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Abstract

The requirement for low noise levels inside a
propeller-powered commuter airliner results in the
demand for easily applicable analysis tools to
analyze complex fuselage structures and the acous-
tic cavity inside the passenger compartment,
respectively.

Therefore, the finite element method, comhined
with a mechanical-acoustic analogy was used to pre-
dict the noise distribution in the Dornier 328
cabin volume resulting from the propeller induced
harmonic vibration of the whole fuselage.

To study the influence of structure modifications
as well as the cavity behavior ( mainly the resonant
frequencies due to different cabin cross-sections )
detailed finite element models were generated.

In the present paper, the modal synthesis tech-
nique to solve coupled structural-acoustic problems
is summarized. Two- and three-dimensional finite
element models of the acoustic cavity and the sur-
rounding aircraft structure are given. The coupling
procedure and final results are described on the
basis of the full-scale fuselage of the Dornier 328
commuter aircraft. Dynamic results of the structure
and the cavity are compared with experimental test
data of a fuselage test section. Effects, that have
a significant influence are discussed, to improve
the basic understanding of structural-acoustic
problems, as well as to show the practicability of
this finite element approach.

1. INTRODUCTION

Up to now, the finite element method FEM has been
successfully applied to structural analysis in
statics and dynamics. Moreover, it is also well
suited to solve coupled structure-acoustic problems.

In general, the interaction between a vibrating
structure and the fluid, e.g. air, that is enclosed
by or surrounds the structure, may be neglected. In
the particular cases, where a more detailed inves-
tigation of structural vibrations or just the
dynamic behavior of the fluid medium itself is of
interest, then the coupling effects cannot be dis-
regarded any more.

For the present problem, the air enclosed by the
fuselage walls is a second dynamic system, which
can strongly couple with the structure. That is why
the interaction between the two systems has to be
taken into account.
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First finite element formulations were derived
some 20 years ago, but powerful computers are es-
sential to calculate such large numerical problems.
Furthermore, in recent years, some new algorithms
have been developed, to carry ocut these coupled
tasks efficiently. Based upon a mechanical analogy,
it is currently possible to use only slightly
modified, but nevertheless general purpose finite
element codes. For a detailed analytical descrip-
tion of the coupling approach and a discussion of
coupling effects see Reference [1].

The presented finite element calculations for the
Dornier 328 fuselage resulted in the prediction of
frequency-dependent noise levels inside the pas-
senger compartment and the coupled vibration of the
fuselage walls, respectively.

As a consequence, these results not only yield a
basic understanding of interaction effects, but
also provide detailed information on this very in-
dividual, vibrating fuselage structure. With this
information, an acoustical fine tuning and damping
of the primary structure can be performed. Addi-
tionally, in the design phase, the selection of an
appropriate propeller, which should avoid the ef-
fect of noise amplification, when coupled fuselage
resonances and critical propeller harmonics are of
about the same frequency, was assisted. The com-
prehensive interior noise control program for the
Dornier 328 is outlined in [2,3].

2. FINITE ELEMENT FORMULATION OF
STRUCTURAL-ACOUSTIC ANALYSIS

Based on a structural-acoustic analogy it has
been shown in Reference [1] that general purpose
finite element codes, which include elements for
anisotropic elastic material, can be used to obtain
the matrix formulation of the acoustic equations of
motion for an enclosed cavity :

[61{p} + [H1{p} = —[AT{i} (1)

where [G] is the acoustic "mass" matrix
(proportional to the reciprocal of the fluid bulk
modulus), [H] is the acoustic "stiffness" matrix
(proportional to the reciprocal of the fluid
density), {p} gives the pressure at the grid points
of the finite element mesh, {u} is the structural
displacement vector, and [A] is the matrix of sur-
face contact areas.

The equations of motion for a structure, coupled
with the acoustic field through the pressure, damp-
ing neg]ected, becomes

IMI{0) + [KI{u} = {F} + [ATT{py &)

where [M] and [K] represent structural mass and
stiffness matrices, and {F} is the vector of ex-
ternal forces applied to the structure.



The vector {u} includes the normal displacement
on the interface area which is coupled with its
equivalent cavity node, as well as all other struc-
tural displacements.

The formulation of the coupled equations in a
modal basis,

(e - [- B B} - ) o

needs a considerable amount of computer time for
systems with a large number of degrees of freedom.

A modal synthesis method is used to reduce the
large system of asymmetrical equations. By expand-
ing the structural equations of motion in terms of
their modes of vibration in vacuo [xs] and the
acoustic equations in terms of the cavity hard-
walled modes [x,]

Py = [X,XKaa) : {u} = [XsKqs) (4)

the equations (3) can be transformed, as pointed
out in [1], into the known form for the equations
of motion

[M] @ + [K]1ar = {F} (5)
with the symmetric system matrices

A /] [o]

[M] = [[03 [As]] (6)
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the assembled modal coordinates
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and the generalized forces
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The coupling matrix [B] is obtained by transform-
ing the matrix of surface contact areas [A] with
the eigenvectors of the uncoupled systems

[81 = [X,77TATIX] (10)

[A.] and [X ] are diagonal matrices with squared
values of the uncoupled eigenfrequencies of the
structure and the cavity.

The coupled structural-acoustic equations (5) can
be solved with standard features of commercial FE
cades, provided that these codes allow modifications
of the matrices to the forms of eqs. (6) to (9).

In summary, the flow charts ( fig. 1, 2 ) show,
how structural-acoustic analyses can be performed,
using common structural analysis programs e.g. the
Finite Element Code COSA, developed by Dornier.

The structure model 1is idealized in the usual
way, with degrees of freedom that are directed nor-

mal to the cavity surface. The finite element model
for the cavity with hard-walled boundaries has as-
sociated nodes on the interface area. It is calcu-
lated using the mechanical-acoustic analogy rela-
tions, as described in [1].
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Fig. 1 : Structural-Acoustic Analysis, Uncoupled Solution

The coupling matrix [A] may be obtained in a
separate FE calculation, where a pressure load of
the intensity 1 Pa acts on all structure nodes,
that will be used for coupling. This gives as a
result the coupling area for each nodal point.

An eigenvalue analysis supplies the uncoupled
eigenfrequencies and modes for the cavity and the
structure, which are used for the modal synthesis.
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A first approximation of fluid-structure analysis
can be obtained by neglecting the coupling matrix
[B] in eq. (5). In this case, uncoupled structural
displacements are determined in a modal response
analysis and the resulting outputs are applied as
excitation forces to the cavity, to obtain the un-
coupled pressure (see fig. 1).

To solve the coupled system (5), the symmetric
matrices (6), (7) and the transformed excitation
forces (9) are set up in the modal coupling pro-
gram. An eigenvalue analysis, followed by a modal
response analysis yield the modal vector {q}, which
can be transformed back to physical coordinates,
the coupled displacements and the pressure.

It should be noted, that with the exception of
the modal coupling program and the transformation
subroutine only standard features of the FE-Code
COSA were used.

2.1 Semi-Analytical Eigenvalue Analysis of

3-dimensional Acoustic Cavity

Modal properties for the acoustic cavity inside
an ideal, circular cylinder can be determined in a
closed form by an analytical solution of the wave
equation in cylindrical coordinates. If there is
any deviation from the ideal circular geometry,
e.g. due to cabin-floor or head-racks, then the
three-dimensional mode-shapes and the related
natural frequencies can be obtained by using a
semi-analytical method.

If a three-dimensional cavity has to be idealized
with a constant cylindrical geometry, the three-
dimensional problem reduces to a two-dimensional
one, because the modal characteristics in the axial
direction are already known for the cylinder. The
plane cross-section can be idealized by simple
anisotropic membrane elements.

The eigenvalue analysis of this two-dimensional
cavity yields eigenvalues N, and the eigenvectors
{x}, . which are used to calculate the modal

a’ i

parameters for the three-dimensional cavity

k
lay; = (50 P + la (11)

Pl = xaly cos(kn£-) (12)

with the speed of sound c, the Tlength of the
cylinder L and the axial coordinate z.

3. STUDIES ON THE UNCOUPLED CAVITY

To build a coupled system, following the modal
synthesis technique, separate eigenvalue analyses
for the uncoupled structure and the cavity have to
be carried out.

For complex three-dimensional structures, like a
fuselage with different frames, it is usually not
possibie to build a 2-dimensional finite element
model with a dynamic behavior that is fully equiv-
alent to the real structure. Therefore, the finite
element calculation and the eigenvalue analysis
must be based on a detailed 3-dimensional FE model.
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Contrary to the real structure, cavity properties
do not change from one point to another. Hence,
plane-modes of an acoustic volume can be described
exactly by a 2-dimensional cavity model. Taking
this into account, particular effects in a plane,
such as the influence of geometry modifications,
may be studied on relatively simple 2-D models and
not on complex 3-D models. 3-D frequencies can also
be obtained by using equations (11,12).

3.1 Eigenvalue Analysis of Two-dimensional
Acoustic Cavity

Plane models of cavities ( finite element mesh
similar to fig. 3 ) were generated with a different
geometry, to study, in detail, the influence on the
natural frequencies and the corresponding mode-
shapes of the acoustic cavity. Each approximately
circular model had a diameter of d=2.4 [m], and the
idealization should represent different cross-
sectional cuts through the passenger compartment of
the airplane.

The first model was a cavity which did not re-
flect the presence of a cabin floor or other struc-
tural installations. The second idealization con-
sidered the floor as a hard-walled, and in no way
acoustically transparent boundary. In the third
cavity, passenger seats and the head-racks were
build as rigid walls.

FE calculations as well as (uncoupled) eigenvalue
analyses were carried out and the results, mode-
shapes together with their corresponding resonant
frequencies, are given in Table 1.

Cavity modes can be classified by their number of
axial/Tongitudinal (1), cross-sectional (m) and
radial (ng number of nodal lines. Structure modes
are named according to the ESDU specifications for
circular-cylindrical shells [4]. Axial modes, e.g.
for a ‘cylindrical shell (both ends free) are coun-
ted 'number of axial half-waves + 1'! To distinguish
between structure and cavity in the following,
three-dimensional structure modes are described by
‘1-m-n' and cavity modes by ‘'l,m,n' ; two-
dimensional modes by ‘m-n' or 'm,n', respectively.

Modes that are symmetrical about the vertical
median line are indicated by an 'S‘', anti-
symmetrical modes by an 'A'. This characterization
cannot be chosen for the cavity model III, because
of the no longer symmetrical geometry. There, modes
are described by their mode-number.

For all cavity idealizations, the first mode with
the natural frequency f=0 Hz is not listed. This
mode is often called 'Helmholtz-mode', and equals a
constant pressure in the whole cavity. It is impor-
tant for the modal synthesis procedure, not to omit
this special mode, in any case !

As can be.seen in Table 1, from the comparison of
cavity models I and II, the cabin floor will not
always exert a significant influence on the mode-
shape. For the shown modes it seems to be only a
minor disturbance. Nevertheless, the corresponding
natural frequencies will be shifted. Especially for
symmetrical modes a considerable shift to higher
values can be noted. Structural installations
( model 111 in comparison to model II ) completely
change the mode-shape, the frequency and thereby
the sequence of the modes.
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3.2 Eigenvalue Analysis of Three-
dimensional Acoustic Cavity

In the next phase, a 3-dimensional, cylindrical
cavity with a cross-sectional idealization corre-
sponding to fig. 3 was generated, using anisotropic
tetrahedron elements. It was the model of the
acoustic volume in the passenger compartment with a
length of 10.25 [m]. Because of the assumption of
symmetrical propeltler-induced noise, only modes
that are symmetrical about the vertical median line
would be excited. Therefore it was sufficient to
idealize a half-model, Results of the eigenvalue
analysis ( mode-shapes together with their resonant
frequencies ) are listed in Table 2 and may be com-
pared directly with the 2-dimensional cavity
results of model II in Table 1.

Mode-Shape Mode-Numbe r Calculated Calculated
Frequency Frequency
i,m,n 3-D Model 2-D Model
A-2,0 / 138.0 Hz
$-0,0,0 0.0 Hz 0.0 Hz
1,0,0 16.6 Hz 16.6 Hz
2,0,0 33.2 Hz 33.2 Hz
3,0,0 u9.7 Hz 49.8 Hz
4,0,0 66.4 Hz 66.3 Hz
$-0,1,0 91.9 Hz 90.9 Hz
* 1,1,0 93.4 Mz 92.4 Hz
2,1,0 97.7 Hz 96.8 Hz
- 3,1,0 104.5 Hz 103.6 Hz
4,1,0 113.4 Hz 112.5 Hz
$-0,1 / 171.8 Hz | $S~0,1 / 176.2 Hz {mode 6 / 175.4 Hz
$-0,2,0 149.1 Hz 147.5 Hz
1,2,0 150.0 Hz tu48.4 Hz
+ 2,2,0 152.7 Hz 151.2 Hz
3,2,0 157.%1 Hz 155.7 Hz
4,2,0 163.1 Hz 161.7 Hz
A-3,0 / 188.9 Hz | A~3,0 / 195.3 Hz |mode 7./ 207,5 Hz '
_i’ $-0,0,1 173.2 Hz 176.2 Hz
_4 1,0,1 173.9 Hz 177.0 Hz
2,0,1 176.1 Hz 179.3 Hz
’ 3,0,1 179.8 Hz 183.1 Hz
ﬁ 4,0,1 184.7 Hz . 188.3 Hz
$-0,3,0 203.4 Hz 199.9 Hz
1,3,0 204.1 Hz 200.6 Hz
2,3,0 205.7 Hz 202.6 Hz
3,3,0 209.1 Hz 206.0 Hz
4,3,0 213.2 Hz 210.6 Hz
$-G,1,1 235.6 Hz 237.5 Hz
1,1,1 236.2 Hz 238.1 Hz
2,1,1 237.5 Hz 239.8 Hz
3,1,1 2430.2 Hz 242.7 Hz
i u,1,1 243.7 Hz 246.6 Hz
$=1,1 / 235.7 Hz } 8-1,1 / 237.5 Hz |mode 9 / 280,8 Hz

Table 1 : Comparison of Mode-Shapes, Resonant Frequencies
for ditferent two-dimensional Cavities

Table 2 : Mode-Shape and Resonances for 3-dimensional Cavity
Comparison with semi-analytical 2-dimensional Solution
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To demonstrate the practicability of the semi-
analytical solution described in section 2, calcu-
lated frequencies, derived from the 2-dimensional
model, are also listed. The good agreement shows
that it is rather simple to approximate the natural
frequencies, but this is valid only for homogenous
cylinders with invariant axial geometry.

4. COUPLING PRECONDITIONS AND EFFECTS

4.1 Analyzing Coupled System Modes

When analyzing the coupled system, the influence
of the formerly uncoupled components - structure
and cavity - is of principal concern in understand-
ing its new dynamic response. Because the coupled
eigenvector is composed of both. elements, the
structure and the cavity parts, a modal- decomposi-
tion of the vector will be performed to isolate the
individual influence of each involved mode-part.

As a first result, for every specific resonant
frequency, this approach enables one to find out
the most dominant uncoupled component, which is
directly responsible for the existence of this
resonance. Furthermore; as a second result, a
detailed Tist of all involved mode-parts, together
with their quantitative weight, is obtained.

In the case of a 'cavity-dominated' coupled
resonance, one cavity mode has an outstanding rela-
tive share of more than 50% (often > 90%) in the
cavity part of the coupled eigenvector. A1l other
cavity modes have a much lower value. An analogous
rule is used to define 'structure-dominated
coupled frequencies. Strongly coupled modes are
characterized by the fact, that the relative weight
of the main cavity mode is about of the same value
as the relative weight of the main structure mode.

Knowing the contribution of each single mode-
part, it 1is possible to analyze all coupled
resonant frequencies of interest more accurately.
Especially when three-dimensional structure and
cavity models with large numbers of degrees of
freedom and coupled resonant frequencies are to be
studied, this mode-part information will become an
important auxiliary interpretation means.

4.2 Frequency- and Mode-Shape Interaction

In a certain frequency range, depending on struc-
ture properties such as stiffness, mass distribu-
tion or simply its dimensions and the cavity
volume, the number of uncoupled modes and
resonances can vary significantly. As the number of
resonaces increases, the probability that ap-
propriate modes of the structure and the cavity fit
together, and couple, will be more likely, too. A
growth in apparently coupled modes is to be ex-
pected, because merging the uncoupled eigenvectors
of a structure and the corresponding cavity, re-
sults in a higher modal density. Moreover, resonant
frequencies of the modes that have the tendency to
couple, may now be lying close together.

But the relative position of the frequencies is
only a minor aspect for coupling, since coupled
modes were found, even when the resonances of the
mode parts lay far apart. Above all, the weight of
each mode part, i.e. the quantitative contribution
to the coupled mode, is influenced by, the relative
frequency distance.
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In the following, it is shown that the most im-
portant precondition that two modes will actually
couple is the conformity in their mode-shapes.

2-D Example of Mode-Shape Interaction

A finite element calculation was carried out with
a circular frame that has a stiffness and mass dis-
tribution, comparable to the realistic airplane
frames. The structure completely encioses a two-
dimensional cavity ( FE models see fig. 3 ). The
shown FE idealization corresponds also to a side
view on a cross-section of the three-dimensional
cavity inside the fuselage walls.

+

Fig. 3 : FE Idealization of two-dimensional Structure and Cavity

Subsequently, a coupled eigenvalue analysis was
performed. Fig. 4 shows some typical structure and
cavity modes that have the inclination to couple.

Cavity 1,0
Structure 3-0

3
3

1 -
[ N ]

Fig. 4 : Mode-Shape Interaction between two-dimensionai
Structure and Cavity

3-D Example of Mode-Shape Interaction

Analyzing three-dimensional systems is far more
complicated, for the modal density in the interest-
ing frequency range ( here : up to 250 Hz') in-
creases significantly. As an example, the diagram
in fig. 5 gives the number of modes for the un-
coupled fuselage structure, the cavity as well as
the coupled system.

200

150

Modal Density

100
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L
° /
0 100 200 300 Frequency [Hz]

Fig. 5 : Number of Modes depending on the Frequency



The interpretation of a coupled 3-D mode may be
further difficult, if many mode-parts with nearly
the same percentage contribution build a coupled
system mode.

@ Structure @ .

+

& Cavity

Cavity (1,mn) 2,2
Structure (1-m-n) 3-2

0
0

I

Fig. 6 : Mode-Shape Interacticn between three-dimensional
Structure and Cavity, Coupled Mode at f = 51.9 Hz

As an example, Fig. 6 shows the structure-domi-
nated coupled system mode of the actual airplane
with the resonant frequency f = 51.9 Hz. Because
the number of nodal lines in the axial direction is
the same for the structure and the cavity, an ob-
vious axial coupling was found. Furthermore, the
cross-sectional mode-shapes show an additional
strong coupling tendency.

4.3 Coupling Effects and Influence on_the
Dynamic Response of the Excited System

In general, the effect of coupling is a shift in
the coupled frequencies, compared to the uncoupled
solution, which has been briefly described in sec-
tion 2. Cavity-dominated, coupled resonant fre-
quencies, are normally shifted to higher values,
whereas structure-dominated resonances are usually
reduced. For a thorough description of this fre-
quency shift on the basis of one- and two-
dimensional examples see [1].

Subsequent to the harmonic excitation and the
calculation of the coupled structural-acoustic
dynamic response, an obvious noise amplification
was found, especially when critical, coupled modes
were excited. Commonly, not all of these critical
modes yield automatically higher noise levels, be-
cause this effect depends most on the actual ex-
citation forces as well as on their related phase
displacement.

As a conclusion we can say that the location and
the mode parts of critical resonances are known
after the coupled eigenvalue analysis. But only an
excitation with realistic dynamic loads shows us
the really critical ‘modes, which are responsible
for the actual dynamic response, i.e. the final in-
terior noise.

(') Definition of 1 : see section 3 and [4]
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5. EXAMPLES FOR COUPLED SYSTEMS

5.1 Two-dimensional Structure and Cavity

To demonstrate the coupling effects, a plane cavity
(model I, Table 1) and a circular frame structure
were used for structural-acoustic calculations. Ac-
cording to the flow-charts in fig. 1 and fig. 2,
eigenvalue analyses were performed and the un-
coupled as well as the coupled dynamic response due
to harmonic excitation with external forces was
calculated.

Table 3 gives uncoupled resonant frequencies for
the cavity and the structure as well as the result-
ing resonances of the coupled system. A classifica-
tion of cavity- or structure-dominated frequencies
is also included.

Uncoupled Coupled Uncoupled
Cavity system structure
Mode- | Frequency | Frequency | Frequency Mode-
Shape [ Hz ] [ Hz] [ Hz ] Shape
0,0 0.0 -> 00 |<- 0.0 rigid

2,0) 200 |<- 203 2-0
(3,0) 58.3 |[<- 59.0 3-0
1,0 83.2 -> 84.4 (3-0/4-0)
(4,0) 109.6 |<- 1108 4-0
2,0 1381 ->| 139.7 (2-0/4-0)
01 1718 ->| 1710 (5-0/0-1)
(0,1) 176.7 | <- 178.6 5-0
3,0 189.6 ->{ 191.6 (3-0/5-0)
11 235.7 ->| 235.0 (0-1/6-0)
4,0 2385 ->| 239.9 (6-0/4-0)
(4,0) 259.8 <- 2623 6-0

Table 3 : Natural Frequencies of the Uncoupled Cavity and the
Structure with Reference to the Coupled System

The cavity pressure was averaged over the whole
area yielding frequency dependent curves, which are
given in fig. 7.

4~—a Full Coupling All Structure And Cavity Modes
©-~-9© Uncoupled Solution Withoirt Coupling Effects
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Fig. 7 : Comparison of Coupled and Uncoupled Solution
Dynamic Response of the Cavity {p_} / {p}



~ The comparison of the uncoupled and the coupled

solutions shows three typical effects of coupling.
A shift in the resonant frequencies and an obvious
noise amplification can be seen.

0 a cavity-dominated frequency was shifted to a
higher value : Cavity mode '1,0' : 83.2 -> 84.8 Hz

E’ a structure-dominated frequency was reduced :
Structure mode '4-0': 110.8 -> 109.6 Hz

€’ shows an evident pressure increase of about
45 [dB] ( modal damping factor used in the cal-
culation: 0.1% ) at the cavity-dominated resonance
f=171.0 Hz, which was the cavity breathing mode
'0,1'. This cavity mode coupled strongly with the
structural breathing mode '0-1' ( uncoupled reso-
nant frequency : 269.4 Hz) and the applied external
forces greatly increased the dynamic response.

&——4 Full Coupling With Structural Breathing Mode
©---8 Part-Coupling Without Structural Breathing Mode
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Fig. 8 : Comparison of Coupled Dynamic Response Cavity {p.}
1) Using all Modes up to 600 Hz for Modal Synthesis
2) Omitting the Structural Breathing Mode ’0-1’ (269.4 Hz)

Fig. 8 is & comparison of two coupled solutions.
In one calculation, the first structural breathing
mode '0O-1' was used for the modal synthesis, while
the other calculation was performed without this
mode. The influence of this special mode is evi-
dent. Without the structural mode-part '0,1', the
cavity-dominated resonance is excited to a lesser
extend and the dynamic response is reduced ( @) ).

It was found that the same effect occurs even
when the resonant frequency of the structure
breathing mode is far more distant (here: a f=100
Hz). This fact shows clearly, how essential it is
for the dynamic response of a coupled system built
by the modal synthesis technique, to consider not
only the modes in the interesting frequency range.

Particular modes, such as the breathing modes,
that show a strong tendency for 'mode-shape-
coupling', must be used in every case. If the re-
sonant frequency of such a mode is far outside the
interesting frequency range, the exact calculation
of this frequency is normally not possible, because
of the finite element idealization. But this is not
so essential, as long as the mode-shape itself is
used in the modal coupling procedure.

Although not every coupled mode is influenced in
the same way (see structure-dominated mode '5-0' at
176.7 Hz or cavity-dominated mode ‘3,0' at 191.6 Hz

), as a general tendency, lower pressure values
over a large frequency range ( 145 Hz - 260 Hz G’)
are the result of omitting the essential structure
mode '0-1'.
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The cavity central point is influenced more than
any other by the structure breathing modes ('0-1',
'0-2', etc.), for these are the only mode-parts
that excite the cavity directly at this location
and lead to a coupled response. Fig. 9 shows the
averaged pressure as well as the coupled pressure
at the central point for both modal syntheses.

a——a Averaged Pressure - Full Coupling All Structure And Cavity Modes
©---© Averaged Pressure - Coupling Without The Structural Breathing Mode
+——+ Coupled Pressure - Full Coupling / Center of Cavity

%---% Coupled Pressure - No Structural Breathing Mode / Center of Cavity
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Fig. 9 : Comparison of Coupled Dynamic Response - Cavity
1/2 ) Averaged Coupled Pressure
3/4) Coupled Pressure at Cavity Central Point

5.2 Three-dimensional Fuselage Test-Section

A representative fuselage test-section of the
Dornier 328 commuter aircraft was built with an
overall length of 3.6 [m] and a diameter of 2.4 [m].
Wooden endplates were attached on both ends of the
fuseiage section to enclose completely the cavity
volume. Finite element calculations were performed
to evaluate the interior noise distribution and to
compare these results with experimental test data
( see [2] ). The finite element meshes for the
symmetrical half-models of the structure and the
cavity are shown in fig. 10.

Fig. 10 : Finite Element Models of Fuselage Test-Section / Cavity
Propeller-Induced Excitation-Forces on Structure

Uncoupled eigenvalue analyses and the coupling
procedure were performed using all modes up to 400
Hz for the modal synthesis. Forces equivalent to
propeller noise were used to excite the fuselage
structure and the coupled dynamic response was cal-
culated. Fig. 11 shows a typical pressure distribu-
tion in the vertical mid-plane and in a cross-
section of the cavity as well as the corresponding
coupled displacement of the test-section.
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Fig. 11: Coupled Dynamic Response; Cavity : Pressure {p_}
Fuselage Test-Section : Displacement {u_}

To compare these calculation results and the re-
lated experimental measurements , the maximum ex-
terior noise level (pmue“ ) was used as a reference
value for the calculated interior pressure. Subse-
quently, for every excitation frequency, the pres-
sure values were spatially averaged over the whole
volume The resulting noise reduction curve is
given in fig. 12 ( NR = p

naX,ext - ph\terior

-a-a-os FE Calculations

Acoustic Measurements

Averaged Noise Reduction [dB]

140, 160. 180. 200. 220. 240.
Excitation Frequency [Hz]

40. 60. 80. 160.,120.

Fig. 12 : Comparison of FE Calculations and Measurements of
the Dornier 328 Fuselage Test-Section

As can be seen, theoretical results and test data
agree very well, especially in the frequency range
that is not affected by the wooden endplates
( above 60 Hz ).

5.3 Full-Sized Fuselage

In consideration of the influence of coupling, a
structural-acoustic calculation of the full-scale
Dornier 328 passenger compartment was performed to
predict the Tlocations of critical structure and
cabin cavity resonances.

Uncoupled Systems, FE Models

An elaborate finite element model of the fuselage
structure (see fig. 13) was generated with the in-
tention of predicting all uncoupled resonant fre-
quencies up to 500 Hz. In the idealized half-model,
with symmetric boundary conditions in the vertical
mid-plane, the individual influences of the frames,
the stringers, the floor, the wall panels, the pas-
senger front door and the windows were taken into
account. The overall cabin length was 11.0 [m] and
the average diameter 2.4 [m].

On the other hand, for the cavity, a finite ele-
ment model was built with a cross-sectional element
mesh similar to the cavity idealization in fig. 3.
The axial idealization was chosen in such a way
that all cavity nodes on the surface could be cou-
pled with the corresponding structure nodes. Major
parameters of the two models are listed in Table 4.

After separate finite element calculations were
performed, a static condensation was used to reduce
the large number of degrees of freedom {DOF's) for
both models. Uncoupled eigenvalue analyses with the
remaining dynamic DOF's were carried out and two
typical structural modes are presented in fig. 14
and fig. 15.
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Fig. 14 : Uncoupled Structure Mode ’5-2-0" ( 91.2 Hz)

Fig. 14 shows a structure mode with the mode-
number 1=5 and m=2 (resonance f=91.2 Hz). This mode
will couple mainly with the cavity cross-sectional
modes m=2 and m=1.
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Fig. 13 : Finite Element Mody +~ *he Full-Sized Dornier 328 Fuselage
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FE Parameters Structure Cavity

Number of nodes 4390 12524

Degrees of freedom 20347 12524
( DOF)

Dynamic DOF’s 2132 1887

Coupled DOF’s 765 765

Symmetric supports 136

FE Elements Structure Cavity

Triangular Shell Jay 876 -

Rectangular Membrane O 706 -

Triangular Membrane A 132

Tension/Compression Bar — 44

Bending Beam iad 112 -

Bending/Torsion Beam fad 1665

Supporting Elements -~ 375 -

Anisotropic Solid ( TETA ) 7650

Table 4 : Major Parameters of Finite Element Idealizations
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Fig. 15 : Uncoupled Structure Mode '6-3-0° ( 159.2 Hz)

Fig. 15 presents the uncoupled structure mode
'6-3-0' and, contrary to fig. 14, it can be seen
that some windows (from left to right : 1,2,7,8)
show a separate motion. Nevertheless, this mode is
mainly influenced by the frames. It will be seen
that this structure mode couples strongly with the
cavity cross-sectional mode-part m=2 and also with
the longitudinal mode-part 1=5.

Coupled System, Results

The coupling procedure was carried out using all
200 calculated structure modes up to 470 Hz and 100
cavity modes up to 300 Hz for the modal synthesis.
Subsequent to the eigenvalue analysis, the system
was excited by external forces equivalent to sound
pressure levels on the surface. The principal ex-
terior noise distribution, caused by the propel-
lers, can be seen in fig. 16.

The system response, that was calculated in the
frequency range 0-250 Hz, was transformed and
thereby separated into the coupled pressure and
structure displacement, respectively.
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Fig. 16 : Propeller-Induced Forces on the Fuselage Structure,
Excitation of the Coupled System

A typical result, the calculated pressure dis-
tribution in a cavity cross-section and the corre-
sponding structure displacement at the coupled
resonance f = 174.0 Hz s given in fig. 17. This
strongly coupled and also strongly excited cavity-
dominated system mode, which is mainly composed of
the first cavity breathing mode '0,0,1' (f=173.2 Hz,
see Table 2 ) and the structure mode '5-4-0°
(f=173.5 Hz) is also indicated in fig. 19 ( @ ).

X
= VA

Fig. 17 : Coupled System Mode at the Resonance f=174.0 Hz
Cavity and Structure Mode-Parts

For every excitation frequency, the pressure was
averaged over 51 different cross-sectional planes
as well as the whole volume. Fig. 18 shows the
averaged pressure for all 51 fuselage sections.
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Fig. 18 : Cavity Dynamic Response : Averaged Pressure {f.}
Average at Different Fuselage Cross-Sections

This presentation is particularly suited for
identifying axial cavity modes, such as '4,1,0' at
the coupled resonant frequency f=111.9 Hz ( 0 ).



The overall averaged pressure is to be seen in
fig. 19 , showing clearly those dominant resonances
of the coupled system that were excited by the ap-
plied external forces.

Full Coupling All Fusetage Cabin Modes
Used Structural Modes : 1-200 (0, - 470. Hz)
Used Cavity - Modes  : 1-100 (0. - 300. H2)
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Fig. 19 : Cavity Dynamic Response : Averaged Pressure {j" }
Spatial Average Whole Passenger Compartment

Some modes and the shift in the resonant fre-
quencies due to coupling are :

() structure-dominated : '3-2-0' (see fig. 6)

f: 52.8 Hz -> 51.9 Hz

o cavity-dominated : '4,1,0' (see fig. 18)
f: 113.4 Hz -> 111.9 Hz

9 structure-dominated : '6-3-0' (see figs. 15,22)
f: 159.2 Hz -> 154.5 Hz

¢' cavity-dominated breathing mode : '0,0,1'
f: 173.1 Hz -> 174.0 Hz {see Tig. 18)

To compare the cavity response with measurements,
noise reduction values as defined in section 5.2
were computed in the interesting frequency range up
to 250 Hz and averaged over the whole passenger
compartment. The diagram is shown in fig. 20. The
reference pressure was p,, ,.=128.5 [dB].

Coupling Effects

The modal decomposition of a coupled eigenvector
separates the cavity and the structure parts,
yielding for each mode-part the relative contribu-
tion to the coupled mode, which is additionally a
direct measure for the kinetic energy.

It has been observed that cavity mode-parts with
a cross-sectional mode number m=2 have a great in-
fluence on the coupled pressure, because structural
motions are directed normal to the nodal line of
the acoustic mode. Therefore, a modal coupling cal-
culation was performed, in which these cavity modes
were not used (see Table 5, Version <2>). Although
the first cavity mode with m=2 ('0,2,0') has an un-
coupled resonant frequency of 149.1 Hz, the cou-
pling influence can be seen in a large frequency
range from 25 up to 190 Hz. Some modes (e.g. the
structure-dominated mode '3-2-0', f=51.9 Hz, see
fig. 21 @) p=28 dB) were strongly influenced. But
a more interesting result was a direct superposi-
tion of separate coupling effects.

Coupled Modes : Structure 1-200 (0. - 470. Hz) ; Cavity 1-100 (0. - 300. Hz)
----- Coupled Modes : Structure 1-200 (0. - 470. Hz) ; Cavity : Not Coupled <, 2, n >
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Fig. 20 : Spatially Averaged Noise Reduction together with
Mode-Shape List for Major Cavity / Structure Mode-Parts

As can be seen in this plot and the mode-shape
list of the dominant mode-parts, in comparison to
fig. 12, the number of resonances considerably in-
creases because of the three times longer cavity
and fuselage. Nevertheless, with the appropriate
analysis tools (the described mode-part infor-
mation), critical structure- or cavity-dominated
system resonances could be clearly identified.
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Fig. 21 : Comparison of Coupled Dynamic Response - Cavity
1) Using ali Cavity Modes up to 300 Hz for Modal Synthesis
2) Omitting the Cavity Cross-Sectional Modes 'm=2’

Analyzing the coupled system mode at f=154.5 Hz
(fig. 21 %), two coupling effects were found. In
comparison to the uncoupled solution, a relatively

large frequency shift (159.2 -> 154.5 Hz) and an
increase in noise can be seen. If only the dominant
mode-parts of the uncoupled systems are taken into
account, this structure-dominated resonance is a
combination of structure mode '6-3-0' and cavity
mode '2,2,0' (see figs. 15,22 / Table 2).
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Fig. 22 : Mode-Shape Interaction between Cavity Mode "2,2,0’ and
Structure Mode '6-3-0’ (Coupled Resonance 1= 154.5 Hz)



Further mode-parts, their uncoupled resonant fre-
guencies and their percentage contribution to the
system mode are listed in Table 5. In version <1>
all cavity modes were used for the modal synthesis,
in version <2> all cavity modes with a mode number
m=2 were omitted. The result is a pressure decrease
of 17 [dB] for the coupled mode '6-3-0' (fig 21€)).

Modal Synthesis Version ]
<1> < 2>

Mode- | Frequency | Mode - Part | Mode - Part
Shape [Hz] Contribution | Contribution
2,2,0 152.7 27.1 % -

1,2,0 150.0 16.4 % -

5,3,0 218.5 5.0 % 16.0 %
50,1 190.8 4.7 % 18.2 %
6.2,0 178.9 4.6 % -

5.,4,0 248.1 2.2 % 7.0 %
3,1,0 104.5 1.8 % 4.1 %

Table 5 : Structure-dominated System Mode ’6-3-0°, f=154.5 Hz
Percentage Contribution of Major Cavity Mode-Parts

With the mode-part informatvion in Table 5 and the
comparison of the pressure curves in fig. 21, two
separate coupling effects could be identified that
did not influence each other. The structure mode-
shape m=3 coupled strongly with the cavity cross-
sectional mode-shape m=2, that was responsible for
the noise level. On the other hand, the axial mode-
shape coupling was directly responsible for the
shift in the resonant frequency, hence cavity modes
with the axial number 1=5 were found in the eigen-
vectors of version <1> as well as version <2>, here
with a dominant weight.

Fig. 23 shows the final results of two coupled dy-
namic response analyses. The difference in the num-
ber of modes used for the modal coupling step is the
reason for different pressure levels. Although all
modes were used in the frequency range below 150 Hz,
coupling effects can be seen clearly (f > 20 Hz).

The data presented in fig. 23 demonstrates that it
is essential in a modal coupling calculation to use
even modes with a much higher resonant frequency,
as long as they show a strong coupling tendency with
other modes in the frequency range to be analyzed.

Coupled Modes : Structure 1-200 (0. - 470. Hz) ; Cavity 1-100 (0. - 300. Hz)
----- Coupled Modes : Structure 1-200 (0. - 470. Hz) ; Cavity 1-17 (0. - 150, Hz)
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. 23: Comparison of Coupled Dynamic Response - Cavity
1) Using all Cavity Modes up to 300 Hz for Modal Synthesis
2) Using all Cavity Modes up to 150 Hz for Modal Synthesis

Conclusions

On the basis of accurate idealizations of the
fuselage structure as well as the cavity, with the
help of the structural-acoustic analogy combined
with a common finite element program, it was pos-
sible to obtain detailed theoretical results. Fur-
thermore, the good agreement between calculations
and experiments resulted in a basic understanding
of coupled systems that are greatly influenced by
modal interaction effects. The identification and
analysis of critical structural and acoustic modes
is the direct way to a successful active noise con-
trol program.
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