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Abstract

An integrated thermoelastic analysis of space structures
in periodic motion is performed. To this end, a com-
bined spectral-finite-element method is devised. The ther-
mal problem is strongly nonlinear due to the presence of
heal radiation. Any symmetry which the structure may
possess with respect to the axis of rotation is exploited in
the numerical scheme, and leads to saving in computational
cost. A numerical example is presented which demonstrates
the performance of the method and its ability to identify
some key characteristics in space structure problems.

Introduction

In the last few years, much attention has been given to
the thermal and structural design and analysis of large space
structures. Typically, these are three dimensional truss-type
structures which are exposed to thermal loading in the form
of solar radiation, infra-red planelary radiation and plane-
tary albedo (solar radiation reflected from planets). Finding
the spatial and temporal variation of the lemperature field
in the structure resulting from this radiation is important
for the thermal design. In addition, the dynamic temper-
ature field may also give rise to the dynamic deformation

of the structure. This deformation is of interest due to the
limitations on the allowed magnitude of the deflection of in-

struments and antennas, and due to the necessity to avoid
a resonance.

The periodicity in the thermal loading may originate,
for example, from the repetitive orbit of the space-structure
around the earth or from the spinning of the structure itself.
The problem is strongly nonlinear owing to the presence of
heat radiation. A further complication is sometimes intro-
duced when part of the structure overshadows another part
of it during the motion. For a discussion on the factors
involved in this type of analysis see refs. 1-4.
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In this paper, a method is proposed for the thermal and
elastic analyses of space structures in periodic motion. This
method is based upon the concept developed in Rand and
Givoli®, i.e. the combination of finile elements to discretize
space, and Fourier series to represent time variations. The
coefficients of the Fourier series representing the solution
variahbles are the unknowns in the formulation. The process
of delermining them is coded symbolically in the computer
program itself, a feature which saves a lot of complicated
manual calculations, and enables the easy treatment of the
nonlinear terms. The treatment of time is {hus analytic in
nature, and time-stepping is totally avoided.

Finite Element Formulation

Consider a three-dimensional truss exposed to a time-
periodic incoming heat flux. Each truss member emits ra-
diation to space. The usually weak effect of heat exchange
through radiation between different iruss members is ne-
glected. Also, the members are assumed to be slender, so
that variation of temperature within the cross-section may
be neglected. The governing equation is

aT_a<aT

pcﬁ = 3 k———) — CgT* +¢q, ineach f,. (1)

Os

Here (1,, is the mth {russ member (m = 1,..., Npmem), ¢
is time, s is the axial coordinale along $,,, T(s,t) is the
temperature, p is the mass density, c is the specific heat, &
is the conductivily, ¢ is a given time-periodic incident flux,
and Cg is the radiation coefficient given by

Cr = 0'6% . ()

Here o is the universal Stefan-Boltzmann constant, € is the
surface emissivity of the truss member, p is the perimeter

of the member’s cross-seclion, and A is the cross-sectional
area.

A dot and a prime over a variable will be used to indi-
cate differentiation with respect to time and with respect to
s, respeclively. Now the Galerkin finite element method is
used to approximate the variational counterpart of (1) in-

volving an arbitrary weighting function w(s). To this end
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the spatial domain is discretized into elements. The domain
of element e is denoted by Q°. It is important to note that
each truss member €, in itself is decomposed into finite
elements. This is necessary due to the nonlinear character
of the problem. In each element the functions 7 and w are
approximated by

Nen
Th(s,t) = Y Ta(t) Na(s),

N.. 3)
wh(s) = cq Nu(s).

a=1

Here N, is the number of nodes of the element, N, is the
element shape function associated with node number a, T,
is the temperature at node a, and each ¢, is a constant.
Now using the expansions (3) in the variational form of (1)
and noting that the equation that results must be true for
any combination of constants c,, leads to the following semi-
discrete system of equations:

GT + PT + R(T)=Q . (4)

G is the capacity matrix, P is the conductivity matrix, R
is the radiation vector, Q is the thermal load vector, and
T is the temperature vector, which contains the unknown
temperatures at the nodes. These matrices and vectors are
obtained by

G=AZg" 5 P=Alp
R=Al4r 5 Q=Al4q 5)
g°=los)l P =1[pl)
rf={rl} 5 ¢ ={¢}

Here N is the total number of elements, AY<, is the assem-

bly operator, and g°, p®, ¢ and q° are the element matrices
and vectors corresponding to the global matrices and vec-
tors G, P, R and Q. The expressions for these element
matrices and vectors are:

g;b:f NaopcNyds (6)
e

pos= | NokNyds (V)
ae

Non 4
e = /n N.Cr (}:T,,(t)zv,,(s)) ds (8)
€ b=1
q::/ENaqu- (9)

The semi-discrete system of ordinary differential equa-
tions in time, (4}, has now to be solved. We solve it by using
a spectral method described in the next section.

Having solved the thermal problem and obtained the
temperature distribution in the truss, we now move to con-
sider the linear thermoelastic analysis based on this tem-

perature distribution. In doing so we actually neglect the
coupling between the temperatures and the strains. More
precisely, the strain field is assumed not to affect the temper-
ature field. The governing equations in each truss member
,, are

pAii =o',

oc=FEA [u' — a(Th — r,,_f)] .

(10)
(11)

Here u is the axial displacement, o is the axial stress, p
is the mass density, F is Young’s modulus, A is the cross-
sectional area of the member, T" is the temperature field
found in the preceding thermal analysis (cf. (3)), Tres is a
reference temperature in which the truss is undeformed, and
a is the coefficient of thermal expansion. In many cases the
inertia term in the left side of (10) can be neglected, but for
the sake of generality it will be maintained. In addition to
(10)-(11), some boundary conditions may be applied at the
joints. Also, the periodicity in time may sometimes orig-
inate from the spinning of the truss with angular velocity
w around a certain axis, say the z axis of the global Carte-
sian system of coordinates (z,y, z). Then a centrifugal force
feen = pAw’r (where v = (2? + y2)1/2) is present. In order
to include the centrifugal effect in the model, f.., is inte-
grated along each member using the finite element shape
functions as weighting functions, and the resulting concen-
traled forces at the nodes are applied.

In the finite element scheme, exactly the same mesh is
used as in the thermal analysis. Then the semi-discrete
system of equations are obtained:

Md++Kd=F. (12)

M is the mass matrix, K is the stiffness matrix, F is the
load vector, and d is the displacement vector, which contains
the unknown displacements at the nodes in the directions
z, y and z. Theses matrices and vector are obtained by

M= Al4m® K= ANk F = AN (13)
me = [mzibj]; k® = [k:ibj]; Fe={fa}- (14)

In (13), the element matrices m® and k¢ and the element
vector f¢ correspond to the global matrices M, K and to
the global vector F. In (14), the indices ai and bj corre-
spond to degree of freedom i at node a and to degree of
freedom j at node b (2,7 = 1,2,3 corresponding to z, y and
z). The element matrices and vector are given by:

(15)

€
Myibj

= &;; N,pA Nyds
ne

s = BiB; / N\ EAN}ds (16)
nc
€ =B N, EAa(Th — Tregp)ds + ’Ym'/ Nofeends .
ne Qe

a7
Here 8;; is the Kronecker delta, 8; is the ¢ direction-cosine
of the element, and 7,; is the ¢ direction-cosine of the radial
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vector r = (z,y) pointing to node a. In (17), the first term
is due to the thermal loading and the second term is due to
the centrifugal loading. If the truss moves without spinning,
this second term must be omitted.

Solution of the Semi-Discrete Equations

We now show how to solve the semi-discrete systems (4)
and (12) using a spectral method. Let Mt and My be the
number of equations in (4) and (12), respectively. In both
cases, periodic solutions with period 27/w are sought.

‘We introduce the operator H which will be called the
harmonic operator. It is defined as

(fl]’{fcn} {fan} "/’) f0+2(fcncosn¢+fsn51nn¢)

n=1

(18)

Here fy is a real number, {f.n} and {f,n} are infinite-
dimensional vectors, and ¥ is a nondimensional time or az-
imuth angle, ¢ = wt. We also define the operator Hp,
obtained by truncating the sum in (18) after N terms:

N
fU + Z(fcn cos n¢ + fsn SiIlTLI/J).

n=1

HN(fO’ {fcn}7 {f‘n}; d’) =

(19)
Now any periodic function f may be expressed via its
Fourier coeflicients, i.e.

f - H(foa{fcn}a{fsn})7 (20)
and can be approximated by
f QHN(fo,{fcn},{fm})- (21)

Here the dependence on v is omitted.

Based on these definitions, it is possible to obtain ex-
pressions for the derivative of a function expanded via the
harmonic operator, and for the sum and the product of two
For example, if f = H(fo,{fen}r {fon})s
H(gos{gen}>{gsn}) and a and b are real constants, then

H(afo + bgo,a{fen} + b{gen}r a{fon} + b{gsn})-

(22)
Expressions for the Fourier coeflicients of the product fg
tend to be quite complex. However, if one truncates the
series representing f, g and fg after a finite number of terms,
N, one may use a symbolic manipulation software to obtain
the formulae (see Rand and Givoli ® and Rand ).

such functions.
g =

af +bg =

Now (21) is used to describe Tk, R*, Q*, d* and F*, the
k entries of T, R, Q, d and F in (4) and (12):

T,c = HN(Tok7{ kn} {Tskn}) i
R* = Hn(RS {RELARLY)
Qk - HN(QS’{an}’{QJn}) 3

(23)

= Hy(ds, {den}s {den}) 5

(24)
= Hul(F§ {F&Y {Fad)

From (23)-(24), and using 8t1 = w BW , the kth equation in
the systems (4) and (12) may be written as

My
zE =Y wGimHN(0, {nTi2}, {-n

m=1

1)
+Pem (T AT AT + RS~ Q" =0

My
75 = 3" WMy Hi(0,{-n?d0}, {-n*d]}})

m=1

+KemHn(dg, {d5 ) {d5n)) -

The residuals Z% and Z¥ can also be expressed as

(25)

Ft=0.  (26)

ZC’;‘ = HN(Z;"U’ {Z%cn}’ {Zflk"gn}) ! (27)

25 = Hn(Zho AZd b {24 1)) -

Since from (25) and (26), Z% and Z} must vanish at all
times, all their Fourier coefficients must vanish identically.
Consequently, each of the equations (25) and (26) is replaced
by 2N + 1 algebraic equations. The equations associated
with (25) are nonlinear, while those associated with (26) are
linear. Altogether, (4) yields M4(2N + 1) equations with
the unknowns T, T, and T¥,, while (12) yields Ma(2N +1)
equations with the unknowns df, d%, and d¥,.

(28)

Exploitation of Symmetry

Concentrating first on the thermal analysis, we note that
many geometrical configurations of space structures possess
a certain kind of symmetry, which will be defined as fol-
lows. Suppose that the total set of finite element nodes
may be divided into a number of subsets, each subset hav-
ing what may be termed “delayed equivalence” ameong its
members. This means that any two nodes 7 and j belonging
to the same subset have the same temperature with a con-
stant time delay between them. In other words, if T;(t) and
T;(t) are the temperatures of nodes ¢ and j respectively,
then Ti(t) = Tj(t — 7ij), where 7;; is a constant time de-
lay depending on 7 and j. In terms of the azimuth angle
1, there is a constant phase shift between the two nodes:
Ti() = Tj( — Av;;), where Ad;; is the constant difference
in phase between nodes ¢ and j.

It is easy to see that this type of symmetry may be
exploited in the present method, since phase shift con-
stants are simply translated into multiplying factors in
the final system of equations (e.g. sinn(y + Agy;) =
(cosnA;;) sin np+(sin nAy;;) cosnyp) ). All the unknowns
associated with a certain node can be expressed in terms
of the corresponding unknowns associated with the repre-
senlative node of the same group. Doing this may lead
to a significant reduction in computational cost and in re-
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quired storage. It is important to note that the solution
method used here, which incorporates Fourier decomposi-
tion in time, is especially appropriate for taking advantage
of this type of symmetry, while other methods, such as im-
plicit time-integration, are not capable of treating such sym-
metry with comparable simplicity.

A similar technique can be applied in the elastic anal-
ysis as well. One should note, however, that in the elas-
tic case the degrees of freedom, not the nodes, have phase

shift relations belween them. These relations involve vec-
for transformation between the displacements in the fixed

global coordinate system and the displacements expressed
in a local coordinate system rotating with the siructure.

Numerical Example

The model chosen to demonstrate the method is that of
a cylindrically shaped space structure made of a compos-

ite graphite-epoxy material and spinning around its axis, as
shown in Figure 1. The two ends of the cylinder are assumed
to be fixed to rigid bases, so that they are constrained to
rotate without deformation. The thermal and mechanical
properties of graphite-epoxy are: pe = 1.76 - 108 J/m? °K,
k=101 W/m °K, Cqp = 9.1-1077 W/m? °K*, a,= 0.92,
pA =513 kg/m, EA =141-10° N, & = 7.3-10"7 1/°K.
Other parameters are gsunp = 1300 W/m?, T,y = 299°K,
and p/A = 20 1/m. The cylinder is of length 6m and ra-
dius 1.4m. Each truss member is represented by one finite
element with linear shape functions.
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Figure 1. The cylindrically shaped space structure model.

Although the structure contains 50 joints, the tempera-
tures at only three of them are independent unknowns, since
the rest of the nodes are equivalent to one of these three in
the sense of “delayed equivalence” explained previously. In
the present model, nodes 1, 2 and 3 in Figure 1 were chosen
as representative nodes.

The thermal analysis is considered first. The structure
is assumed to be covered with an opaque material, so self-
shadowing effects are present. The angular speed is set to
w = 107° rad/sec, namely the structure rotates very slowly.
As a preceeding step, in order to determine the minimal
number of harmonics needed in the temporal Fourier de-
composition, the analysis was performed repeatedly with a
different number of harmonics. convergence has been prac-
tically achieved with 12 harmonics, whereas for a smaller
number of harmonics the solution obtained was quite inac-
curate. For this reason, all the numerical simulations de-
scribed below have been performed with 12 harmonics.

In Figure 2, the temperature al the three representative
nodes as a function of the azimuth angle (or time) is shown.
The figure shows that the temperature in the unshaded re-
gion is 400°K, whereas it reaches a minimum value of about
100°K in the shaded region. Thus, with an angular velocity
of w = 107° rad/sec the temperature is undergoing large
variations in time and in the spatial circumferential direc-
tion. On the other hand, it is clear that the variation of
temperature along the axial direction 2 (which manifests it-
self in the difference between the temperatures at nodes 1,
2 and 3) is small.
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Figure 2. The temperature at the three representative nodes as a
function of the azimuth angle, with an angular speed of

1075 rad/sec.

The thermal analysis is now repeated with higher and
lower values of w. It turns out that the temperature distri-
bution of Figure 2 remains unchanged when w is decreased,
and in fact the same solution is practically obtained for the
quasi-staedy state w = 0. On the other hand, increasing
w above the value of 107% rad/sec makes the variations in
the temperature field smaller. When the angular speed is
w = 1073 rad/secc, the temperature becomes almost con-
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stant (330°K). This can be regarded as the “fully dynamic”
state; the structure spins so fast that no significant temper-
ature differences develop between the shaded and unshaded
regions.

Additional numerical results show that the transition
from the quasi-steady state to a fully dynamic state occurs

around w = 107* rad/sec. The small value of this angular
velocity means that special care must be taken when mak-
ing the assumption of a quasi-steady motion, because even
for a very slowly rotaling structure this assumption might
be inappropriate.

Now we {urn to the thermoelastic analysis of the struc-
ture, based on the temperature field just found. The
delayed-equivalence symmetry is exploited here as well.
Since there are three degrees of freedom per node and due to
the prescribed boundary conditions, there are 9 equivalence
groups (excluding the group of degrees of freedom on the
fixed boundaries). Using 12 harmonics in the Fourier de-
composition, this means that there are only 225 unknowns
out of the 2250 unknowns that one would have if symmetry
was not taken advantage of. This obviously leads to great
saving in computational effort and storage requirements.

We consider the case where the structure rotates with
w = 1075 rad/sec. Figure 3 shows the deformed mesh at

time ¢ = 0 (which is identical o the deformation at times
t = 2r/w, t = 4m/w, etc., due to the periodicity of the

[~ x
2621

16

)

Figure 3. The deformed structure at time ¢ = 0, with a scaling

factor of 200.

motion). The displacements are magnified by a factor of
200. The self-shadowing effect is apparent in the figure: the
part of the siructure exposed to solar radiation at time ¢t = 0
expands much more than the shaded part of the structure,
which gives rise to the unsymimetrical deformation obserevd.

The elastic analysis was repeated while neglecting the
inertial term pAi in (10). This produced practically the
same resulls as before, which implies that the elastic prob-
lem can be regarded as quasi-steady. The same was found to
be true for much higher angular speeds. A simple analytical
model of a single rod may verify this fact, and demonstrate
that the typical angular speed at the transition between
the quasi-steady and fully-dynamic cases, is about 8 order
of magnitudes larger than the one obtained in the thermal
analysis. Therefore, for all practical angular speeds the mo-
tion can always be regarded as quasi-steady as far as the
elastic analysis is concerend.
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