ICAS-90-4.9.1

LARGE-DEFLECTION NONLINEAR RESPONSE OF LAMINATED COMPOSITE PLATES
SUBJECTED TO STATIC, THERMAL, AND ACOUSTIC LOADS
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Abstract

This paper presents the results of an
analytical study conducted to investigate the
large~deflection nonlinear response of antisym—
metric angle-ply laminated composite plates
subjected to combinations of static, thermal, and
acoustic loads. Specially orthotropic laminates
are treated as a special case. The analytical
formulation used herein is based on the classical
Karman-type strain nonlinearity and includes the
effect of initial deflection, Initial stresses and
temperature. Variations in loading conditions are
studied for different ply configurations to deter-
mine the effect on root-mean-square deflection and
strain. This research should serve as a guide for
the sonic fatigue design of angle-ply laminates in
thermal/acoustic environments, lead to the
development of improved analytical design methods
for such structures, and aid in understanding
their fundamental behavior.

Nomenclature
a, b plate length and width
A, B, D laminate stiffnesses

e membrane strain
El 1} expected value

Ej, By Young's moduli in longitudinal and
transverse material directions

F stress function

Gyp shear modulus

h plate thickness

k equivalent linear stiffness

m mass coefficilent

M moment resultant

n number of layers

N in-plane force resultant

P pressure

q modal amplitude

r length~to-width ratio, a/b

S nondimensional spectral density
parameter

8o acoustic pressure spectral density

t time

T temperature

Tor plate buckling temperature

u, v, W displacements

X, ¥V, 2 coordinates

B nonlinear stiffness coefficient

€ total strain

M stiffness reduction coefficient

K curvature

V12 Poisson's ratio

W, linear radial frequency

o mass density

[*] lamination angle

[ damping ratio

Subscripts: Superscripts:

c complementary [) initial

p particular T thermal

1 first-order
2 second-order
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Introduction

With the renewed interest 1n hypersonic and
high-speed vehicles it has become increasingly
important to improve analytical methods used for
sonic fatigue design. Improving current methods
and developing new methods for these applications
presents a challenge, since elevated temperatures,
high noise levels, and composite materials must be

considered.(l) Example applications include the
National Aerospace Plane as well as high-speed
civil transport aircraft.

Past studies(27®) have shown that when thin
structural panels are subjected to high acoustic
loads, the response tends to be nonlinear.
Furthermore, small changes in temperature and/or

initial deflection have been shown(3_6) to have a
pronounced effect on the panel response and
strains. Of particular interest is the obser-
vation that the strain response of buckled and
initially curved panels differs significantly from
the deflection response. For a given acoustic
loading, the rms deflection decreases with in-
creasing initial deflection. This 1s due to the
increase in stiffness associated with the initial
deflection. The rms strain response, on the other
hand, can either increase or decrease with in-
creasing initial deflection, depending on the
level of acoustic loading. This type of behavior
is due to strain coupling between the initial
deflection (due to mechanical or thermal loads)
and the random deflection due to the acoustic
loading.

Current analytical design methods for sonic
fatigue are based primarily on linear theory and
are incapable of accounting for the above-
mentioned nonlinearities.. The inclusion of non-
linear effects is essential if static and thermal
preloads are to be considered. For composite
materials the analysis is further complicated due
to the fact that, in general, bending and exten-
sional deformations can be fully coupled. A
review of the literature reveals that no previous
analytical studies have considered the large de-
flection nonlinear response of laminated composite
plates subjected to static, thermal, and acoustic
loads. The purpose of the present study is to
develop a mathematical model for such structures
and to use this model to investigate the effect of
static and thermal preloads on the rms response
and strains. The types of plates considered are
rectangular antisymmetric angle~ply laminates with
all edges clamped and all edges simply supported.
Specially orthotropic laminates can be treated as
a special case. Both movable and immovable in-
plane edges are considered.

Using the classical Kirchhoff thin plate
theory in conjunction with the Karman-type strain
nonlinearity, the equations of motion are ex-
pressed in terms of a stress function and the out-
of~-plane deflection. All of the loads (static,
thermal, and acoustic) are assumed to be uniformly
applied, and the acoustic loading is assumed to be
stationary white noise. A single-mode Galerkin
approach 1s used to reduce the coupled system of



nonlinear partial differential equatioms to a
single, time-dependent, ordinary, nonlinear
differential equation. An iterative procedure is
used to solve for the initial deflection due to
the static and thermal loads. For the acoustic
loading, the method of equivalent linearization¢7)
is used to determine the rms response.

Mathematical Formulation

The von Karman strain-displacement relations
modified to include the effect of initial deflec-
tion are given by

{e} = {e} + z{x}

(D

where

{e}

and

{x}

The constitutive equations for a composite
laminate with initial stresses and thermal effects

are(s)

N A Bl(e N® - NT
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Using the principle of virtual work,

oW = SWine = awext =0 3
where

8Wine = IA({ée}T{N} + {6} (M)} )da

B¥exe = Ja0¥(P - phw)dA

in conjunction with Eqs. (1) and (2) leads to the
following equations of motion:

N, _+N = N =
X,X XY,y XY, X M Ny,Y 0 (4)
+ o
M oxx 2Mxy’xy M N (e, o+ W) +
° .
2ny(w,xy + w’xy)4+ Ny(w,yy + w, ) + p =phw (5)
Equation (2) can be expressed in partially
inverted form as
A 8" N
e
-0 " * T * (6)
M -(B ) D K
where
* - * * * *
A=l 3F = % D" =D+ BB
M=M+uM - ¥ N=N+nN -N°

The in-plane forces N and the initial in-plane
forces N® are defined in terms of the Airy stress
function as

o
F
F s
'yy . oyy
N = Fyx N" = F,Xx 7)
-F, w0
xy Fixy
For an antisymmetric angle-ply laminate, Ajq4
= A26 = B 11 = B12 = Bzz = D16 =D = 0. Using

these values in conjunction with Egs. (1), (5),
(6), and (7) yields the equation of motion for the
out-of-plane deflection

phw + Lw+ L,F - L,(F,w) - L, (Fw’) ~p=0 (8)
where
L-*64+2(D +21)) 2% ¢ o*

1 11 5y 4 66 3% 6y2 22 ay4
L, = (2Br, - B>)) ot (2%, - B%.) 0"

3 26 Be1 axgay 16 62 axay3
L4(F,w) = F’yyw’xx F’xxw’yy 2F,xyw,Xy
F=r-7r°
The compatibility equation for a plate with
initial deflections (derived from Eq. 1) is

°x,yy ¥ ®y,xx 7 ®xy,xy
+ 1y ) + 1, (w,w0) = (9)
2 T4 43"

Making use of Egs.- (6) and (7), the compatibility
equation can be rewritten in terms of the stress
function, and the out-of-plane displacement as

LyF - Lw +.% L, W) + L, (w,w°) = 0 (10)
where
L = A 9f..+ (28 + A" ),_Jii__ + A o
2 22 6x4 12 66 ax26y2 116y4
Method of Solution
An approximate solution for Eq. (8) can be

obtained by assuming that the out-of-plane deflec-
tions are given by

= q(t)h ¢(x,y)
Wo = qoh ¢(X,Y)

where ¢(x,y) satisfies the plate boundary
conditions.

(11)

The stress function is assumed to be of the
form

F Fc + Fp (12)
Substitution of Eqs. (11) into Eq. (10) results in
the following general expressions for the partic-
ular solution:
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Fpl(q +q)h + sz(q +q)%h (13)



The complementary solution is assumed as
F =P x2/2 + P y2/2 + P xy
c y X Xy

where the constants P,, P, and P__ are obtained
such that the in-plane boundary conditions are

satisfied. For movable in-plane edges, the bound-
ary conditions are
x = ta/2: F,Xy =0
b/2
F, dy =0
y = +b/2: F’xy =0
a/2
F, dx =0
—aj2 ¥X

Applying the above boundary conditions, the
complementary solution F, for movable in-plane
edges is zero; thus, F = Fp.

For immovable in-plane edges, the boundary
conditions are

X = %a/2: F,x§ =0
[fee, - 12 W Ydxdy = 0
x 2 ’x ’x ’x
y = +b/2: F’xy =0
2 =0

1 ]
- =W, = w, w, )dxd
[ey = g wiy = w, W) )dxdy

Application of these boundary conditioms yields
the following general expressions for the
complementary solution:

2

- 0,2 _ o
F, = F,l(a+a) q¢ ]h

2

F
c

02,2 T 24, _ T 2
Fcz(q + ¢”)*n Ny x°/2 Ny /2 (14)
Substitution of Eqs. (11), (13), and (14)
into Eq. (8) and application of Galerkin's method

yields the nonlinear equation of motion:

3
o

- 2 0.3
q+to(l-n)g+pl(qg+q) -a ]=p(t)n (15)
Equation (15) can be expressed in nondimensional
form as

3

.. 2 * 3
g+ e (1 -m)g+cp [(q+ ®)’ -¢° 1 =pt)u
(16)
where
e = En%/pp"
2 2 *
w, = ery B = cB

Expressions for the linear radial frequency param—
eter A,; the stiffness reduction coefficient n;
the nonlinear stiffness coefficient B*; the modal
mass m; the stress function coefficients F i, sz,
and F,y; and the deflection function ¢(x,y) are
given in the Appendix for plates with all edges
simply supported and all edges clamped.

Static Response

The,.nonlinear static response is obtained by
letting q and ¢° go to zero and taklng p(t) =
Po. The modified Eq. (16) can be expressed as

M- ma + gt =2 /g an

where
4

d
1

4
pob /Ezh

£ H2/16 , for simply supported plate

B
u

9/16 , for clamped plate

Random Response

The nonlinear modal equation (Eq. 16)
modified to include the effect of linear modal
damping, takes the form

3
- . 2 3 o
q+ 2w d + e (=g + Bl(a+a’)” - a1 = p(t)/m

(18)

where £ is the damping ratio. The method of
equivalent linearilzation can be used to obtain an
approximate solution for Eq. (18). Consider that
Eq. (18) can be written in the form

q+ 2w q + g(q) = p(t)/m (19)

where

03

8(0) = w21 = ma +8l(a + ) - ]

An equivalent linearized form of Eq. (19) can be
written as

a+ 2w d + kg = p(t)/m (20)

where k is the equivalent linear stiffness. For a
stationary white excitation p(t) with uniform
power spectral density, S,, the solution of Eq.
(20) for the mean-square response of the modal am-

plitude 1s given by(g)
]
o

2
E[q7] = —5
8m Cwok

(21)

where S, is single sided with units of

(pressure)z/Hz. Equation (21) can be expressed in
nondimensional form as

Bl) = — (22)
8mfcx°k

where
*
K" = k/(Eth/pb“)

SO
S =

2 4 2, . 4.3/2
p7n%(E % /on*) Y/
The error involved in using Eq. (20) instead

of Eq. (19) is given by the difference between the
two equations as

error = g(q) - kq (23)

The method of equivalent linearization requires
that the mean square error be a minimum with re-
spect to the equivalent linear stiffness k; that
is

3

SE-E[errorZ] =0 24)
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Using Egs. (19), (23), and (24), the equivalent
linear stiffness k is found to be

2

2

ko= (L-mn)+ 3BE[q%] + 38¢° (25)
which can be expressed in nondimensional form as

2

* 2 % *
K= AZ(L - ) + 38 E[q%] + 3¢ (26)
Substituting Eq. (26) into Eq. (22), the mean-
square response of the modal amplitude is found to
be

Elq®] = (-B + yB% + 4AC)/2A

(27)
where

*
A= 3B

2 * 02
B=As(L-mn)+38q
R

8mft;kO

After the rms displacement is determined, the
strains can be evaluated using Eqs. (1) and (6).
For the present study, only the x-component of the
surface strain (z = h/2) is evaluated. The
general form can be expressed as

2
()%, = pja + Dylta + ¢*)? - ¢*) (28)
The constants Dy and D; are given in the Appendix
for a plate with all edges simply supported. Of
course, similar expressions would also apply to
the other strain components and to plates with all
edges clamped. Using Eq. (28), the mean-square
strain can be expressed in terms of the mean-
gsquare modal response as
(D)* Ete?) = 0+ 20°0,)%2 (%] + 2(E(*? (29)

Results and Discussion

The primary objective of this study is to
investigate the effect of static and thermal pre-
loads on the random displacement and strain re-
sponse of laminated composite plates. Both simply
supported and clamped square plates with movable
and immovable in-plane edges are considered. A 15
x 15 x 0.040 inch regular antisymmetric angle-ply
(6/-6/8/-68/..., n = even, hy = h/n) laminated
plate with properties

E; = 30 x 105 psi

Ey = 0.75 x 10° pst
Gyp = 0.375 x 108 pe1
vig = 0.25

p = 2.4 x 107% 1b-sec?/1n*

and a damping ratio of { = 0.01 is used for all
computations.

For a four-layer (30°/-30°/30°/-30°)
laminate, the rms maximum deflection is given as a
function of static, thermal, and acoustic loading
in Figs. 1-5. The nondimensional acoustic loading
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levels of $ = 1, 100, 10000 correspond to sound
spectrum levels of 72.4, 92.4, and 112.4 dB,
respectively.

Figures 1 and 2 illustrate the effect of
thermal and static preloads on the rms response of
plates with immovable in-plane edges. For both
cases the rms response is maximum when the initial
out-of-plane deflection is zero. As the initial
deflection increases, the stiffness increases, and
the rms response decreases. This type of behavior
is consistent with behavior exhibited by isotropic
plates and beams. As shown in Fig. 3, plates with
movable in-plane edges behave in a similar fash-
ion. For movable in-plane edges, only a statlc
preload is considered, since for a uniform thermal
loading no out-of-plane deflection occurs when the
plate is free to expand. Figures 4 and 5 compare
the effect of the two preloads by showing the rms
response as a function of the initial out-of-plane
deflection and the acoustic loading. For both
types of plates, clamped and simply supported, the
maximum rms response for a given initial deflec-
tion and acoustic pressure occurs for a thermal
preload. This is due to the decrease in linear
stiffness for a buckled plate. This, of course,
might not be the case if the buckling mode shape
differed from the vibration mode shape. TFor the
present study, these two were assumed to be
identical. The rms response for a combined
static/thermal loading was found to fall between
the response curves shown in Figs. 4 and 5.

To investigate different ply configurations,
variations in lamination angle and number of
layers are considered for two cases: plates with
immovable in-plane -edges subjected to a thermal
preload, and plates with movable in-plane edges
subjected to a static preload. For both cases a
nondimensional acoustic loading of § = 5000 is
used. Figure 6 shows that for a simply supported
thermally buckled plate (T/Tgg = 1) the rms
response tends to increase with lamination angle
until a value of 30° for any number of layers.
The orthotropic case corresponds to an infinite
number of layers for which the terms B 6 = Bog =
0. Note that the postbuckled plate (T}TCR = 5)
behavior significantly differs from the buckled
plate behavior. For a two-layer laminate, the
response 1s a maximum near 30°, but for the four-
layer and orthotropic laminates the response is
maximum near 10° and 0°, respectively. Signif-
icant differences in the rms response also occur
for a thermally loaded clamped plate with
immovable in-plane edges, as shown in Fig. 7.
Figures 8 and 9 show the effect of lamination
angle and number of layers on the rms response of
plates with movable in-plane edges subjected to a
static preload. A prelodd of Py =0 corresponds
to a flat, stress—free plate. As demonstrated,
the behavior for Py = 0 and P, = 5000 is very
similar.

The rms maximum surface strain in the x-
coordinate direction for a four-layer (30°/
-30°/30°/-30°) simply supported square plate is
shown in Figs. 10-12 for thermal and static pre-
loads. An examination of Fig. 12 reveals that the
strain response either increases or decreases with
initial deflection depending on the level of
acoustic loading. TFor low levels the rms strain
decreases, but for higher levels it increases.
This type of behavior is also consistent with that
exhibited by isotropic plates and beams. The



maximum rms strain for a plate with immovable in-
plane edges occurs for the case of a thermal
preload.

Variations in laminatlon angle and number of
layers are considered for simply supported plates
with immovable in-plane edges/thermal preload and
movable in-plane edges/static preload. These two
cases are shown in Figs. 13 and l4. As demon-
strated earlier for the rms response, the effect
of neglecting bending—~extensional coupling is most
significant for a two-layer laminate.
Furthermore, the strain response can either
increase or decrease with lamination angle
depending on the type of loading and the edge
conditions.

Conclusions

An analytical method for determining the
large deflection response and strain of
antisymmetric angle-ply laminated composite plates
subjected to static, thermal, and acoustic loads
has been presented. A single-mode Galerkin
solution was employed in conjunction with the
method of equivalent linearization. The results
demonstrate that the response and strain are
highly dependent on the type of loading, the edge
conditions, the ply lamination angle, and the
number of layers. Three key assumptions have been
made: (1) the equivalent linearization method is
valid for initially deflected plates, (2) the
initial deflection mode shape and vibration mode
shape are identical, and (3) a single-mode
solution is sufficient for describing qualitative
bahavior. Future studies should investigate the
validity of these assumptions.
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Appendix

Deflection Fuaction

$(x,y) = cos(nx/a)cos(ny/b) , for simply
supported plate;
= %»(1 + cos 2gi)(l + cos 2%1), for
clamped plate

Stress Function Coefficlents

Simply Supported Plate:

Fpl = —Foosin(nx/a)sin(ny/b)
2
=5
FP2 =5 {Flocos(an/a) + F01cos(2ny/b)]
2 AT AT
T 11 12,2
fo 7 o G Tk
16(A 1459 ~ A1) a
AL At
b2z T2 0
7 "]
a b
Clamped Plate:
F ., =~ Too sin(2nx/a)sin(2ny/b)
pl = & K Y

2
-r
sz =37 [Flocos(an/a) + F01cos(2ny/b)
+ Fllcos(an/a)cos(Zny/b) + oncos(énx/a)
+ Fozcos(4ny/b) + F21cos(4nx/a)cos(2ny/b)

+ Flzcos(an/a)cos(4ny/b)]

2 N
- 3 Pt RPN
c2 * %2 VR
64(A] Ay, ~ Aj7) a
P
Nt R N3
2z 7
a
where
25" 5w Bt x 3
oo PPap T Be)m * (2B - Bey)r
00 % * * 2 *x 4
A22 + (2A12 + A66)r + Allr
. * B * 4
Fio = /A Fop = YA T
P o= 2
11 * * * 2 * 4
Ay, + (28], + Ag )l + AT x
%* _ * 4
Fog = 1/16A22 Foy = 1/16A11r
B 1
fa1 16A% .+ 428 + A% yr? 4 A¥ ot
29 ¥ 424, + Ago)T ur
1
F12 i

) * * 2 *
A22 + 4(2A12 + A66)r + 16A11r



Coefficients for Nonlinear Equation of Motion

Simply Supported Plate:

m = nzph2/16
2 x * * x 2. % 4
Ao = =35 (D + 2Dy + 2D " + Dyor
E2h r

% * * * 3
+ Foo[(2Bye = Bgy)r + (2B, - B,)r 1)

* oq
p ~ TBE,h

B (F10 + F

01)

Clamped Plate:

m = 9ph%/16
4
2 _ lén * * * 2 * 4
9E2h r
* * * * _ 3
+ FOO[(ZB26 - B61)r + (2B16 - B62)r 1}
4

. T
Bo = 9m,m 1o ™ For ™ 11 Fao ¥ Fo

+ 1/2(F21 + F )]

Movable Edges:

* *
=0 =
n B Bp
Immovable Edges:
* * *
n="T/T., B = BP + B,
where
* * 2 * 4
x Jt4 A22 2A12 r° + Allr
Pe = 8E_hr” ¢ AL AT *2 )
P 11422 7 Ay

Strain Coefficients for Simply Supported Plate

D, = EE—-{[F TN
1770 Moot 12

- 2BI6r]sin(nx/a)sin(ny/b)

+ % cos(nx/a)cos(ny/b)}

2
o * * 2
Dp2 -5 [Alelocos(an/a) + Allr FOlcos(Zny/b)]
n2
D =X _
c2 8:2

Movable Edges:

D2 = Dp2

Immovable Edges:

D, =D

2 + Dc2

p2

1
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E e 3
F — Simply supported .
b Z-Clamped PO e ]
s
10—3 -~ " " L
0 2 4 6 8 10
Thermal loading, T/Tcr
Fig. 1: Effect of thermal preload on rms deflec-—
tion of four-layer (30°/-30°/30°/-30°)
square plate with immovable in-plane
edges.
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Fig. 2: Effect of static preload on rms deflec-

tion of four-layer (30°/-30°/30°/-30°)
square plate with immovable in-plane
edges.
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5
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=
@
10" I
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b
e
102 N R R =
0 2000 4000 6000 8000 10000
Static loading, Po
Fig. 3: Effect of static preload on rms
deflection of four-layer (30°/-30°/30°/-
30°) square plate with movable in-plane
edges.
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Fig. 4: Effect of initial deflection on rms

deflection of four-layer (30°/-30°/30°/
-30°) simply supported square plate with
immovable in-plane edges.
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Fig. 5: Effect of initial deflection on rms
deflection of four-layer (30°/-30°/30°/
-30°) clamped square plate with immovable
in-plane edges.
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Fig. 6: Rms deflection of simply supported square

angle-ply plate with immovable in-plane
edges and thermal preload at 8 = 5000.
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Fig. 7: Rms deflection of clamped square angle-
ply plate with immovable in-plane edges
and thermal preload at S = 5000.
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Fig. 8: Rms deflection of simply ‘supported square
angle-ply plate with movable in-plane
edges and static preload at § = 5000.
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Fig. 10: Effect of thermal preload on rms strain

of four-layer (30°/-30°/30°/-30°) simply
supported square plate with immovable
in-plane edges.
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102 v v - v y -
£ — Thermal loading 3
[ —— Static loading ]
i $=10000. l
.'--'-5
0L E
£ - 3
s - R
b .
7]
= ———.
= el
10~ — s L . N
] 05 1 1.5 2 2.5 3
Static deflection, wo/h
Fig. 12: Effect of initial deflection on rms

strain of four-layer (30°/-30°/30°/-30°)
simply supported square plate with
immovable in-plane edges.

7 v — '
1 PPz
16 ™~ -
I — \ =2
15 T N AN .
orthotropic ™ \
14 X \\ ~ \\ ]
AN

13 n=2 \\\“ p

12

RMS strain

11k

10+ orthotropic i
ol - T/Ter=1. ]
~=T/Ter=5.
8 i 1 " "
0 10 20 30 40 50

Lamination angle

Fig. 13: Rms strain of simply supported square
angle-ply plate with immovable in-plane
edges and thermal preload at S = 5000.

22 v :
- Po=0. //\\
20 L — P°=5000- // \\ n= _
/ \
/ \
18} 4
n=2
| =
S 16 1
@
0
E ’4 .-a(::/‘: ‘‘‘‘ ]
2y orthotropic )
\
10} ‘\ 4
orthotropic
8 n A X L
0 10 20 30 40 50

Lamination angle

Fig. 14: Rms strain of simply supported square
angle—~ply plate with movable in-plane
edges and static preload at § = 5000.
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