) and W;m) the cor-

responding edge eléenfunctions. Forlexceptional
angles m(J) the eigenvalues k(m) may be integers
or multiple. In thege cases we can have additional
terms of the type r (lnr) ~ too. For complex
eigenvalues A we take the real and the imaginary
parts which corresponds to an oscillatory
behaviour of the stresses.

are the edge

The angular functions y_,, V¥
L

and v ., are
. . ] ITTi
for isotropic materials,

IIi

) (m {(m) (m)

)9)-1

v, = k-0 (1) Teos (A] o cost(a ™ -2)0)
v, = [K-Ql(xI(m)+1)]sin(x§m)e)+xI(m) sin[nl(m) -2)8)
Vi3 = 0
Vi, = Ik + QZ(J\.I(I;)+1)] sin(k](:r;)e) -
xI(’;) sin[ (AI(’;) -2)0]
v, = - Ik - Qz(xI";‘)u)] cos(xl(‘;"e) -
k;?)cos[(};?)—Z)B] (14)
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I13
wIIIl =0
WIIIZ =0
Yirrs T Sin()‘f:)le)
where
x = 4 - 3p (conditions equivalent to plane strain

conditions apply close to crack-tip) and

(m) {m)
1-A smn[m(l-kl )/2]

1 143 ™ sin [m(1+k(m) ) /2]
I I
sin [w(l—k(m) 1/2)
1T
QZ = s (m) 5
sin
[m(l+XII )/2]
) (m) (m)

The functions K(m , K and K are edge
stress intensity functions which are basic design
parameters used for example in damage tolerance
design of aircraft structures [7].

For straight edges(g?d isotiggic materials,
the edge eigenvalues XI and xII are roots to the
two equations

sin{(le®) £+ Asin(®) = 0 . (16)

The plus sign apply for mode I deformation and
the minus sign for mode II deformation. The mode
IITI eigenvalues are

{m) mn
xIII = 4 6—_’ m=1,2,3,... (17)

Finite energy in the solution requires that
all eigenvalues ar on-negative. The solution

m my m f e :
{~ k? ?, w? (9 k? ?)) that also satisfies Navier
equations is used in connection with extracting
approximate values for the edge intensity
functions K(x3) out of the finite element
solution.

A mathematical description of properties of
the exact solution close to a curved edge is
presently not available. We expect, however that
for a smooth edge which is curved in one plane the
equation (13) have to be augmented with terms of
the type [6]

™y

M e (m) I (m)
Zrog o gtk mydxr * Vim0t )
m=1 l=1
(m)
Ay
™y x r( Iz ) (m)] +
11 *3 Viriim o e
{m)
A + 1
K™ ey x r( Tz )x o x(m)]l
IIT 73 Virriim 2 M1

(18)



The functions wli o etc depend only on the
curvature of the ?ﬁ?Ck front. A new set of inten-
sity functions (k (x.) .) thus can be defined.
Since A>0 and 12 i the terms in the equation (18)
correspond to finite stresses at the edge. For the
curved edge, equation (13) thus apply with M=1.

The edge intensity functions are, for smooth
loading and a smoothly shaped edge, smooth func-
tions in the coordinate x_. This property will in
section 7 be used to derive polynomial approxima-
tions to the edge stress iqg?nsity functions on
the interior of the edge y .

The tractions in the local (x_,x_,x_)-system
corresponding to displacements given by the equa-
tions (13) are,

M (m)
T, = X [K(m) ) x A D
1 %3 1
=1
% 0,2y +
Ii I

(8,2 ") + (19)

(A___-1)

(m)
X 0,2 ] + sm h
IIIi( ’ III) oother terms
Consider now the behavio%ﬁ)of the exact
solution close to a vertex A at which J
straight edges terminates (compare Figure 1).
Material properties are assumed to be isotropic.
The solution close to the edges is given by
equation (13). Near the vertex the xi—displacement
is [5]
{m)
m) A m
z s( p . W; )(¢,6) + smootHer terms (20)
m=1

In the case when A is integer or multiple
equation (20) has p ssiblg to be augmented with
terms of the type p (1lnp) (q(%?teger). In the
equation (20) the parameter A is the vertex
eigenvalue of order m and (p,¢,0) are spherical
coordinates. The maximum number of terms depends
on the loading. In engineering applications the
number of terms may be set large. This is of
practical importance since several terms might be
needed to characterize the solution [8].

The functions me){¢,e) which can be
understood as being defined on the spherical
surface p=1 have a singular behaviour for angles
(0,0} where edges intersect with the spherical
surface.

The functions me)(¢,6) may be decomposed into
a regular and a singular part. The advantage is
that the singular character of the solution at the
vertex can be characterized by a few intensity
factors. These intensity factors may eventually,
as in standard linear elastic fracture mechanics,
be used to predict growth and unstable fracture
[71.
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If for clearity only the first term in the
series (20) is considered the decomposed solution
can for non-integer A be written

(1)

u, = xip) * s(l). pA . vil)(¢,9)+!§£ jglx(rj).kgl
(s;i,k>. (A(l)_1;§>).(rj;?>. ?gij[ejrkég)))+
;;;k). (A<1)_x;:; -(rjétg- ‘s °j'*§§§)’+
;i;g) . (A(l)_X;:;j -(rj;:;jo L j'*;:;j]”
+ smoother terms (21)

where r, is the distance to edge j. The functions
X are cat—off functions infinitely smooth with
function values 1 for p=0 and r.=0 and value 0 at
a distance from the vertex and the edges
respectively.

The function V, in equation (21) is a smooth
function and iéentical to W, in equation (20)
except for the neighbourhooé of the edges.

The scalar S(l) which depends on the loading
we name the vertex intensity factor of order 1.
The vertex intensity factor S may be used to
generally characterize the solution at the vertex.
Close to the vertex and fjirst order edge j t

. ) ne ATt %0

edge intensity function K_, is for nonzero s

obtained from equations (ig) and (21) as I3
(1) (1)

K(%%P)= s(%'l)' A le + smoother terms

I3 I3 (22)

Similar expressions apply for the mode II and
mode III edge intensity functions close to a
vertex.

(1,1)

The scalar sI we name the mode I vertex-
edge intensity fagtor o?k?rder 1 for edge j
terminating at vertex A Dependent on actual
values of A and A the edge intensity function may
be zero, finite or infinite at a vertex.

The equation (22) was discussed in an
engineering context in [9] and was given in a very
general setting in [5].

If one of the edges is curved in one plane the
equation (20) has to be augmented with terms of
the type p with k=1,2,3... The equations (21)
and (22) then apply for a curved crack front too.
For integer values of A the series (20) must be
augmented with terms p (lnp) ~.

(m)The vertex eigenvalues A and the functions
W, (6,0) must in all practical situations be
determined numerically. A accurate and reliable
procedure to do this is described in section 6.



A The h- . £ the fini ]

Here we apply the h-p version of the finite
element method for solving the minimization
problem defined by the equations (9) - (12). In
the h-p version of the finite element method
convergence is obtained by simultaneously
decreasing the element sizes and increasing the
polynomial order of approximation p. The h-p
version has exponential rate of convergence in
energy with respect to the number of degrees of
freedom N, eg [2, 4], that is

L - —CZ.JN
B(u-u,u-u) = B(u,u)-B(u,u) sCl.e (23)
where B(*,*) is defined in equation (10). The
polynomial order of approximation is p and C_. and
C_ are constants independent of p. The methoés
developed in the present paper for calculation of
different intensity functions are all constructed
as to give an exponential decrease in error in
computed data when used in combination with the h-
p version of FEM.

For one- and two-dimensional problems it was
shown in [3] that the optimal mesh close to a
singularity is graded in geometric progression
with a grading factor o of about 0.15. Numerical
analyses of three-dimensional problems using
meshes strongly graded towards vertex and edges
have been found to give an exponential decrease in
the energy error [10]. For three-dimensional prob-
lems the optimal p-distribution in the mesh has to
be defined. In connection with the model problems
analysed in section 10, the effect of mesh design
close to edges and vertices will be exemplified.

The finite element program STRIPE which is
used to derive numerical data in the present
paper i based on the h-p version of the finite
element method. Trial functions used are formed as
tensor products H H H i
p l(51) m(§2) n(§3) as suggested in

[11]. For a brick-shaped finite element for
example

1 1
Ho(ii)— 2 (l‘ii): Hl(ii)— > (1+§i)
1 (§:—1) k even

k!
Hk(ﬁi)= k>1 (24)

1 k
b (ii-ii) k odd

with 0 slsp, Osmsp, Osnsp and l+m+nsp+2

where p is polynomial order of approximation.
For a uniform order of approximation the

number of degrees of freedom for an element is

(ptl) (p+2) (p+3)

3 + 3(p+tl). (25)

The approximation corresponds to complete

polynomials of order p together with 3(p+l)
monomial terms of degree higher than p.
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: Lf-adapt; luti ;

Use or self-adaptive solution schemes may under
certain conditions significantly reduce the
computational effort needed to derive solutions of
required accuracy. One might argue that an
adaptive process itself may not add much to the
strong convergence already obtained when employing
the h-p version of FEM. In many practical
situations, however, users provide (of different
reasons) very non-optimal meshes. For such cases
the p-adaptive solution scheme discussed here may
be very efficient as demonstrated in section 10
(see also [10]).

By p-adaptive we here mean that finite
elements in a fixed mesh automiatically are
assigned different orders of approximation p in a
near-optimal way.

Instead of directly minimizing the
computational effort needed most adaptive schemes
are designed to minimize the dimension (that is
the number of degrees of freedom) of the trial
space used. This approach may be justified due to
the strong relation between the number of degrees
of freedom and the time needed to solve the
resulting set of equations (which is the major
effort in most FE-analyses).

The construction of new trial spaces of low
dimension thus is the crucial part in the adaptive
process. For each trial function which is a
candidate to be used to expand the existing trial
space, efficiency indices called error indicators
need be calculated [10,12,13]. An error indicator
is an estimate of the decrease in error in energy,
stress or stress intensity factor etc that will be
obtained if the existing trial space is expanded
with the actual trial function.

If the candidate trial function describing the
x,-displacements is denoted v, the error indicator
used, is (i is fixed)

2 2
n, = |Iv,r,dﬂ| /JC,,, v, .v,, dQ (26)
i a ii a ijil i,1 i3

with the residual

27
57 Cim13%3, 1m 27

where u is the finite element solution.

This indicator [10,12,13]) is an estimate of
the change in energy norm when adding the trial
function v, to existing trial space.

i

The error in computed vertex and edge
intensity factors depend on the error in energy
norm for the primary and an auxiliary load system
[10]. Error indicators which are estimates of the
decrease in energy in the solution thus indirectly
are measures of the decrease of the error in
calculated intensity factors.

i .
De?oye(by ( )N the dimension of the trial
1 , . :
space S P at iteration i where p is the maximum



polynomial order or approximation used in any
finite element. The space s of dimension N
contains all trial functions of order p or less
(equations (24) and (25)).

(p)

The main steps in the adaptive process used
here are,

1 -(2
1 Set iteration number i=1 and ¢ )S = S( )

2 Calculate terms in element stiffness matrices
and element load vector?iyhich are 7$%i§ed to
t?s)trial functions v & S and vie s
( S is the null space)

3 Assemble stiffnesses and solve the resulting
system of linear equations using a domain
solution technique

4 Calculate stresses and intensity parameters

5 If the number of iterations i have reached a
preset value stop here

2 .
6 Calculate error indicators ni for all trial

: = {(i+2) (i)
functions vies and vie S

i+l i+l
7 Determine ¢ )N and = )S from values of
error indicators and a few heuristic rules [7]

8 Set i = i+l and continue at point 2

& The fundamental ejgenvalue problem

The vertex eigenvalues A(m) (equation (20))
can be determined analytically only for very
degenerated cases. Numerical methods have to be
used. The method developed here is well integrated
with standard finite element techniques.

Consider the case when J straight edges ter-
minates at a vertex A Material properties are
assumed isgtropic. We know that the solution is of
the form p (¢,0) (equation (20)). Solutions of
this type satisfy (also for A integer)

du,

i

55 = Aui/P (28)

The eigenvalues may be real or complex because
we deal with a nonselfadjoint problem.

ﬁgﬁ problem of finding the lowest eigenvalue
Re (A )> ~1/2 (for finite energy) is the fun-
damental eigenvalue problem. The solution we are
seeking satisfy equation (6) with boundary condi-
tions (8). At the vertex we have (equation (20)
with p=0)

u,=0 . (29)

In order to determine the vertex eigenvalue we
consider a spherical domain with fﬁ?ius p  located
symmetrically around the vertex A
domain is shown in Figure 3).

(one such
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e

Subdomain Q  with spherical

surface used for determ%n?tion
X m

of vertex eigenvalues A

Figure 3

We use the weak form of the Navier equations
and apply equation (28) as boundary condition on
the spherical part of the surface of the subdomain
to find ?g?roximative values for the vertex eigen-
values A .

The strain-displacement relations may using
equations (1) and (28) be written in the form

= +
ekl (A/pu)x D ix ug F

Kl 14% aui/axj (30)

klij

where u, and € are Cartesian displacements and
strains respectively. The elements of the func-
tions D, , and F depends on (¢,0) only. The
constitutive equatigns (30) which satisfy the con-
straint (28) are obtained by transforming the
equation (1) to spherical coordinates (p,$,6) and
replacing all derivatives 9/dp using equation (28)
before transforming the resulting equations back
to Cartesian coordinates, displacements etc.

The exact solution to the vertex eigenvalue
problem is the minimizer to the functional defined
by equation (10) with B(u,u) from (11) and with

Q(u);f ukvl{(A/pu)uSkl Dmmi+ ZGDkli)ui +
s
(uslemmij + 2GFklij)8ui/axj}dS

(31)

The equations (10), (12) and (31) constitutes
our eigenvalue problem. We use the standard finite
element technigues to derive aproximative solu-
tions A to A. The finite dimensional trial space
used is for brick-shaped finite elements spanned
by basis functions of the type given by equations
(24) . For wedge shaped finite elements similar
shape-functions are used.

In matrix notation the resulting algebraic
eigenvalue problem may be written.

[Kl(u}=(A/Pu)[B](u) + [Blzliu} _ (32)
where [K] is the ordinary stiffness matrix (as in

linear elasto-statics) for the three-dimensional
spherical subdomain considered, [B] is a symmetric



positive definite matrix, [B__ ] is a non-symmetric
matrix and {u} is the vector with generalized de-
grees of freedom.

The matrices [B] and [B__] are very sparse. By
using so-called static conag%sation of the [K]~-
matrix the dimension of the algebraic eigenvalue
problem (32) is significantly reduced. The com-
putational effort needed for the static con-
densation is taken advantage of by using a domain
solution scheme when solving the Navier equation
on the entire domain.

The eigenvalues A may be real or complex.
Complex eigenvalues appears in pairs which are
complex conjugated.

For the numerical method devised here, theor-
etical convergence properties are known and used
to aposteriori estimate the error in computed ver-
tex eigenvalues. If the p-version of the finite
element method is applied, the error in calculated
eigenvalue is bounded by [14]
1y (1

-4 minA M, AWM 412y

(m)-x(m)lsc3x P (33)

1A

where A is the minimum edge eigen value for edges
terminating at the vertex and C_ is a constant de-
pendent on mesh and mapping function but inde-
pendent of order of approximation p. The equality
sign apply for p large.

The equation (33) may for p sufficiently large
be used as an error estimate. From three solutions
for different orders of approximation p the con-
stant C_, the exponent (which theoretically is
-4 min(i,A+l/2)) and A may be calculated by solv-
ing the set of three nonlinear equations.
Practical experience shows that very sharp error
estimates are obtained already for p>3,

(1)Finite energy in the solution requires that
A > -1/2. The equation (32) give solutions A
with finite energy. There are solutions having in-
finite energy. Such solutions plays an important
role in extraction of vertex and vertex-edge in-
tensity factors (Sections 8 and 9).

(m)

It can be shown that if A™s _1/2 is a solu-

tion then -(A  "+1) is a solution too. The
corresponding eigenvector can be determined
numerically from equation (32) by transposing the
[Blzl—matrix and solving for {u}.

1 _E ion of in i functi K

We consider the computation of the mode I,
mo?ﬁ)ll and mode III edge intensity functions
KI (x3), KI (x.) and K (x.,) of different
s X sx

orders m on tﬁe interval x3l (Figure 2).

3u
The edge is defined by x=X (t), y=Y (t) and z=0.
The functions X (t) and Y (t) are assumed to be
functions of high regular?ty on the interval t < t
< tu. In practical cases the functions Xe(t) and
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Ye(t) may be trigonometric functions, polynomials
etc. Blended function mapping [15] may be used to
model edges of a general shape. The function
x_(t), with unique inverse t(x_ ), should be smooth
in order not to lower the convergence rate in the
numerical solution process.

Edge intensity functions compﬁtation is based on
the Betti reciprocity theorem,
1 2 1 1 2
i (( )u,x(Z)T, _ ! )u,x( )T,)dF = (( )u,x( )X,-
i i i i e i i
re Q

@ <My g (34)
1 1

In equation (34) the left superindex refer to
the load system considered. A left superindex (1)
denotes the primary load system; a superindex (2)
denotes an auxiliary load system selected to give
small errors when extracting edge intensity data
[9]. By a proper choi?s)of the domain Qe and
extraction functions u,, it is possible to use
equation (34) to determiné the edge intensity
functions of different orders m for mode I, mode
II and mode III loading. This method is a
generalization of the ideas given in [16] and
[17].

The selection of the domain Qe for extraction of
edge intensity functions is first discusseg,
Figure 4 schematically shows a subdomain Q cR
with surface ' VI U ..... ul'  enclosing a part of
the smooth edge. The surfaces I’ and T', intersect
at the edge at a constant angle ®. The surface I’
is a cylinder with circular cross-section of
radius p and with its axis coinciding with the
edge considered. The cylinder ends are labelled

TS and TG.

e .
Domain Q used for extraction of edge
intensity functions.

Figure 4

The smoothness of the edge intensity functions (on
the open interval) makes it possible to
approximate them with polynomials. Subsequently
the mode I stress intensity function of order m,
K(m), may be approxig E$d

with the polynomial KI where,



% Pl(S) (35)

and
s = 2(t—t(x3l))/(t(x3u)—t(x3l))- 1 (36)

Analogous expressions are used for the mode II
and mode III stress inteng%%y function approxima-
tions. In equation (35) k are unknown coeffi-
cients to be determined anélP (s) are Legendre
polynomials of order 1. The reason for using
Legendre polynomials, instead of ordinary polyno-
mial terms, is that round-off errors will be

. m)y ~{(m
reduced when computing the coefficients kIl)' k;I;
~(m
and k( ) The number of terms (L+l) in the

series, equation (35), must be selected with care.
Here L=p is used where p is polynomial order of
approximation used when employing the h-p version
of the finite element method.

It can be shown that under g7§$ral c?g?itions
- K

the error in the coefficients |K
I1 Il
)

I

m ~{m m ~(m .

}K( - K( )l and IK( ) - K(I) | is of the
same order as the error in the strain energy (lsp)
in the solution.

The extraction functions (z)u, are defined as
function of the curvilinear polarlcoordinates
(r,0,x_{(t)), see Figure 2, where sections
%x_= constant form planes which are perpendicular
to the edge. The relation between the local car-
tesian (x,y,z)-coordinates and the curvilinear
(r,0,x_{(t)) coordinates is for curved edges not
unique for large r.

: A ~(m)

In orde o determine the coefficients k '
~ (m) ~fm§

kIIl and kIIIl , (L + 1) extraction functions

2
¢ )u, are needed. Dependent on the shape of the

1 e s )
domain Q used for extraction of edge intensity
functions different extraction functions are used.

Figure 5 schematically shows different type of
domains Q which may be used for computation of
vertex intensity fagtors S , vertex-edge
intensity factors s and edge intensity

. (m) (m) (m)
functions K r K and K .
I II I1r
The domains A or F can be used for computation of
vertex and vertex-edge intensity factors while the
domains B,C,D or E may be used for computation of
edge intensity functions.

For domains D,E and F the subsurfaces I' , T
and T _ normally are facetted where each facett 1s
a face of a finite element. The domains B and C
have a circular cross-section. Since the precise
shape of each subdomain is defined by the finite
element subdivision, so called blended function
mapping [15] has to be used when adopting domains
‘A, ‘B’ or 'C’ for calculation of intensity
parameters.

We briefly describe the case when the surfaces

T_ and F6 of the domain Q are of low regu-

1-4’ 5

Vertex A%

Vertex A*

Domains Qe used for computation of
edge intensity functions and vertex
intensity factors for non-closed edge
of elliptical shape

Figure 5

larity, (domain ‘E’ in Figure 5). The mapping from
the local elements oriented coordinate system to
the physical coordinate system may in this case be
isoparametric. The ends I' and I' . are not
necessarily perpendicular to the edge considered.

The n’th extraction function of the in all
(L+1) functions needed for extraction of the mode
I edge stress intensity function of order m is,
(2,n) ')'I(m) (m)

’ m
= - 7
v =T X w:i[e’ A ) x Qs (37)

The coordinate s is defined by equation (36).
For mode II and mode III similar expressions
apply.

2,n

In equation (37) the functions (2r )u, are
displacements in direction i in the curviiinear
(x 'XZ'X )-system which is fixed to the edge. For
de%inltion of the global displacements, the dis-
placements of the edge are needed.

The displacements defined by equation (37) cor-
respond for a vanishingly small radius r to the
following tractions,

(2,m)_ _ _ (m) _y (m)
Ti = -r X XI X in[e, XI ] X Qn(S)
(38)
Th . (2,n) .
e displacements u, correspo?g %? the
'7'X, and

general case to no?fer? volume forces 5
X n
nonzero tractions "“'r on all subsurfaces Fl to
1
r_.
6
The reciprocity theorem given by equation
(5.2) may be rewritten as,

1 2,
i [( )u. ( n)T_ (Z'n)u, < (l)T,]dI‘ -
i i i i
r
3
2,
i ((1)u_ X( n)x‘ ) _ [(2,n)u' % (l)x,]dﬂ -
i i i i
Q2
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f L(l)u. X(Z,H)T‘ (2,n)u. y (1)T
_ 1 1 1

3
(39)

, 2,n
By substituting (2, )u,

i 7
(2,0} from equation (37),

Ti f?QT equation (38) and “i from eguation
(13) for u in the left hand side of equation
(39) and shrinking the radius p_ to zeg?ﬁ)a set of
equations in the unknown coefficients kI are
obtained.

The auxiliary load systems (left superindex
(2)) have a strong singularity at the edge (see
equation (38)). In the numerical implementation
this will lead to severe cancellation of terms
unless special care is(g?ken. By subracting a

u

displacement solution with the properties
1

(e) _ {1
u, (X X, ,X_ ) =
i 3

17%5 ui(O,O,x3) (40)

from the primary load system when applying equa-
tion (39) the problem caused by cancellation may
be avoided.

The displacement field defined by equation
(40) implies that planes perpendicular to the
crack front undergoes a pure translation. The
corresponding edge intensity functions are identi-
cg}ly zero. The corresponding surface tractions

T, and volume forces X, are generally non-

i e e i
zero'on I and Q.

By applying the (L+l) different extraction
functions equation (37) and using Q =P a set of
. . . Beic ~ {m
linear eqguations in the unknown coetfficients kIl

is obtained,

[M] (k} = (F} (41)

Here [M] i1s a symmetric square matrix of order
(L+1), {(k} and {F} are vectors of length (L+l).
From equation (39) the elements in the matrix [M]
and in the vector (F} are obtained as,

x3u
) = B x XI B, (x3) X P (xj) dxg
31
x3u 2
= B x XI P (xdx, if 1 =n
31 (42)
=0 if 1 # n
/2
_ _, fm) (m) _, (m)
B = kI —m;z[wri[e’kl ] X Ii[e' xI J *
(43)
(m) (m)
tys(0hy ) X v, (o) 140
and
(F}] = f[((l)u. (e) ,)x(z'n)x_ "
1 i i i
Qe
2y x (E)x,)dn - (a4)
1 1

i [((1)u -(e)u,)x(z'n)T

i i i

2,n 1 1
(2, )u, x(( )T_— ( )T,)] ar
1 1 1

The matrix (M) is diagonal. Unique values of

the coefficients kI are obtained. For calcula-
: ~ (m) ~{m)

tion of kI and k completely analogous ex-
pressions to equatlons (42) - (44) are obtained.

In the numerical computation of the edge
intensity functions, the h-p version of the finite
element method is used to derive approximate
solutions to the problem studied. The finite
element solution ;i then will be used as an ap-
proximation for (l)u, and (e)u_. Based on the
a?§umptions made in éection Z,lth volume forces

X, are zero and the tractions T,
the éubsurfaces Fland F2. .

are zero on

In the numerical computation of the vector
{F}, first and second order derivatives of the
finite element solution are negded. The secgnd
order derivatives needed are 4 u, (0,0,t)/dt which
for smooth crack fronts and smooth loading can be
computed very accurately when employing the h-p
version of the finite element method. The error in
computed stress intensity functions will thus be
governed by the error in computed first order
derivatives of the finite element solution.

By a special choi?s) of the domain o° and the
extraction functions u,, it may be possible to
construct expressions for the stress intensity
functions such(E?at first order derivatives of the
displacements u, are not needed in the extrac-
tion process. A cyiindrical domain where the
subsurface T is circular in a cross section
perpendicular to the edge and where the ends
I' and I'_ are perpendicular to the edge is an
example of such a subdomain Q
labelled ’'B’ in Figure 5).

(see domain

. € . .

For subdomains Q having this shape, the
associated extraction functions for extraction of
the mode I stress intensity function of order (m)
are,

2 (m)
(2,1n) - (m)
u, =€ (x) xx x vy (02, )xe (s (45)

where f{r) is the function

1 - 5 - 3 r< pl
f(r)=191 - 3 [ 1 ] +2{ l] p.<r<op

Pu Pl Pu Pl 1 u
0 rzp

(46)
suggested in [16].

The function Q(s), with s from eq%gté?n (36)
is defined as to give zero tractions '~ T,
the ends F5 and FG, eg

on
1
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Q (s) = g(s)xP_(s) (47)
n n

with
2 2
g(s) = (1-5) (48)
. . .. ~(m)
The dese nmination of the coefficients k ’
~ (m) St . , 11
k and k respectively proceeds in a manner

completely analogous to that descibed above for
the case with more generally shaped subdomains Q.
The equation (41) still applies with the dif-
ference that the elements of the matrix [M] and
the vector {F} are, different.

The advantage of using the extraction func-
tions defined by equations (45)-(48) and a
torodial domain Q° it that when evaluating the
elements of the vector F only first and second

order derivates of ?h? functi?n u,, are needed
, e e) i
for calculation of T, an?e) X.,. Due to the
i .
smoothness of the function u,, §he error in the
.. X K i(e
finite element approximation of u, decreases

exponentially with increasing order éf
approximation p. Thus the quality of the finite
element approximation of the stress intensity
functions K (%) etc. will only depend on the
quality of a weighted average of the displacements
inside the subdomain Q.

Extr ion of vertex intensi f r

umFor calculation of vertex intensity factors
S of order m (equation (20)) we proceed basi-
cally as for calculation of edge intensity
functions. The main difference is that extraction
functions and eigenfunctions have to be determined
numerically.

By applying the reciprocity theorem (34) on a
subdomain of the type shown in Figure 3 or Figure
6 we arrive at explicit expressions for the vertex
intensity factors.

For the subdomain shown in Figure 6 the sub-
faces I'' and I'| are traction free. The surface T
is sphericai wf%h radius p . The face I' is 3
facetted (Figure 6) or sphgrical (Figurg 3).

The reciprocity theorem is

I((l)u x(2)T _(2)u (1)

} X T, )ydll =
1
F3 1 1 R
(1) (2) (2) (1) (49
e A TR JE RS TR S )
1 1 1 1
r
s
. . . (2)
since extraction functlons(z) ui to be used have
zero volume force density Xi'

The extraction function of order m is

() T u M g,0 (50)

m
where the functions U,( )(¢,6) have to be deter-
mined numerically (see Section 6).
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Figure 6 Example of subdomains used for
extraction of vertex intensity
factors (Figure a) and vertex-
edge intensity factors (Figure b)

Approximations to the eigenfunctions W, (¢,9)
are determined from (32) up to an arbitrary con-
stant multiplier ¢ The numerically determined
function Wi(¢,9) is

70, = ™M x m" x (u (51)
1

where {H} is a vector of basis functions, equa-
tions (24), evaluated at local coordinates &i
corresponding to points (¢,6) on the spherical
surface p=pu.

It is necessary that the scaling parameter
c(m) can be accurately determined from the numeri-~
cal solution. The most accurate quantity in the
numerical solution is, except for the A-value
(equation (33)), the energy 1/2B(u,u) (equation
(11))(%? the solution. We defin?m}he scaling fac-
tor ¢ {and thus indirectly S ) as

24 ™ 41
(m) pru
c = ——————-T (52)
1/2{u} [K]{u}

where a right superindex T denotes transpose, G is
the shear modulus and p _the radius of the surface
I'_ used in the finite element analysis. ?g? matrix
[K] and the vector {u} (for eigenvalue A
those in equation (32).

)} are

need not be
1 . .
scaled. The exact solution to the Navier equations

2)
The extraction function ¢ u,

is on the surface F3 for small p=pz given by equa-
tion (20).



umThe calculation of the vertex intensity factor
s .now proceeds in the following wa¥ﬁ)First ap-
proximations to the eigenf?gytions W, (¢,0) and
the extractionfunctions U, (6,0) are determined
numerically. The left-hané side of equation (49),
which is independe?%)of Pu {small) and contains
only the unknown S due to ortogonality pro-
perties between functions U, and W., is then
evaluated numerically. .

The right hand side of equation (49) is eva-
luat??)by subs?i}uting the finite element solution
for u1 nd T,._Tractions are calculated
using equations (36) in order to obtain a higher
rate of convergence.

The éssulting linear equation has the only un-
known § .

: fon of —edge i iy £

The mode I edge intensity function of order 1
for edge j may for p small be written (p is
distance to the vertex)

(m) (1)
(1) _ (m,1) (A - A_L)
KIj(p) m£1 st P I3 (53)
(r, 1)
where s_ are the mode I order 1 vertex-edge

intensit% factors for edge j.

Similar expressions apply for higher order
edge intensity functions and also for the mode II
and mode III edge intensity functions. For
simplicity equations given in this section are for
the mode I component.

The methods devised in Section 7 may be used
to determing the edge-inﬁfysit¥1§unctions close to
a vertex provided that A RS For an edge
intensity funCt%?? of grder n, Zhe corresponding
expression is A z A, Since this condition- is
not always satisfied i practical situations a
procedure for calculation of vertex-edge intensity
factors is useful.

The computational procedure sugges?g? proceeds
as follows. Firs?myertex eigenvalues A ., vertex
eigenfunc%%?ns w (6,6) and vertex intensity
factors § are determined as described in
Sections 6 and 8. Each vertex eigenvalue/eigen-
function (after scaling, equation (52)) are then
treated separately by computing the corresponding
vertex-edge intensity factors. The vertex-edge
intensity factors for the load systems of interest
(equation (53)) are finally obtained by
superposition of fundamental solutions for each
v?£§ex eigenfunction (the vertex intensity factors
S are known) .

For calculation of vertex-edge intensity
factors we apply an extraction procedure similar
to that used in Section 7. The extraction function
used when considering edge j and mode I edge
intensity functions of order k is (compare
equation (37))

(k)
@Dy = ew e, (54)
i J Iij Jj 1)
where r, is distance to edge j, k(%) is the edge
eigenvaiue determined from equations (16) and ¥_, .
is the edge eigen%g?ction from (14). The_volume
force density is Ti=0 are

zero on subfaces terminating at edge j.

X,=0 and tractions

The domain o used for extraction of vertex-
edge intensity factors are shown in Figure 6b. The
edge I' which is facetted in the figure may also
be spherical.

The edge j and the vertex is not included
in the subdomain © used. On the conical surface
I' (cone angle is vanishingly small) the solution
for a single vertex eigenfunction of order m

W (¢,0) considered is
k k
Ay (Ao 2y R0 ()
u,= X% s_, *p I3 "e{x.Ij ¥Y_, . (6,,A_ )1}
1, 13 J Iij 3 13

(55)

The “-symbol denotes that the vertex-intensity
factors apply for a single normalized vertex
eigenfunction W {($,0).

The reciprocity theorem applied is {(using the
labelling of subsurfaces shown in Figure 6b)

f((l)u,x(z)T,—(Z)u_x(l)T,)dI' =
r 1 1 1 1
3
-f((1)u_x(2)T,—(2)u,x(1)T,)dr - (l)u,x(Z)T,dr
1 1 1 1 1 b
T r
s 1

(56)
. : , (1)

By substituting v, from equation (55) for u,
on the left hand side of equation (56) and using
the extraction function given by equation (54) the
following explicit expression for the unknown
vertex-edge intensity factor is obtained

(m) , (k)

(A =-A +l). ;(m,k) B =
pu Ij
1 2
-y g @Dy yar - j(Pu xPear
i i i i i i
r r
s 1
(57)
where p is length of cone and P is given by

equation (43). The extraction procedure described
may be used for all (m,k) satisfying

m _ (k)

.+l =20 (58)
I3

A
The technically most important vertex-edge
intensity factors are for k=1 (order 1 edge 1)
intensity function). Since A > -1/2 and XIj >0
the equation (58) apply to this case.
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The vertex intensity factors sought in equation
(53)) are obtained from
S(m,k)= (m) 7 (m, k)

13 S st (59)

We finally remark that the extraction functions
equation (54) may be modified along lines
discussed in Section 7 (see equations (45) to
(48)) .

10 Model problems

Three problems are studied in order to
exemplify the convergence rate and the accuracy
obtainable when employing the above extraction
procedures.

The first example treats the problem of a flat
elliptical crack (major and minor ellipse axes are
a=2 and b=1 respectively) in an infinite space of
elastic material (v=0.3). Uniform remote tensile
stresses cz=l and tx =1 are applied (Figure 7). An
analytical solution to this problem is given in
[18]. The edge intensity functions,

o 1/2 1/4
1 2 2
K( ) .= [ﬂhﬂ [a sin t + bZCOSZtJ (60)
I o a
-4GA 1/2
1 1t [&a] / [ 2.0k +
I > Xz b a sin t
a
-1/4
2
b cos t] X COSt (61)
-4GA_ (1-
1 1 V) [@Jlm[z .2
K = Xz a sin t +
III a
b
~1/4
b cos t] X sint (62)

in which, A_(a/b,v) is a constant and ® is the
elliptic integral of second kind are generally
nonzero along the edge.

In the numerical analysis, a cube-shaped
domain with side lengths 30b enclosing the ellip-
tical crack is studied. The analytical solution is
used to calculate consistent forces in the finite
element analysis. Thus an exact solution to the
model example is available.

Figure 7 Embedded elliptical crack in infinite
space subject to remote uniform
stresses 6 =1 and © =1. Dimension of

crack is a/b=2
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Figure 8 shows the FE-mesh used in the
analysis. The mesh may be considered to consist of
the parts A and B. Part A consists of three layers
of elements where in each plane the coarsest
possible grading in the direction along the crack
fronts has been used. Part B is cylindrical mesh
(outer radius is p =0.15b) with the elliptical
crack front as cylgnder axis (compare domain "B"
in Figure 5). The mesh in part B is characterized
by the number of radial layers m and the grading
factor a. The total number of (brick-shaped and
wedge-shaped) finite elements in the mesh is
(4m+18) .

Figure 8 Principal mesh used for analysis of

elliptical crack

The mesh shown in Figure 8 is not optimal.
The mesh in part A is a mesh which is easy to
prepare using one of the many standard FE-prepro-
cessors available. Close to the edge the mesh
design is characteristic for the h-p version of
the finite element method. The elements inside the
cylinder have aspect ratios of the order 10 to
10 . Such elements have to be generated
automatically since it is not possible to inspect
such a mesh visually.

It is possible to construct a mesh generator
which, based on an existing coarse mesh, automati-
cally replaces finite elements connected to speci-
fied edges and vertices with sets of strongly
graded cylindrical and spherical meshes. One such
meshgenerator has been implemented in the code
STRIPE which is used to derive numerical results
in the present paper. This type of mesh generator
is much simpler to implement than is a general
mesh-generator for the h-p version of FEM. The
mesh generation concept is successful due to the
fact that optimal meshes indeed should be very
strongly graded towards edges and vertices where
the exact solution is singular [4,19]. By
increasing the order of approximation p in the
entire mesh while keeping the user-supplied part
of the mesh fixed and simultaneously refining the
mesh close to vertices and edges an exponential



rate of convergence in engineering guantities
still may be obtained.

Consider the error in computed edge intensity
functions. The error is defined as

max K;l) - ﬁ;l) ’
[
te(0,%/2] ‘————;TIT_'_
I
max K(l) - i(l) orxr
te[0,m/4] —I‘L—(TrLLK
IT
max g _g® (63)
vetn/a,x/21 |t
I1I

where the tilda-symbol (~) denotes the finite
element solution. The crack front is defined by
Xe=a cos(t), Ye=b sin(t) and z=0.

Figure 9 shows th? error in computed edge
intensity function K as function of order of
approximation p., The load system is ¢ =1.

z

10°

]w
Y]
/
B

8 D m=3
~N
- AN a
~

~
Energy error, m=7 AN a

&~

max|( KI - RI )/KI|
o
1
/

Order of approximation p
Maximum relative error in K(l) as
function of polynomial orde¥ of
approximation p used

Figure 9

In figure 10 the error_in mode II and mode III
edge intensity funtions K and K;i; are plotted
for the loading case 1t =I1.

Xz

The results shown in figures 9 and 10
exemplifies that, it is possible to derive
pointwise values of the edge intensity functions

K and K with very high accuracy. Use of
tge h -p version of the finite element method
combined with the extraction procedures disgussed
in section 7 leads to a strong and in this case

* STRIPE was developed at the Aeronautical
Research Institute of Sweden
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Figure 10 MaX}mum relative error in K and
K as function of polynomial

oréer of approximation used.

nearly monotonic rate of convergence. The rate of
convergence is approximatively exponential up to a
certain p-level which is determined by the number
of layers m of element in part B of the mesh. The
computational procedure thus is efficient and
reliable. The finite element mesh used has only
one finite element along the entire crack front.
This obviously is not a limiting factor.

As a second example we consider the main frame
fuselage studied in [20]. Figure 11 shows a finite
element mesh used for damage tolerance assessment
of the fuselage. The mesh was designed for the h-
version of the finite element method.

Area A

Area B

Figure 11 FE-mesh of main frame fuselage for
h-version of finite element method

For the damage tolerance assessment edge in-
tensity functions for a quarter-circular crack
located in area B at the boundary of a bolt hole
in the web are needed. The load transfer from bolt



to the web of the fuselage is very complex (for
more details see [20]). The analysis was performed
in the following way. The mesh available which was
nearly uniform was modified in the most simple way
by just introducing a cylindrical mesh of the type
shown in Figure 8 (part B) and adjusting a few
elements attached to this cylinder. The mesh in-
side the cylinder has four radial layers (m=4) of
element and two layers of element along the crack
front. The details of the solution close to the
ends of the crack front (at the vertices) is not
revealed with this mesh.

Solutions for uniform p=2,3...7 were obtained.
Figure 12 shows the calculated maximum values of
K_ close to the ends of the crack front as func-
tion of order of approximation p used.

KI’

° —9—0—0

a v () c—
®

>.

500 |
//’
400 —

K]

F I TN T R TR
2 3 4 5 6 7

ORDER OF APPROX(MATION p

Calculated values of K_ close to
ends of crack front for different
orders of approximation p used

Figure 12

The Figure shows that for p>4 solutions have
from a practical point of view converged. This
practical application exemplifies that methods
developed in the present paper may be used to effi-
ciently derive reliable engineering solutions to
complex problems.

We remark that the p-version and the h-p ver-
sion of the finite element method gives very
accurate solutions in areas where the exact solu-
tion is smooth. Consider as an example the maximum
stress at a fuel tube hole in the fuselage (area A
in Figure 11). Figure 13 shows the calculated max-
imum stress as function of maximum order of
approximation used when employing the self-
adaptive solution scheme described in Section 6
(for details see [10]). Again we note that we seem
to have a well-converged solution for p24.

In example three we demonstrate the computa-
tion of vertex and vertex-~edge intensity factors
by studying the cube-shaped domain shown in Figure
1. In order to exemplify the reliability of the
numerical schemes an exact analytical solution is
needed.
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Figure 13 Calculated maximum stress at fuel-
tube hole in fuselage

The displacement solution,

u1 =0

= 64
u, 0 (64)
u3 = pA (sin<1>)1/2 cosd sin((n-8)/2)

2 2.1/2
with A =3/2, R=(x +y2+z ) / , O=atan(-x/z) and

2 2 2 . .
¢=atan((x +z )l/ /y) will be used for this pur-
pose.

The function u_ is harmonic and with Youngs
modulus E=1, shear modulus G=1 and Poissons ratio
v=0 it satisfies Navier equations with boundary
conditions

u. =0

3 on the face y=0

(65)
u3= 0 on the face x=0, zz0

The volume force density is X_=0 in the entire
domain. Tractions on the three faces x=a, y=2a and
z=-a 1s derived from equations (1-4) and equations
(64) .

It would of course be preferable to have a
more general test case. It is however unlikely
that such solutions exist in the analytical form
(see for example [9,21,22]) necessary to express
the true error in calculated intensity parameters.

The solution (64) exhibits thilﬁtandard square
root singularity al??? the edge ¥ (the crack
front). At vertex A the solution (64) may be
decomposed (equation (21)) as

A
u,= Sxp x w0(9,¢) +

3
XX {x Xy 1 X r
S]X )

-A
(A 3) X r 3 W3(9,¢)

Moy )+ (66
b 1
s_xy{r )x z A
3 z z
where r and r are distances to the x- and z-axes
respecthely. fhe sig}ar S is the vertex intensity
factor for vertex A ; 8. and s_ are ?? verte?g)
edge intensity factors %g{ the eéges Y and y

terminating at vertex A .



For the boundary conditions
values are

(65) the eigen-

k1=1/2, A=2 (67)

Note that equations (16) gives edge eigenvalues
for traction free boundary conditions. The eigen-
value?,(67) for this example are roots to
. 3)
sin (o A)=0.
The smogth functions wl(e) and w3(¢,6) are
w1=sin((n—9)/2) (68)
. . 2 .2 . 2
w3=51n(2¢)sln(n—e)/(cos ¢ + sin ¢ sin (n-9))

1/2
The function wy,_ is (sin¢)/ cosd sin((n-9)/2)
except in the neié%bourhood of the three edges.

The analytical values for the intensity fac-
tors are (factor v27m/G is omitted)

s =1
sl= 1
32= 1/4 (69)

The edge intensity function is K{y)=y.

We use the extraction procedures discussed in
Sections 7,8 and 9 to derive numerical solutions
to this test problem. The edge intensity factor
computation proceeds as for model problem one. The
shape of the domain Q
Figure 5.

is of type 'E' shown in

For the degenerated case considered here the
extraction function for the vertex intensity fac-
tor is known analytically to be vy _(¢,0). In all
practical cases however the extraction functions
must be determined numerically.

In this this test problem we
use the analytically determined extraction func-
tion. If vertex intensity parameters can be used
to predict crack nucleation, crack growth and/or
unstable fracture in practical situations it is
likely that for technically important configura-
tions and materials very accurate solutions for
the eigen/extraction functions will be precomputed
and stored in databases.

The FE-mesh used is shown in Figure 14. The
mesh has four laye?i)of elements stron?iy graded
towards the edge vy and the vertex A In all
56 brick-shaped elements are used.

First, solutions for uniform p=2,3..8 are
derived. The Figure 15 shows the relative error in
different intensity parameters.

FE-mesh used for calculation of
vertex and edge intensity parameters

Figure 14

The relative error in edge intensity function
is defined as (the interval is selected as to
avoid the singular point y=0 where K(y)=0)

K(y) - K(y)
K(y)

max (70)

ye [asa,a]

The results in Figure 15 are very accurate.
The rate of convergence in K, S and s. is of the
same oEder as the rate of convergence in energy
(llell_). The maximum relative error appear for
small y (where K(y) is small). If the y-interval
in the error measure (70) is modified to [0 a,a)
the error decrease by almost one order of mag-

nitude.
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Figure 15 Error in edge intensity function K(y)
and vertex intensity factor S and
vertex-edge intensity factor s,
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We consider also the efficiency of the self-
adaptive scheme described in Section 6. Figure 16
shows the error in calculated intensity parameters
as a function of the number of degrees of freedom
N used.

Solutions have been derived for p =2,...12.
A uniform order of approximation p=1ém%%rresponds
to 494 basis functions (equation 24) or 1482 de-
grees of freedom per element in a general three-
dimensional case. For comparison the results
obtained by using uniform p-extensions (Figure 15)
are included.

10"

a
o
)
N
|

RELATIVE ERROR
@

~,

10° |-

200 1000 5000

DEGREES OF FREEDOM N

Figure 16 Error in calculated intensity para-
meters K, S and s, when a self-
adaptive scheme is used

We observe that the rate of convergence is
very high and that convergence is almost mono-
tonic. The error in computed intensity parameters
can be made very small (at least one or two orders
of magnitude smaller than needed in any engin-
eering application).

The efficiency (measured in number of degrees
of freedom) of using non-uniform p-distributions
(the self-adaptive scheme) as compared to using
uniform p-extension is clearly demonstrated. The
number of degrees of freedom, however, is a simple
but not always relevant measure. Better efficiency
measures include the required CPU-time, wall-clock
time, central memory and disc storage sizes. The
computational efficiency also will strongly depend
on the architecture of the computer computer used
(e.g single-processor super computer,massive
parallel computer etc).

If CPU-time is used as a measure, the self-
adaptive scheme requires on a CRAY-XMP (single

processor) much less CPU-time for a requested ac-
curacy (factors three to five). In a more
practical case, for example, when deriving data in
Figure 13 (for details see [10]) the self-adaptive
scheme requires 5-6 times shorter CPU-time than
did the uniform scheme.

It seems that use of advanced extraction
methods, self-adaptive schemes and simple mesh
generators as demonstrated above are effective and
provide a computational tool for easy extraction
of all engineering quantites of interest in an ac-
curate and reliable way.

11. Concluding remarks

The prediction of slow crack growth of flaws
in three-dimensional aircraft components are
generally based on linear elastic fracture mecha-
nics analyses. Currently used crack propagation
"laws" require as input, stress intensity factors
as function of crack size and crack shape. The
main objective with the stress analysis in case of
damage tolerant dimensioning is to provide

reliable data for stresses and stress intensity
factors to a minimum cost (manpower cost and
computer cost).

The procedures developed here do provide
accurate values for parameters characterizing the
exact matematical solution. Error estimates of the
type given by equations (23,33) are (and should
be) with respect to the well defined mathematical
problem. The displacement distributions in
aircraft components, however, do not satisfy
exactly the Navier equations. Different
corrections of the solution are sometimes needed
in applications (for example introduced in crack
propagation "laws"). It is therefore very essen-
tial that the numerical solutions used to eval-
uate experimental data contain only small errors
in the norms we discuss (that is with respect
to the mathematically exact solution). The reason
is that corrections introduced really must reflect
the influence of material nonlinearities, load
sequence effects etc and not a poor analytical
procedure. It is reasonable to expect that the
large scatter often observed when comparing
numerical-experimental crack propagation data in
three~dimensional situations largely is due to a
poor analytical procedure.

For analysis of complex frames of the type
shown in Figure 11, the error in stress intensity
factor data if estimated from handbooks may (in
sections with complex geometry and load distri-
bution) be of the order, say, be 20-50%. Such
uncertainties require a large conservatism which
leads to a considerably weight penalty. By
applying the computational procedure discussed in
the present paper it is possible to derive all
linear elastic fracture mechanics parameters of
interest in a simple and reliable way. The main
fuselage frame analysed in section 10 exemplify
that the advocated procedures are for practical
use.
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