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Abstract

A theoretical and experimental study, which represents the
first phase of a more comprehensive program on the post-
buckling behaviour of clamped aluminium-plates subjected
to cyclic shear-load, is presented. The applied load exceeds
the theoretical buckling load by a factor of 20 to 40; mod-
erate plastic deformations occur. The aim of the study is
a hetter understanding of the occuring phenomena and a
verification of the theoretical model. This model is based
on the finite element method, it is capable of calculating
the nonlinear postbuckling behaviour, taking into account
material nonlinearities. Emphasis is layed on a good approx-
imation of the cyclic elasto-plastic stress-strain-relation of
2024 T3 (resp. T351). A multisurface-model and a Mrdz
type translation-rule yields good results. Apart from the
theoretical model, the main objectives of this paper are: im-
perfection sensitivity, plastic zones, load reversal behaviour,
load-deflection-curves, highly stressed regions and results of
low-cycle-fatigue-tests.

Nomenclature

¢ Plate-dimension
a; Anisetropy parameter
C Matrix of the in-plane, coupling and bending stiffnesses
E Material stiffuess
F Area of the plate midsurface
Bending moment
Membran force
; Outward normal of the yield or bounding surface
N Number of loading cycles
P Tensile force of the hydraulic cylinder
7 Discrete force veetor
Q Inverse matrix of C
t Plate-thickness
1§ Central displacement of the buckled plate
v Vektor of the displacements u;
Back-stress tensor of the yield-surface

o'l
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7 Angle of shear
& First variation
€ij Strain-tensor (Green-Lagrange)
x Yield-stress
o' Stress-tensor (2. Piola-Kirchhoff)
¢ yield function
Indices
A() Finite step
°() Initial state
t() State "t”
(OF
oY
()
( )(l)

O
(e

Linear part

Nonlinear part

Derivation with respect to «
Variable of the I**-surface
Elastic part

Maximum of ( )

()(™) Minimum of ()

()®V Plastic part

1. Introduction

Plates and eurved panels subjected to shear are widely used
in aircraft and spacecraft structures. They exhibit a stable
postbuckling behaviour and are able to sustain loads far in
excess of their initial buckling limits, i.e. eritical load and by
using this higher postbuckling range, essential weight sav-
ings are possible. This statement is also valid, if moderate
plastic deformations occur. Although the plastic limit may
not be reached in aircraft structures under normal condi-
tions, it may be exceeded to some extent in emergency cases.
For instance in fail-save cases, since moderate plastic defor-
mations are allowed, low-cycle-fatigue has to be expected.

Moreover it is of interest to validate the used numer-
ical model by comparison with experimental results. For
this reason the case of the shear-loaded plate has been in-
vestigated by some authors. E.g. SINGER ET AL. (+2)
used a Wagner-beam-like test set-up for the experimental
investigation of crack initiation, propagation and failure. In



this case some problems arise with regard to theoretical as-
sumptions since boundary conditions can not be determined
exactly. A test set-up with clamped edges producing pure
ghear circumvents this problem and the boundary conditions
can be realized experimentally and theoretically in a finite
element model. It is possible to show that the difference be-
tween clamped and simply supported boundary conditions
nearly vanishes in the higher postbuckling range ). A rea-
sonable comparison of both experimental and theoretical
results can be achieved and conclusions on the suitability of
the mechanical model can be made. The special, clamped
problem has been examined for the monotonic loading case
by TunkEer (4 for GFRP plates and by WOLF and KOSSIRA
(8) for CFRP shells, both also taking into account material
nonlinearities.

Simple, isotropical material laws (including pure iso-
tropic hardening) yield poor theoretical results if unloading
and reloading of the plates are concerned. Better results are
found by applying more sophisticated multi-surface models,
which also include the pretreatment of the sheets. The prob-
lem of cyclically shear-loaded aluminium plates has been
treated in (®) by the authors employing a modified Dafalias-
Popov-model (7. Other, more sophisticated models have
been used, but did not lead to better results (). In this
paper a Mréz-type model (®) has been employed. As shown
in () this model yields better results, due to the fact that
high non-proportional stress-paths are found in case of cyclic
shear buckling. The computational effort and in particu-
lar the storage capacity needed by this model are relativly
small. This model yields a good approximation of measured
uniaxial stress-strain characteristics and is also able to take
into account initial plastic orthotropy due to the prestrain-
ing treatment of the material.

Theoretical investigations have been carried out by the
finite element code FIPPS of the Institut fiir Flugzeugbau
und Leichtbau ). It uses a mixed formulation of the el-
ements. This kind of formulation produces displacements
and stresses with the same degree of approximation as pri-
mary unknowns. This procedure also has some advantages
concerning mostly the numerical effort for the computation
of the geometrical nonlinearity.

2. The Theoretical Model

In this part some basic proposals, concerning the FE-formu-
lation and the material model, are made. The following
theory is valid for quasi-static, isothermal problems.

2.1 The Finite Element Formulation

Finite deformations and moderate rotations, but only small
strains are admissible and a Total Lagranien formulation
has been adopted. The aspect ratio of the plates in this
study is high enough to use a Kirchhoff-Love-type theory.
A Mindlin-theory is not attractive here, since there are cer-
tain inconsistencies in case of elasto-plastic deformations (%)
and the computational effort would be about 50 % higher.
Fig.1 shows the definition of the mechanical vector quanti-
ties. Latin letters run from 1 to 3 and greek letters from
1 to 2, indicating quantities of the midsurface of the plate.
For a certain state "I” the incremental mixed workprinciple
reads (¢35}
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denote the three parts of the membrane-strain. Asthe terms
of the first integral of eqn 1 only contain linear expressions,
this is equivalent to the parts of the linear stiffness-matrix.
The second integral includes the terms of the tangent-matrix
and the third integral represents the secant-matrix. The last
matrix is used to determine the out-of-balance-force due to
the geometric nonlinearity for a certain step "A”. The effect
of material nonlinearities is included in the tangent matrix
(as Q depends on the state "t”) and can also be detected
as an oul-of-balance-force for a finite step "A”. As usual in
this context, the nonlinear parts of the bending-strains have
been neglected. *Q denotes the inverse of the material stiff-
ness ‘C. The inplane, coupling and bending stiffnesses of
the plate material are determined by integration of the ac-
tual elasto-plastic tangent-moduli over the plate thickness.
In this study the panel has been approximated by 10 dis-
crete layers in the ¥3-direction. This approach is superior to
integral models, if at least cyclic loading is concerned. By
this method the effort of the description of the material be-
haviour is reduced to the case of the plain-stress constitutive



relation in each layer (see 2.2).

Since the numerical problem represented in eqn. 1 is
nonlinear, a solution is only possible by incremental proce-
dures. For further details see (3:5).

2.2 The Constitutive Relation

For a good approximation of the yield behaviour of a typical
aluminium alloy, a Mréz-type model has been adopted. This
model is based on classical rate-independent plasticity, so it
only includes isothermal, room-temperature problems and
small strains (effective strain <2%). For the definition of
the set-on of plastic deformations and their direction and
‘magnitude, the modified v.Mises yield-surface
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is used. a; are the anisotropy-parameters denoting the re-
lation of the square of the yield-surface in one direction to
the square of «. (In the isotropic case a1 = a3 = a1 = 1
and a3 = 3..) The yield surface moves in the stress-space
by means of a back-stress-tensor o'/ directing from the ori-
gin of the stress space to the center of the yield surface.
This process is called kinematic hardening. A second ef-
fect, called isotropic hardening, is included by means of a
variable generalized yield stress «, depending on plastic in-
ternal variables, e.g. the accumulated plastic strain. By
using ¢ from eqn 3 as a plastic potential, the plastic strain

increment is defined as

9¢

P (4)
According to this rule, the direction of the plastic strain in-
crement is given by the gradient of the plastic potential; this
is called the normality rule. ) is a Lagrangien multiplier, its
size is ruled by the fact that the elasto-plastic stress-strain-
relation always must be compatible. Since only small strains
are allowed, an additive decomposition of the increment of
the strain-tensor (Prandti-Reuss)

de®) = dx

deij = deff? + deff? (5)

is used.

2.2.1 The Multisurface model. The Mréz model in-
cludes two main ideas. Firstly, the results of onedimen-
sional tension-compression-tests are approximated by n lin-
ear parts. Within each part (index ”I”) a constant plastic
tangentmodulus *) E(® js given. In case of multiaxial load-
ing the domains of a constant elasto-plastic tangentmodulus
are given by n different surfaces ¢(*) of different size V). If
for all surfaces (a/)!) = 0 in the virgin state of the mate-
rial and no isotropic hardening is taken into account, a real
Masing-effect is given by this model. This means that the
onedimensional ¢ — e-curve of the first loading is stretched
by a factor 2 after load reversal.

During loading a surface does not move, until it is
reached by the stress state. Since a surface can not be pen-
etrated, it either has to move (kinematic hardening) or to
grow (isotropic hardening) if there is plastic loading. An

intersection of surfaces may not occur, as no appropriate
plastic tangentmodulus could be found in this case. Thus
Mréz second idea was a translation-law that fits this re-
quirement. For a given stress state (¢*)(") on the surface
(1), this is achieved by enforcing that the surface will move
into a direction of a virtual stress state, where the virtual
stres(sl)has the same outward normal on ¢''+1) as (09/)() has
on ¢'Y.

All surfaces are of affine geometry, since all are ruled
by eqn 3, so (¢*/)*1 may be computed by

KD

(o)D) = ((au)m _(aij)u)) + (&) | (6)

After (¢7)® is known, it is possible to determine the incre-
ment of the back-stress-tensor by

<Mpt d(o‘kl)(”> — <dﬁ:(')>
gt ((o*) D) — (o*) D)

d(a' i)V = (((,ij)(m) _(aij)(t))
) (7)
The brackets < > indicate that these terms are nonzero only
in case of plastic loading, nx is the unit-outward-normal
on the surface. This translation-rule makes sure that both
surfaces lay tangential to each other when they get into
contact. As the inner surface is smaller than the outer, an
intersection of both is avoided.

2.2.2 The applied material model. Specimens were
made of the aluminium alloy 2024 with the pretreatment
T3 or T351. In both cases the plates are solution heat
treated, cold worked and naturally aged. The difference be-
tween T3 and T351 is the given limit of straining. The
cold working treatment consists in rolling and prestraining
of the sheet material. Caused by the pretreatment, the me-
chanical properties are orthotropic. While this orthotropy
is neglectable in the elastic range, it is not at all in the
plastic range. The variation of mechanical properties in the
through-thickness-direction, due to the rolling treatment,
has been neglected. Essential for good theoretical results of
the cyclic shear-buckling problem is a good approximation
of the yield hehaviour for small plastic strains. Other, even
more sophisticated models, have been tested in @ but they
did not yield essentially better results.

The model introduced in 2.2.1, is capable to approxi-
mate the uniaxial stress-strain curves of 2024 T351 for the
case of small plastic strains. The major aim of this process
is to fit well the material behaviour with special regard to
the load direction. This aim is reached as follows: for a vir-
tual virgin state, all surfaces are thought to lay concentric
around the origine of the stress space. Due to the pretreat-
ment isotropic and kinematic hardening occurs and the in-
ner surfaces are moved (see fig 2). By this method a sharp
kink of the stress-strain-curve is achieved in the vicinity of
the yield-stress, if a tension is applicated in the L-direction
of the plate-material. The stress-strain-curves of all other
directions show a much more moderate relation. This ap-
proximates the real stress-strain-behaviour of 2024 T'3 (resp.
T351) very well. For simplicities sake and computational ef-
fort, only four surfaces have been used in this study. Char-
acteristic points of the surface have been taken from tension-
and compression-tests. The surfaces have been designed by
accepting that all are modified v.Mises surfaces (see egn 3).
Tab 1 shows the parameters of the 4 surfaces used.
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yield-surface 1 : £(!) = 265 MPa , ‘E() = 84 816 MPa

yield-surface 2 : x(2) = 310 MPa , tE((;:z))

yield-surface 3 : (3 = 375 MPa , tE&)) =1 000 MPa

yield-surface 4 : x4 = 400 MPa , ‘E(‘:}) =1 000 MPa

[}

[}

= 15185 MPa

(e}

[}

TAB. 1: Parameter of surfaces 1 to 4

Due to the prestress, surfaces (1) and (2) are moved in
the stress space (1! = 100 M Pa, '@ = 45 MPaq).
Since measurements in the ¢! — ¢2-plane show a signifi-
cant decrease of the yield-stress in ¢'2-direction compared
to the one predicted by the v.Mises surface, the anisotropy-
coefficient a3 has been increased from 3.0 to 3.3. The Youngs
modulus amounts < E = 73000 M Pq with a Poisson ratio
of v = 0.31.
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F1G. 2: Stress-strain relations of the Mréz-model (ma-
terial 2024 T3),

3. Test set-up, tests and results

3.1 The test set-up

The test set-up is shown in Fig. 3. The force is applied by a
hydraulic cylinder (250 kN) and is transformed into shear-
load on the test panel by means of a shear-frame. The edges
of the frame are pin-jointed, whereby the pins are located
exactly in the corners of the square plate. The test-panel is
not penetrated since the pin-joints are parted in the middle.
This kind of arrangement differs from that used by others
(e.g. in Ref. (19). The test-frame has been chosen to be
very stiff with the intention of minimizing deformations of
the frame and gaining nearly pure shear.

hydrautic cyl.

1

F1G. 3: Test set-up

There are three possible parameters suitable for the de-
scription of the global behaviour of buckling shear-panels:
the force P of the hydraulic-cylinder, the angle of shear ¥
and the central deflection u§. The central deflection u§ must
always be linked to the corresponding buckling mode. The
value of the force P of the hydraulic cylinder is partly ab-
sorbed by friction in the pin-joints of the test-frame, for this
reason P is not a well suited parameter. Since the compar-
ison of experimental and theoretical results needs at least
one global load-parameter, the angle of shear ¥ is used ag
the appropriate parameter.

The angle of shear has been determined by means of in-
ductive displacement transducers or a mechanical measuring
set between the legs of the frame. Initial geometric imperfec-
tions and the buckling mode in the line A - A (Fig. 3) were
determined by a deflection transducer which was attached
to a carriage running on a slideway and connected to a x-
y-recorder. In some cases the entire displacement field has
been measured by means of engineering photogrammetry.
Strain gauge rosettes positioned on both sides of the speci-
men opposite to each other were used to measure strains as
local parameters, in order to enable a good comparison of
experimental and theoretical results.
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Fic. 4: The test panel and the contour of the "picture
frame” test set-up
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In this investigation thin-walled plates of 2024 T3, resp.
T351 with the dimensions of 500 x 500 mm? were used. The
shape of the entire test-panel is shown in Fig. 4. The dotted
line marks the actual tested area. The force required to
clamp the specimen between the two halfs of the test-frame
is applied by 100 screws. Small cutouts within the corners
of the plate (outside the testing area) are necessary there
to minimize disturbances of the boundary conditions. The
L-direction of the pretreated plate is indicated by arrows.

All panels have been loaded incrementally and mono-
tonicly to different maximum loads. Subsequently different

loading paths have been used to get some clues on the be-
haviour of cyclically loaded shear panels. The maximum
loadlevel of all experiments has been low enough to ensure
that only small strains could occur.

With regard to the available space, only some crucial
points of elasto-plastic, cyclic shear-buckling can be shown.
For sake of clearness it seems to be suitable to subdivide the
loading history into four parts, the range of

o the first monotonic loading
o load reversal, especially the part near total unloading

o the loading history of further cycles in an undamaged
state

o low-cycle-fatigue.

The dimensions of all examined plates were 500 x 500
mm with different thicknesses, varying from 1.0 to 3.0 mm.
In the following, the examination is restricted to plates with
thickness t = 1.4/1.6 mm. In some cases informations on
other tests will be discussed for completion. In Fig. 5
the simplest finite element idealisation is shown. Refined
meshes have been used for the examination of higher load
levels. All boundaries are clamped. The definition of the
angle of shear 4 is given in Fig. 5. The shear-load was
applied through inhomogeneous boundary conditions. All
computations were performed on an Amdahl 470 V/7, resp.
an IBM 3090-600J computer at the Technical University of
Braunschweig.

Rigid Edges

4 Node-
Plate - Element

Angle of Shear i

-~
\‘3',u1 ‘

boundary conditions: clamped
plate dimension: a=500mm
plate thickness: t = 1:3mm

Fic. 5: The idealisation of the problem of a clamped
shear-loaded square-plate

3.2 Imperfection sensitivity, buckling behaviour and
plastic regions

An undamaged, perfect square-plate will buckle at a certain
critical load

—k 72 E€D ., 8
U 12(1 —0?) a) ' (8)
k depends on the specific boundary conditions. In case
of the clamped square-plate, a neat finite element analy-
sis gives k = 14.35. Eqn. (8) may be rearranged to find the
critical angle of shear 7.,... By using the parameters given
in part 3.1, v.,. only depends on the plate thickness ¢, with

Aer. = 0.0078 ¢2

TCI".

and 7r, in [°] and ¢ in Jmm]. The undamaged plate will al-
ways buckle with the first symmetrical buckling-mode. This
buckling-mode corresponds to the lowest eigenvalue.

In case of a real plate initial geometric imperfections
will affect the buckling load and the buckling behaviour.
For this reason the imperfection sensitivity of the buck-
ling behaviour must be investigated, since it may affect the
elasto-plastic deformations. It can be shown by the follow-
ing figures that in case of a plate with a high aspect-ratio,
this is not of interest. Fig. 6 shows some theoretical and
experimental results concerning this question. In fig. 6a
the influence of the maximum imperfection-amplitude on
the buckling behaviour of a plate (thickness ¢ = 1.4mm) is
investigated theoretically, using two diflerent imperfection-
modes. One corresponds to the first symmetrical shape-
mode, the other one to the second antimetrical shape-mode.
In both cases, even if starting with larger imperfections,
the influence of thein vanishes not later than 7/v.. = 10.
This statement is supported by experimental results, shown
in fig. 6b, where the ¥ — u§-curves for five different test-
specimen (¢t = 1.4mm) are given. In these cases no pure
imperfection-mode (like an shape-mode) is at hand. Two
points are relevant in this context: first, as predicted by the
theoretical investigation, the infiuence of the imperfection
vanishes very soon; second, there is a large amount of differ-
ent buckling-loads, depending on more or less symmetrical
and antimetrical imperfections.

In the case of test PP28, the central deflection u§ firstly
has negative values, before it buckles into the positive di-
rection. This case is related to a very special type of im-
perfection. The imperfection has a shape, which is similar
to a shape-mode of a buckled plate with a shear load in
the opposite direction of the actual shear-load. This kind
of imperfection results in a short antimetrical, intermedi-
ate state (with a high load-level) before it joins the normal
symmetrical buckling-mode.

Since the first plastic deformation occurs at about ¥ =
0.2° for thin plates of the type mentioned in 3.1, it is un-
likely that geometric imperfections will affect the beginning
of the plastic onset. Other types of imperfections, e.g. non-
homogenious clamping, certainly influence the behaviour of
the plates, but they hardly can be examined. Existing small
orthotropic, elastic effects may also be neglected, as they do
not change the buckling behaviour.
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Fic. 6: The imperfection sensitivity :
a. theoretical analysis
b. experimental tests

Fig. 7, in which the angle of shear ¥ is plotted versus
the central deflection u§, allows a closer look at the buckling-
behaviour during the first monotonic loading, of plates of a
thickness ¢ = 1.4mm. Three points shall be discussed in
this context. First, filled dots indicate the arithmetic mean
of 15 experimental tests and an accompanying horizontal
bar indicates the sample variance of each measuring point.
It is obvious by the preceding explanations that the large
variance in the vicinity of the buckling-load is due to ge-
ometric imperfections. On the other hand, the small vari-
ance within the higher postbuckling region clearly shows
that the influence of theseimperfections vanishes with in-
creasing load. A sample variance of £0.1 mm in the higher
postbuckling range may be regarded as very low in case of a
buckling problem; as a matter of fact, this value is very near
to the estimated tolerance of the measuring-equipment.

Second, the results of two finite element analysises are
shown. In the first case a (12 x 12)-element-mesh has been
used, in the second case a refined (16 x 16)-mesh. Obviously
the results of the (12 x 12)-mesh did not quite converge,
but the error is not essential. As the computational effort is
about three times higher for the refined mesh, this has been
used only in case of very high maximum loads, since a (12
x 12)-mesh would not approximate the buckling-mode in a
fair way. The agreement of experimental and theoretical
results is very well.

Third, the buckling-pattern is shown in fig. 7 at three
selected load-levels. At lower levels, the buckling mode is
very much like the corresponding shape-mode of the linear
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F1G. 7: Buckling-behaviour at first loading (¢ = 1.4mm)
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stability analysis. Within the higher postbuckling range,
additional small buckles appear at the corners of the plates
diagonal of compression. This is the reason why a coarse
mesh will produce bad results at higher load-levels.

As already mentioned in fig. 7 the first plastic deforma-
tions occur at about 4 = 0.2° (this value depends slightly
on the used material law). At higher load-levels, the distri-
bution of plasticly deformed knots is exemplarily shown in
fig. 8. Each plate has been subdivided into ten layers. Layer
1 corresponds to the lower side of the plate (9° = —) and
layer 10 to the upper (#° = £). For comparison the ap-
propriate buckling-mode is shown in a small picture on the
upper left side of the figure. The first plastic deformation
takes place at a point exactly in front of both corners in the
diagonal of tension. This spot is located at layer 1, which is
opposite to the #3-direction of the main buckle. At layer 10
plastic deformations occur just at the edge in the vicinity of
the first point.

Fic. 8: Distribution of plastic deformations:
a. 7 = 0.28°
b. ¥ = 0.39°

Fig. 8a shows the distribution of plasticly deformed
knots at an angle of shear ¥ = 0.28°. Obviously both
points mentioned before as loci of the first plastic defor-
mation are growing up to plastic zones. The starting point
expanded just along the diagonal of tension at layer 1. This
phenomenon may be striking at first glance since this area is
situated "inside” the buckle, but it can be easily explained.

Along the diagonal of tension a high negative bending mo-
ment m!'? and a positive shear stress resultant n!? act to-
gether, due to buckling and shear-load. This results in a
high shear stress 012, At the edges plastic zones grow along
the edge and join the plastic zones of the two ”"side-buckles”
{fig. 7). Plastic deformations at the edges are mainly caused
by the disturbance of the buckle in this region. In fig. 8a the
nonsymmetrical distribution of plastic zones is not strongly
developed.

By increasing the angle of shear to ¥ = 0.39° (fig. 8b)
the plastic zones expand, but this only means that the ef-
fects of both mechanisms mentioned above increase. There
are three possibilities of expansion: the through-thickness-
direction, the plane of the layer and third, the area of new
buckles. At this higher load-level, a distinct nonsymmetri-
cal distribution of plasticly deformed knots is obvious; this
phenomenon is due to the orthotropic plastic properties of
the plate-material. From fig. 8b it becomes also evident
that the plate is nearly completely in a plastic state, while
7 = 0.39° is a not so high load-level (this will follow from
part 3.3).

3.3 The change of the load-direction

Shear-loaded plates exhibit an unpleasant behaviour during
the change of the loading-direction in the vicinity of total
unloading. The development of buckles in the opposite load-
ing direction is disturbed, since the developing new buckles
are located perpendicular to the buckling-direction of the
first monotonic loading. These plastically induced buckles
act like geometrical imperfections. But this is not the only
disturbance which is valid. At a low load-level, disturbances
from other origines (e.g. the clamping) are also very active.
Just as in cage of geometrical imperfections the influence of
these disturbances vanishes after a certain load-level. The
vanishing influence of special boundary-conditions can also
be proved by theoretical analysis. Because of the already
mentioned reasons, the buckling behaviour within the range
of load-reversal is affected by the maximum load of the pre-
ceding step and the disturbances from other origines. As the
magnitude of the second kind of disturbance usually is un-
known, it is impossible to predict one certain loading-path
in this range.

The sensitivity of this process is also reflected in the
¥ — u§-curves in fig. 9. The maximum load level at first
loading is the only difference between Fig. 9a, b, ¢ and d
while all other parameters are the same. All eight panels
had a thickness of ¢ = 1.4mm. Within each figure the
results of two different tests and theoretical analysises are
shown. There are always two different loading paths, one
with a change of the sign of the central deflection and one
without. Since all parameters of all four pairs of tests in fig.
9 have been the same, it is clear that it is necessary to be
aware of the fact that there are always two possible pathes
at a point of reversal of the load-direction.

In case of small or moderate plastic deformations (due
to only moderate maximum loads), a distinct equilibrum-
path is given. If either the maximum load is high or large
nonsymmetrical disturbances exist, it is very much likely
that the plate will get into a special state. This state is
outlined in fig. 10 by ¥ — u§-curves. After a large first
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F1G. 9: Buckling behaviour during the first cycle with different first maximum load and different load pathes after

total unloading

maximum load, total unloading will occur at a positive an-
gle of shear 4. This point is reached in a predominantly
symmetrical buckling-mode. Due to the antimetrical dis-
tribution of plastic deformations, the buckling-mode of the
following load-path is mainly antimetrical, until a point A is
reached. At this point the plate is not able to get into an ap-
propriate buckling-mode without means of a snap-through.
This statement is not only valid for experimental studies, it
also occurs in theoretical computations, where the analysis
detects a limit point and tries to chauge the direction of
loading.

For theoretical computations a change of the loading
path has been obtained by using (near the bifurcation point)
the corresponding shape-mode as a small geometrical imper-
fection i.e. disturbance. The agreement of theoretical and
experimental results indicates that the used model well de-
scribes the real behaviour of the plate and is not influenced
by the fact that snap-through is a very fast process, which
contradicts the basic requirements of time-independence of
the model. \
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F1G. 10: Buckling-behaviour during a load-reversal after
a high maximum load (exemplarily)

As indicated in fig. 10, the snap-through may happen
to both, the positive or negative u§-side. Oddly enough,
a loading-path with a positive u§-value has nearly always
been reached by a double-snap-through, if the first maximum
load has been high enough. In this case only a short interim-
state at the negative side is reached, before the second snap-
through gets the buckle back to the preceding position. One
more fact is shown in fig. 10: if higher load-levels have been
reached during the first monotonic loading, the strength of
the snap-through increases (from point B to B’ and C to
C’). This statement is supported by fig 9 (c and d).

0.1

-01

— finite elem.
analysis

-05¢F

-0.7 ! L 1 1

10
mm

F1¢. 11: Buckling-behaviour of the first load-cycle after a
high maximum load (f = 1.6 mm), comparison
of test- and analytical results
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FIG. 12: Strain-path at rosette No. 5 (see figure 4),
Fmaz = 0.47°,t = 1.4mm

To show the very good performance of this special ma-
terial model, fig. 11 gives one more example, where a plate
{t = 1.6mmm) has been stressed up to a very high level.
To gain a proper approximation at such high loads, it was
necessary to use a (16 x 16)-mesh. Two points show how
good the theoretical model works. First, the theoretically
and experimentally gained value ¥ = 0.13°, corresponding
to P = 0kN agrees very well. Second, the real plate ex-
hibits some kind of a short blow up of the buckle, right after
the snap-through occured. This is also given by the theo-
retical model. The blow-up is due to the fact that the old
buckle lays perpendicular to the new diagonal of tension. So
it is compressed by a relativly small force, which gets the
buckle to swell a bit, before the new buckle has developed.
Since this test has been done at an extraordinary high load-
level, the results must be judged as a very good agreement
of theory and experiment.

3.4 Further Cycles

3.4.1 The uncracked state. As mentioned in the pre-
ceding part, the used theoretical model simulates the buck-
ling behaviour very well. Now, two questions appear: first,
what are the special requirements set on the elasto-plastic
material model to gain such a good approximation and sec-
ond, what will happen during the next loading-cycles? Both
questions are related to each other and may be solved to-
gether.

1t is substantial for a good performance of a material
model, how sensitive it reacts on certain stress;strain-paths.

100 |

'y 1 1

-06 -04 -02 O

FiG. 13: Load-angle-of-shear-diagramm, ¥mae = 0.47°,
t = 14mm

In case of a cyclically shear-buckled plate a great variety
of qualitativ- different pathes occurs within the whole con-
tinnum. Since the attitude of the material model is only
discussed in an integral way, as the behaviour of the entire
plate is investigated, it is not easy to tell which is the criti-
cal loading in the continuum. But there are certain features
of different material models which support the suggestion
that a very special character of buckled plates is responsible
for a good or bad approximation by these material-models
®) . It is essential in this context to remind that plastic
deformations do not set on before the buckling limit has
been exceeded by a considerable factor. Due to this fact it
gets clear that the change of the directions of the principle
stresses, as it occurs at the buckling-load, is not responsible
for a special feature. On the contrary, this change may be
neglected here, so that the stress- and strain-paths may be
assumed as mainly radial to the origine of the corresponding
coordinate system.

Really important is the fact that for many parts of the
plate, in the vicinity of the point of total unloading, a com-
plete change of the stress- and strain-direction takes place.
Since kinematic hardening is assumed here, such a path im-
plies a non-propertional loading with respect to the kine-
matically translated yield-surface. Only for highly stressed
parts this phenomenon is valid, since only here the trans-
lation of the yield-surface is large enough to produce con-
siderable effects. It seems therefore to be essential for the
performance of a material model how it copes with this kind
of loading. The Mréz-model is very attractive in this con-
text (see e.g. LAMBA ET AL, UD),
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Fig. 12 illustrates the previous statements on typical
strain flows and leads to the question: what will happen dur-
ing the further loading-cycles? In this figure, the strain vy,
is plotied versus €3, for a plate (f = 1.4mm) that has been
loaded t0 Fimaz. = 0.47°. The corresponding e;1-component
is very near to zero, since the measuring point is situated
at the edge of the plate, about 50 mm far from the corner
of the plate (at the side of the plate, opposite to the posi-
tive u§-direction). This corner is a part of the diagonal of
compression at first loading. Curves of four different cycles
are shown. In the region discussed here, the largest damage
of the material occurs. Two interesting observations can be
made:

» the strain-curves migrate to larger values of vy

o the "hysteresis-loop” gets smaller with a higher number
of loading-cycles.

Both remarks reflect that the material properties of this
region are considerably changed during the higher loading
cycles. But it can be shown that the parts of the plate,
where real changes occur, are very small. They are dis-
tributed at the edges near the corners of the plate, where the
center-buckle of one or the other loading direction interacts
with the clamped edges. Obviously these parts are unique in
the plate’s stress-distribution, since they are highly stressed
and the resulting stresses include a high hydrostatic part
which is the reason for a large rate of damage. The in-
fluence of the change of material properties in these small
areas seems to be nearly neglectable, concerning the global
buckling behaviour.

The other areas of the plate are not as highly stressed
and the hydrostatic part of the stress is much lower. Thus
the buckling behaviour of the cycles, except the first one -
plastic deformations have to be developed - is very similar.
To illustrate this statement, fig. 13 shows the global force
P plotted versus the angle of shear 7. The thickness of the
plate is £ = 1.4mm. The same statement may be found
from 5 — u§-curves (e.g. ().

The thesis that the influence of small highly deformed
regions of the plate on the global buckling behaviour is ne-
glectable, is supported by an even stricter fact. As stated in
part 3.3, the u§-direction of the center-buckle may chauge
each time the plate reaches a load-reversal, due to the plas-
tic deformation of the plate and other disturbances. This
would imply 22*VV different possible u§ —j-curves, if N is the
number of cycles. But this does not happen. From nearly
50 tests that have been conducted, it is learned that the
buckling behaviour of the second cycle is exactly equal to
the next cycles, as long as cracked parts of the plate are
sufficiently small. Regarding that the disturbances are con-
stant, this can only be explained by the fact that - during
a fatigue test - changes in the field of the plate and the
influence of the edge-parts are neglectably small.

This may be used in theoretical studies. The com-
putational effort needed to investigate geometrically and
physically nonlinear problems is very high. Therefore it
is impossible to compute a high number of loading cycles.
By restricting the examinations of the shear-buckling be-
haviour to moderate maximum angles of shear (¥ = 0.6°)
and to single step tests (SST), the necessity to compute

higher numbers of cycles vanishes. The number of cases
with different changes of sign of u§ reduces from 22*V to 4
simple types. With the sign of u§ at positive resp. negative
maximum load you get: ++,— —,+ — and — +.

3.4.2 Crackinitiation. The gquestion remains, how long
a plate may sustain such relatively high numbers of load-
cycles. The work on this subject has just begun, so only
a temporary state has been reached. It has already been
mentioned in part 3.4.1, at which spots the highest rates
of damage will occur. Indeed, crack-initiation always takes
place within the area of point 5 (see fig. 4), where the main-
buckle interacts with the edge.

To illustrate this problem, the number of loading-cycles
Nini. {until crack-initiation) is plotted versus the value of
the load-amplitude P in fig. 14a. All specimens had a
platethickness ¢ = 1.4mm and all tesis have been con-
ducted with a relation R = Puin/Pmaz = —1. It follows
from part 3.1 that there is an uncertainty about the real
force P, that acts upon the plate (due to friction in the
test-frame). A damage has been acknowledged as initiated
crack, if it reached a length of 2% of the plate-dimension
a. A microscope has been used in order to detect cracks as
early as possible. All cracks developed directly in the vicin-
ity of the edges. A slight ¢%-component (approx. 30 Mpa)
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F1G. 14: Durability of shear-loaded plates { = 1.4mm
a. Crack-initiation
b. Load-capacity after crack-initiation
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may influence the durability of the plate, but the interaction
of the buckle and the clamped boundary conditions stand
out as the main reason of the damage. All tests exhibited
a buckling-behaviour with no change of the u§-direction,
exept one test, indicated by a filled dot.

From fig. 14a it can be learned that

o also at higher load-levels (plastic deformations set on
at about 40 kN) plates exhibit a considerable durability

o although only few tests are available, it seems to be
possible that the P — N;,; -curve builds nearly a strait
line on a logarithmic scale. This has also been found by
SINGER ET AL. (1?) in the case of tests at considerably
lower load-levels.

Two more aspects of this problem shall be discussed by
using fig. 14b. Fig. 14b shows the curve of the resulting am-
plitude of the angle of shear |¥| plotted against the number
of loading cycles N. The diagram starts at the moment of
crack-initiation and it ends at the fatal point of the complete
brake-down of the loading-capacity of the plate. It should
be noticed that the amplitude |¥| at the crack-initiation is
just the same as at N = 2, so the loading-capacity of the
plate for the present remains nearly unchanged by the dam-
age of the areas discribed in 3.4.1. After only a few hundred
more cycles there is a total loss of the loading-capacity.

4. Summary

The buckling and postbuckling behaviour of thin-walled
aluminium plates has been examined under cyclic shear-
load. Experiments have been conducted on a special test
set-up for shear-buckling tests. For theoretical investiga-
tions a mixed finite element code has been used.

A multi-surface model - based on the one proposed by
Mréz - has been applied in order to approximate not only
the cyclic behaviour of the material, but also orthotropic,
elasto-plastic effects due to the pretreatment of the sheet-
metal. The classical rate-independent plasticity theory has
been adopted.

Characteristic phenomena of cyclic shear-buckling have
been pointed out, as there are: the development of plas-
tic zones, the imperfection sensitivity and the behaviour
during load-reversal and at higher numbers of cycles. Cru-

cial points of the theoretical description of the cyclic shear-
buckling problem are the existence of bifurcations within the
loading path and the appearance of nonproportional stress-
and strain-flows.

The comparison of experimental and theoretical results
indicated a broad agreement.
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