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Abstract

Composite sandwich structures must be carefully designed
to meet very close thermal distortion tolerances such as
those required for structures like comunication satellite
antennas or reflectors of terrestrial systems.

To analyze and optimize the design of high precision
sandwich structures it is necessary to know the complete
thermoelastic material property data of all components.
For that reason analytical and finite element models have
been developed to determine the thermoelastic constants
of honeycombs as an orthotropic homogeneous material.

As honeycomb is regarded as a homogeneous orthotropic
material, it can be modelled with the knowledge of all 9
elastic constants by use of solid elements in finite element
analysis. ~ This procedure simplifies the analysis of
sandwich structures thus improving the accuracy con-
cerning the in-plane stiffness (in-plane = in the xy-plane)
of the core material.

Nomenclature

area [mm?]

cell size [mm]

Young's modulus {N/mmz]
focal length [mm

force [N]

shear modulus. [ N/mm?]
moment of inertia [ mm¢*]
length [mm]

force [N]

transverse force [ V]

radius {mm

thickness [mm]
temperature [°C]

w,v,w displacements [ mm ]
coefficient of thermal expansion [um/m °C]
strain [ %]

local coordinate

Poisson’s ratio

mass density [kg/m3]
normal stress | N/mm?]
shear stress [ N/mm?]

local coordinate

angle between honeycomb webs [°]
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Introduction

Spacecraft components require the use of lightweight
materials that are dimensionally invariant with respect to
temperature changes, to achieve and maintain dimensional
accuracy. Advanced composite materials even in combina-
tion with metallic honeycomb material result in sandwich
components which meet the requirements of high stiffness
and minimum weight while providing the capability of
achieving a near-zero coefficient of thermal expansion
(CTE) over quite a wide temperature range. These proper-
ties are most useful to future, high frequency communi-
cations satellite antenna reflectors, where deviations from
the ideal contour must be held to fractions of a millimeter
under all operating environmental conditions of space.

To predict the thermoelastic behavior of a sandwich com-
ponent with high accuracy, it is necessary to consider all
relevant components and their influence on the overall
behavior. Figure 1 shows the complexity of a sandwich
from this point of view.
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Figure 1. Components of a sandwich plate with faceskins of composite
material
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Honeycomb and sandwich models
Analytical honeycomb model

To determine the in-plane stiffness of the honeycomb,
first of all, a simple analytical model on the basis of the
classical beam theory was developed. Because of the sym-
metry of the honeycomb geometry only a portion of the
structure has to be considered. Figure 2 represents the
geometry parameters of the honeycomb.

i
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Figure 2. Geometric parameters of the honeycomb

To determine the elastic constants E. .E ,G, ,v, the
problem is reduced to a 2D bending problem. It is
assumed that the double thickness webs (2*t) do not bend
because of the symmetry of the honeycomb cells. Fur-
thermore the web angle ¢ does not change in the
deformed state.

A schematic representation of the analytical model is
given in Figure 3.
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Figure 3. Beam model of the representative portion of the honeycomb

A local cartesian #n ,& —coordinate system is introduced to
formulate the differential equation with respect to the
. boundary conditions under in-plane loading in x- and
y-direction and shear load in the xy-plane.

In the following the procedure to determine E, is shown.
The other constants E, ,G, and v,, are calculated in a
similiar way.

Due to the kinematic boundary conditions the displace-
ment u (¢ -direction) and w (5 -direction) at supports A
and B can be expressed as:

1
tan @

Wy =

Uy n

wg = — tan Qug @

The force acting in x-direction F, is reduced with respect
to the local coordinate system:

F,= —F,sing = N, 3

F; = Fycos ¢ = O, 4

By integrating the components u and w of the displace-
ment is otained:

W= =8 + =68 +aé+a )

1 L
6 2

u=c5f+cs (6)

Considering. the boundary conditions, the constants
¢ to ¢s are determined:

0
o = 5 o
1 Ox!
2= 73 EI ®
g =0 9
3
N, 1 tan ____l_ Oy
= — EA 12 EI (10)
4™ 2
1+ tan"¢
N,
e = E;v =g an
Cg = tan @ ¢ (12)

To calculate the x-component of the strain, the displace-
ments must be transformed back to the global xy-
coordinate system:

1
U=t sg (13)
W= w—L_ (14)
cos @
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In addition to the contibution of section 1, the tensile
strain of section 2 has to be taken into account:

Fx
Ua= 354" a3
The equivalent Young's modulus E, is expressed by
o
E, = _éz" (16)
X
with
le(é = [) + Ux2
= 17
& L+ h an
and
Fy
= 1
O-X 13 tc ( 8)

With this simple model the behavior of the honeycomb
far away and near the faceskins can be investigated. Far
away from the faceskins, the single thickness members
deform in a cubic shape. However near the faceskins only
a tensile deformation of the webs is permitted by the
much stiffer faceskins. This restrained state of deforma-
tion can be simulated in the analytical model by setting
all nonlinear terms in the differential equation to zero (see
Figure 4).

LX

- — —— -

near faceskin

far away from faceskin

Figure 4. Deformed shapes of honeycomb

Sandwich finite element model

Because the core in-plane stiffness is mainly a geometrical
one (i.e. heavily depends on the boundary conditions
(faceskin stiffness), and to consider the influence of the
core height ¢ on the in-plane elastic constants of the
honeycomb), a detailed 3D-model of a sandwich was
developed.

The symmetry about the xy-plane only requires half of the
structure to be idealized while suppressing the corre-
sponding degrees of freedom in z-direction in the sym-
metry plane. In this model the webs and faceskins are
idealized by using thin shell elements.

It should be noted that the stiffness of the adhesive layers
are taken into account in that of the faceskins by
assuming the adhesive as an additional layer of the
faceskin laminate. The concave fillet weld between the
webs and the faceskins is modeled by truss element.

'.'l,.-——r/l:' 4,
o —r

&
LSS
l','.".'t;f—‘..'.“ X "’l"’l’
LLALACALTN Y
R
R
R
R 2, - 7,
ek e H 0,
SO0 St WRO=S  m————"
v, LR N P10 mm—— ol
SN - S a1 on—
R N R T NN 02,
',"'a',"',,":—‘_\ 3 —""':l"'l— =} {/

AR X7
=T
NS

resl > 1 -,
{7 77 K 12284,
3t L aamune X 7y R 1104,
AT NN
NN OT LN\ N\ 4 4111
\ -':'I':"l"_'.\‘.\\“ A "lll;"—""‘—
(LT 377 NI
27 =] =N e
N ety #4100 77 e VX e w7/
1171417t N\ 7/ 7
N A A PN = =] X
A ,‘,\,-,”h,,/l—-\;\\}g—,,llz,,llln—— S %
e e et o U ot

— s

Figure 5. Detailed 3-D finite element model

The postprocessing of the results, i.e. the calculation of
the equivalent elastic constants is also done by using a
program file routine. The approach is completely the
same as for the analytical model.

Results

In Table 1 on page 4 the results are summarized for a
honeycomb type 3/16-5056-.001 * with a core thickness of
t. = 1 mm and a rigid faceskins. Regarding the in-plane
elastic constants in the xy-plane the influence of the

faceskins is obvious. The Young’s modulus E, for the

honeycomb near the faceskins is increased by an factor of
3000 compared with the behavior far away from it. This
increase of stiffness is forced by the restrained bending
deformation of the webs. Also the Poisson’s ratio
decreases from v, = 0.99 to v, = 0.28 at the same time,
Moreover the Young’s modulus in direction of the double
thickness webs E. is about 35 % higher than the corre-
sponding in y-direction for the elastic honeycomb
behavior near the faceskins. At this point it can already
be stated that there must be a dependency of the core
thickness on the in-plane elastic constants.

Also it can be stated that the results of the analytical and
the finite element model showed a good correspondence.

3 3/16: cell size in fractions of an inch; 5056: type of aluminum alloy; .001: nominal foil thickness in inches
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Tests of sandwich specimen measuring the in-plane
Young's moduli confirmed the above results within a
deviation of 8 %.

Table 1. Elastic constants of honeycomb 3/16-5056-.001
far g ‘Z;{(gom near faceskin
E. [ N/mm?] 0.127 415
E, [Nimm?] 0.127 267
E, [LN/mm?] 996 996
vy L] 0.99 0.29
ve: [ ] 0.30 0.30
. [] 0.30 0.30
Gy [N/mm?] 0.87 131
Gy: LNJmm?] 192 192
G,. [Njmm?] 287 287

Referring to this type of honeycomb the influence of the
following parameters on the honeycomb elastic constants
was quantified:

e faceskin stiffness E; ¢
e core height ¢,
¢ angle between webs ¢

The honeycomb parameters cell size and foil thickness can
be summarized in the parameter core weight density. It is
clear that the increase of core weight density means a pro-
portional increase of honeycomb stiffness.

Concerning the faceskin stiffness. this parameter was
changed within technical reasonable limits while keeping
the core unchanged. The limits fepresent the stiffness of
CFRP faceskin material available now (from high tensile
T-300 to ultra high modulus GY-70 laminate). The
faceskins are assumed to have a quasi isotropic lay-up.
As a basic result it turned out that the in-plane stiffness
constants of the honeycomb with a faceskins stiffness
E; = 260 kN/mm ares about 35 % higher than one with
E; = 20 kN/mm (Figure 6).
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Figure 6. Scale factor concerning faceskin stiffness

Another important influence parameter is the web angle
¢. In practical work one will never find a perfect
honeycomb with ¢ = 60°. The analysis shows that a
change of A¢ = 5° results in a maximum change of 30 %
referring to the Poisson’s ratio v,, of the ideal geometry.

To evaluate the effect of the core thickness this parameter
was varied within a range 2 mm < f, < 50 mm while
keeping the faceskins unchanged. It turns out that the
faceskins only restrain a narrow edge zone of the
honeycomb, i.e. only up to a thickness of approximately
t. = 5Smm the honeycomb core fully contributes to the
overall (smeared) lateral stiffness of the sandwich. For
increasing core thickness the equivalent stiffness contrib-
ution of the honeycomb drops as the honeycomb can
deform without restrain. Therefore a honeycomb with a
thickness 7. = 50 mm only contributes 28 % of the in-
plane stiffness of one with a thickness # = 5 mm
(Figure 7).
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Figure 7. Scale factor concerning core thickness

The deformation of one cell of a honeycomb with
t, = 30 mm is shown in Figure 8 on page 5.
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Figure 8. Deformed shape of a 30 mm thick honeycomb

Additional runs loading the sandwich model with a global
temperature rise confirmed the CTE’s of the sandwich in
the xy-plane calculated with laminate theory using the
equivalent thermoelastic data of the core. Concerning the
resulting CTE of the sandwich in z-direction however, a
strong effect of the Poisson’s ratio of the honeycomb has
to be noticed. It is found that the CTE, of the sandwich
is about 30 % higher than that of the core material. The
reason for this effect is the much higher facesheet
stiffness (factor 100 - 500) and the less CTE (factor § -
30) compared with the core. Under thermal loading the
facsheets restrain the in plane expansion of the core where
the core has to expand more in the orthogonal direction
because of the lateral contraction (Poisson’s ratio).

The influence of different parameters on the elastic con-
stants of the honeycomb has been quantified. So it is pos-
sible to convert the data of the master core listed in
Table 1 on page 4 to any other sandwich configuration.

Prediction of contour accuracy for sandwich panels with
arabolic shape

With the knowledge of the detailed set of material con-
stants an improved analysis of sandwich structures can be
performed by fe-analysis. Thus a precise prediction of
sandwich behavior under such loads as i.e.

¢ manufacture

e temperature fields
¢ humidity

* gravity

e acceleration loads

is enabled. Figure 9 shows the element types used for the
analysis of a antenna reflector panel with CFRP faceskins
and an aluminum honeycomb core. The honeycomb core
is modelled by volume elements with orthotropic material
law, thus using membrane elements for the faceskins.

membrane element

volume element

Figure 9. Idealization of a honeycomb sandwich panel

To determine the accuracy of parabolic shaped contour it
is required to compare the deformed paraboloid either
with the undeformed ideal or with a best fitted paraboloid
by changing the paraboloid parameters as location of the
apex, orientation of the paraboloid axes or the focal
length. So the minimum contour error is obtained. The
result is the root mean square of the vertical distances v
from a point of reference to the deformed contour. To
estimate the error, if the in-plane stiffness of the
honeycomb core material is neglected, analyses using the
above model (see Figure 9) under different thermal
loading (global temperature rise of the entire structure,
thermal gradient through the thickness of the sandwich)
were performed. The essential result is that the neg-
lecting of the core in plane stiffness leads to errors up to
60 % (referring to rms contour accuracy) compared with
the real behavior of the core, i.e. having orthotropic in-
plane stiffness.

This result can be clarified if the isocontours of displace-
ments in z-direction (in direction of the paraboloid axis)
are plotted for both cases (Figure 10 on page 6).
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Figure 10. Isocontours of z-displacements for honeycomb core with and -

without in-plane stiffness

It is obvious that the orthotropic in-plane stiffness of the
core changes the undeformed spherical paraboloid to a
elliptical in the deformed state. Experimental tests have
turned out that the deviation of the calculated and meas-
ured thermal deformations of a corresponding sandwich
specimen are less than 10 % max.

So it can be concluded that this analysis procedure is a
very useful tool to predict the deformation behavior of
sandwich components under thermal loading with high
accuracy.
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