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Abstract

The transmission of sound accross a boundary
layer, e.g. in the atmosphere near the ground,
or into the fuselage of an aircraft, cannot be
predicted acurately from ray tehory. We obtain
the exact solution of the acoustic wave equation
in an exponential shear flow. 1t is shown that
there exists a critical level, which acts as an
acoustic 'valve', i.e. amplifies outward
propagating waves, and attenuates inward
propagating sound. The sound fields near a
critical level cannot be adequately described by
ray theory; the solution of the wave equation in a
linear velocity profile (Goldstein & Rice 1973)
is not general, and overlooks the existence of
the critical level. Yet the critical level
absorption may be the physical mechanism
whereby sound attenuation in a boundary layer
exceeds significantly the predictions of ray
theory; a confirmation of this conjecture
depends on the detailed computation of the
analytical solutions given here.

1. Introduction

Novel propulsion systems like the 'profan'
produce significant noise levels in the near
field, so that passenger confort in an aircraft
cabin depends not only on sound damping in
the fuselage wall, but also on attenuation in the
boundary layer. Flight tests have shown that
sound attenuation in the fuselage boundary layer
at high subsonic Mach numbers can exceed the
predictions of ray theory by as much as 10 dB.
The high attenuation is a welcome effect, but its
understanding or explanation seems to escape
existing theories. In the present paper we do
not use the ray approximation, since it applies
only to wavelengths short compared with the
lengthscale of flow variation, and this condition
may be violated in the boundary layer near the
wall. In other words, the adequate modelling of
sound transmission accross a boundary layer
may require an exact solution of the acoustic
wave equation in the presence of shear flow.
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There exists in the literature only one exact
solhution of the acoustic wave equation in a shear
flow, viz. for the case of a llinear velocity profile
[1]. The latter solution (which we designate GR
for brevity) uses an independent variable §
which is, to within a constant factor, the
Doppler shifted frequency @«=aw-k Uy}, where @
is the wave frequency, k the horizontal
wavenumber, and U{y) the velocity profile, viz.
U(y)=ay for a linear shear flow. A change of
dependent variable is made which transforms
the acoustic wave equation from the second to
the third order:

|

2 2 2
(d/dg) { g e /Z[U"—(Z;, 14+ B) U] fi=0.
(A)
The equation (A) may be objectionable since its
solution requires 3 boundary conditions,
whereas there are only two acoustic boundary
conditions.

This difficulty does not arise in GR, because
they do not solve the third-order differential
equation (A), but only the term in square
brackets:

U" - (€2/4 + B) U=0, (B)
which is a second order equation, requiring
only two boundary conditions. The solution of
(B) is known in terms of parabolic cylinder
functions, but it should be borne in mind that
(B) is a particular case of (A). It is worth noting
that (A) has a singularity at £=0 which is missed

out in (B). The singularity £=0 occurs at the
point in the shear flow where the Doppler
shifted frequency vanishes w+=0, which specifies
the location o=k Uly.) of the critical level y=yc.
A linear shear flow Ufy)=ay always has a critical
level, at yc=w/ka, and this important point is
overlooked in GR.



It goes without saying that attempts to model
sound transmission accross a boundary layer
using the wave equation in an uniform stream
[2] omit altogether the existence of a critical
level. The critical level [3] appears in the
equation [4] for the acoustic pressure in a shear
flow:

{w-k U} p" + 2kU'p' + (w-kU)

{(0-kU)2/c2-k2) p=0, (1)
as the singularity w-kU=0. Although the linear
shear U(y)=ay used in GR is the simplest, and is
an acceptable approximation near the wall, the
flow velocity diverges as y — , so that matching
to an uniform free stream is not possible.
Although we can solve (1) exactly for a linear
shear flow [5], we do not do so here, because in
that case the acoustic pressure cannot be
matched to a plane wave in a free stream.

2.- The acoustic critical level in a shear flow

In the present communication we consider
sound propagation in an exponential shear flow:

Uly) = V(1 - e¥/1), (2)

where we can adjust independently the free
stream velocity V and shear layer thickness L.
This corresponds [6] to the boundary layer with
uniform suction at high Reynolds number, viz.
the asymptotic suction profile. Although the
velocity profile (2) is rather simple, it is
preferable to the linear velocity profile, i.e.
more suitable for the calculation of acoustic
fields, on at least two counts: (i) since there is a
free stream velocity, the acoustic field must
match itself to a plane wave far from the wall:

. . vy
)1,1330 ply:k,0) ~evy, (3)

where v may be complex; (ii} the vorticity:

dv/dy = (V/L) ex/L, (4)
is concentrated in the boundary layer, and
increases to a maximum V/L at the wall. The
sound field is not sinusoidal in the boundary
layer, and the main thrust of the present paper
is to calculate the exact acoustic field in this
vortical region.

The Doppler shifted frequency:

w.(y) = o-k Uly), (5)

is given in the case of the exponential shear
flow (2) by:
04{y) = 0-kV + kV ey/L, (6)

and varies from the wave frequency w=w«(0) at
the wall, to a minimum (=) = ®-kV in the free
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stream. Thus two cases arise: (i) if the Doppler
shifted frequency is negative in the free stream

w<kV, since it is positive at the wall, it vanishes
w+{yc)=0 at a critical level in the boundary layer,
located at:
ye= -L log(1l- w/kV); (7)

(i) if the Doppler shifted frequency is positive
in the free stream o>kV, then it is positive in
the whole flow region, and no critical level
exists, viz. yc is complex in (7) for ©>kV. In the

case w=kV, which is intermediate between (i)
and (ii), the critical level would be located in
the free stream yc=ce.

When considering the exact theory of sound
propagation in a shear flow, the acoustic
pressure p at position x,y and time t, is given by
a Fourier integral for time and horizontal
coordinate:

Pixyt) = [f plyik.o) elocot dido, (8]

+o0

where ply;k,0) is the pressure spectrum, for a

wave of frequency o, and horizontal wavenumber
k, at a distance y from the wall (Figure 1). The
pressure is in general not a sinusoidal function
of y, i.e. it is obtained exactly by solving the
second-order differential equation (1), which
has the critical level (5) as a singularity at finite
distance (7).

We may attempt to interpret the existence of
the critical level in terms of ray theory, even
though the ray approximation breaks down in
its vicinity. In the case of ray theory the waves
are sinusoidal both in the direction parallel and
orthogonal to the wall, and there exists a two-

dimensional wave vector K with (Figure 2)
horizontal component:
k = K cos®9, (9)
where 6 is the angle of the direction of
propagation with the wall. The condition of

existence of a critical level w<kV, states that:

o/K =1 <V cosh, (10)

that the phase speed u of sound is smaller than
the free stream velocity projected on the
direction of propagation. In other words if the
free stream is supersonic relative to the phase
speed of sound, acoustic signals are received in
inverse order of emission, and a critical level
exists in the boundary layer. If we define the
local Mach cone by its aperture cosa=1/M,

where M = V/u is the Mach number relative to
the phase velocity of sound, then (10) implies

cos0 > cosca; thus, critical level exists in the



boundary layer if sound rays lie within the Mach
cone. If sound rays lie outside the Mach cone
there is no critical level, and if they lie on the
Mach cone the critical level is in the free
stream.

3 - Acoustic 'valve' effect and sound attenuation

In order to understand the effect of the
existence of the critical level on the sound field,
we return to the exact acoustic theory. The
latter is based on the acoustic wave equation
(1), for the boundary layer profile (2), viz.:

p" + (2kV/(w-kV + kV ey/L) L-1 p' +

+ {(0-kV + kV e¥/L)2/c2 - k2) p=0, (11)

which is a second-order differential equation,
whose coefficients involve exponentials of the
distance from the wall. This suggests the
change of independent variable:

{=eY/L/(1 - w/kV), (12)

which places the free stream y=- at the origin

{=0; the constant factor in {12) is such that the
critical level, when it exists, is placed at the

point y=yc unity {¢=1. With the change of
variable (12), the coefficients of the differential

equation (11} become polynomials of the third-
degree:

(1-0) {2 @" + {(1+0) @' +
+ (1-0) {A2(1-0)2 - T2} @=0, (13)

where we have introduced the dimensionless
Doppler shifted frequency:

A=(0-kV) L/c, (14)
and the compactness:
r=kL, (15)

and ®(f) = ply:k,0).

If we re-write the differential equation (13)
in the form:

£2 0" + § {(1+0)/(1-0)) @ +

+ {A2(1-0)2 - T2} ®=0, (16)

it is clear that the terms in curly brackets are
analytic functions of {, in a circle with centre at
{=0 and radius unit {{|<1. Thus {=0 is a regular
singularity [7] of the differential equation, and
within the unit circle in the {-plane, a solution
exists as a power series:

309

(D(C) _ i A, Cmn.)

n=0

(17)

with coefficients a, and index v to be
determined by the Frobenius-Fuchs method

(see §5). In the absence of a critical level w<kV,

the variable { in (12) is negative (<0, i.e. (17) is
power series with alternating sign, whose sum
tends to be small; thus, in the absence of a
critical level, acoustic pressure changes accross
the boundary layer are small, i.e. there is no
significant attenuation or amplification of sound.
In the presence of a critical level w<kV, the

variable { in (12) is positive {>0, and the power
series (17) tends to have a large sum, so that in
this case there are significant pressure changes
accross the boundary layer, implying that: (i) an
incoming wave, from the free stream, suffers
considerable attenuation, near the critical level,
before reaching the wall; (if) conversely, a wave
outward propagating from the wall, is
considerably amplified towards the free stream.
Thus the critical level in a shear flow acts as an
acoustic 'valve', attenuating incoming and
amplifying outgoung waves. The attenuation
effect (i) for incoming sound in a boundary layer
has been observed experimentally, and the
converse (ii) amplification effect for outgoing
waves should be amenable to experimental
verification.

Re-writing the equation (13) in the form:
(1-92 @" + (1-) (1+1/0) @' +

+ (1-1/79)2 {(A2(1-0)? - T2} =0, (17)

it is clear that the terms in curly brackets are
analytic functions of £ in a circle of centre at
{=1 and radius unity 1{-11<1, and hence the

critical layer {=1 is a regular singularity. The
remaining singularity is the point at infinity
{=c, which corresponds to the origin n=0 after
the change of variables n=1/{, viz. for:

y(n) = o(1/n), (18)
we obtain from (13):

n2 y" +nin-3)/M-1} y' +

+ {A2(1-1/n)2 - T2} y=0. (19)

The second term in curly brackets is singular at
the origin, and thus 1n=0/{=« is an irregular
singularity of the differential equation (19)/(13).
Thus the differential equation has one pair of
linearly independent solutions in the
neighbourhood of each singularity, according to
the Table I. Since the regions of convergence of



each pair of solutions overlap (Figure 3), analytic

continuation is possible, i.e., any solution is a

linear combination of any pair, e.g.
p:ly:k,0) = C, pi(y:k,m) + C_ p-(y:k,0), (20)

where C+ are constants. We start the derivation
of the solutions with that about the free stream.

4 - Evanescent, divergent or propagating waves

The solution (17) suggests that we make the
change of dependent variable:

() = gV f(Q); (21)

if v is so chosen that f(0) # 0, is finite, then
the acoustic field in the free stream y — o or
y — 0, is specified by { ~ e-%V/L, viz. leading to
propagating waves for complex v, and

evanescent or divergent waves for real wv.
Substitution of {21) into (16) yields:

(1-0) €2 £ + C{(1+2v) + L(1-2v)) ' +
+ {A2(1-8)2 + (v2-0v-T2)(1-0) + v(1+{)) £=0.(22)

If we choose v so as to cancel the terms in the
last curly brackets which are independent of :

A2 +92-T2=0, (23)

then the equation (22) can be divided

throughout by {, viz.:
(1-0 L "+ {(1+2v) + L(1-20)} ' +
+ {(2v-A2(1-0) (2-0)} £=0, (24)
we obtain a differential equation whose
coefficients are quadratic polynomials, instead
of cubic polynomials in (16).

The value of v is specified by the roots of
(23), viz.:

£ v = YI2-A2 = L Vk2-(0-kV)2/c2,

where we have used (24) and (15). The acoustic
field in the free stream:

(25)

py:k,w) ~ ¥ ~ eVy/L, (26)

consists of: (i) propagating waves, for complex
v, i.e. (@-kV)2 > k2¢2, ie. in the frequency
ranges:

o > k(V+c), {(27a)

which is of interest for any free stream velocity,
or:
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o > k(V-c), (27a)

which is of interest only for supersonic free
stream; (ii) evanescent or divergent waves

which correspond to real v, viz. (@-kV)2 < k2¢2,
i.e. in the frequency range:

k(V+c) > o > k(V-c), (28)

which is the complement of (27a,b). We will
show next that (26) is .the leading term of the
acoustic field in the free stream, by obtaining
the exact solution of (21) in the neighbourhood

of the regular singularity {=0; the latter solution
is specified by the Frobenius-Fuchs method as a
power series:

0= an(e) ¢,

=0 (29)

with coefficients and index to be determined.

Substituting (29) into (22) and equating to
zero the coefficient of each power of {N+0 we
obtain a recurrence formula for the coefficients:

(n+c+1) (n+6+1+2v) any; =
= {(n+o)(n+0-2-20) +

+ 2(A2"'\))} an'3A2 an-1 + A2 an-2- (30)

Setting n=-1, and noting that a.ij=a.g=a.3=0#a,,
we obtain o(0+2v)=0, which is the indicial
equation, showing that the index can take two
values o¢=0, -2v, corresponding to particular
solutions with leading terms:

pxly:k.0) =

E® fo,-20(8) ~ Lo+0 ~ [V ~ etvy/L, (31)

in agreement with (25) and (26). The complete
series solution (29) in the variable (12) is given

by:
P:(yko) =

(] _n R
=e™'E'S a,(0.-20) (1-o/kv) e ™/F,

n=0 (32)
where the recurrence formula (30) for the
coefficients ap(o) is applied with 6=0 for p; and
o=-2v for p-. These two particular solutions are

linearly independent, and thus the general
solution is a linear combination of them:

ply:k.o) = Ci p+(yik,0) + C. p.(v;k,0), (33)



where C: are constants. In the frequency ranges
(27a,b) v is complex, and if we take the root of
(25) with Im{v) < O, then (31) shows that p, is
an outward and p. an inward propagating wave,
in the free stream; in the complementary
frequency range (28) v is real and if we choose
the root of (25) such that v>0, then (31) shows
that p; is an evanescent and p. a divergent
wave, in the free stream. Thus if we set C-=0 in
(33), we obtain an evanescent acoustic field in
the frequency range (28), and an outward

propagating sound wave in the remaining
frequency ranges (27a,b).

5 - Solutions for all frequency ranges and flow
regions

We note in passing that choosing one or the
other values of (25} merely interchanges the
particular solutions (31), and leaves the general
solution (33) unchanged. This solution is valid

for 1{l<1, i.e. in a flow region extending from
the free stream (=0, y=« to the critical level
=1, y=y.. The solution (33) converges for
I€1<1, and thus is limited by the critical level

{=1. In order to obtain the acoustic field near
the critical level, we must expand in powers of
the variable:

§=1-¢

(34)

so that the differential equation (24) is replaced
f(0) = g(€) by:

E(1-8) g" - (2-&(1-2v)} g' +

+ {2v - A2 E(1+E)} g=0, (35)
which has a regular singularity at £=0 or {=1.
Hence a solution exists by Frobenius-Fuchs
method, as a power series:

€ =E Y ba(o) E

n=0

(36)

whose coefficients satisfy the recurrence
formula:

(n+o+1) (n+06-2) bps1 = {(n+0) (n+o-2v)

- 20 by + A2(bp-1 + bn.g), (37)

which is obtained by substituting (36) into (35),
and equating to zero the coefficients of powers
of g.

Setting n=-1 in (37) and noting that b.j=b.

2=b_3=0xb,, we obtain the indicial equation o(c-
3)=0, showing that the index can take the
values ¢=0,3 differing by an integer. Thus one
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particular solution is:

o n+3
&)= X b3y .

n=0 (38)
which vanishes at the critical level. The index
6=0 would lead to bs=e in {37), and because the
difference between the indices is an integer;
multiplying by 6-3 and letting ¢ — 3 leads to the
same particular solution (38) as before. In this

case, a second linearly independent particular
solution is given [7] by:

g3 (€) = lim 9g4(8)/d0 =

c—>3

ke n+3
=logtgs(E) + 3, {(9b,(0)/3s)sg &

n=1
(39)
Thus the general solution is:
ply;k,w) = C; p1ly:ko) + Co p2ly;k.w), (40)

where C;,Co are arbitrary constants multiplying
the acoustic fields: (i) vanishing like a cubic:

p; ko) =

bl 5 3
= Y ba(3)(1-e”" /-0,

n=0 (41)
at the critical level; (ii) with a logarithmic
singularity at the critical level:

p2ly:k,0) = log{l - e¥/L/(1-0/kV)} p1ly:k,0) +

+ ply:k, ), (42)

which is dominated by the triple zero in p1, and
the zero of fourth-order in p:

oo

ply:k.w) = Y, {9by (0)/30}5=3

n=1

B 3
(1-e”"/1-0/ev)™. (43)
Thus the acoustic field always vanishes at the
critical level, and it may rise to quite dissimilar
values at each side.

We have obtained two solutions of the
acoustic wave equation in an exponential
boundary layer, viz. (33) near the free stream
(84) and (40) near the critical level (§5). The
question arises: do these two solutions cover the
whole flow region, or do we need also the third
solution near the singularity below the wall?



The answer depends on the frequency range in
consideration, and the complete frequency
spectrum is considered in Table II: (i) the range
w>2kV, we have -1<{<0 in (12) so that the
solution I about the free stream covers the
whole flow region O<y<e; (ii) in the frequency
range kV<w<2kV the solution I converges for
y>y1, where:

y1 = -L loglw/kV - 1}, (44)
and for y<y: we need solution II near the
critical level; (iii) in the frequency range
kV>0>kV/2, the solution II converges for y>ya,
where:

y2 = -L log{2 (w/kV-1)} = y. - L log 2, (45)
and thus covers the region of convergence y>y.
of solution I, but for y<y. we need the solution
III near the third singularity; (iv) in the last
frequency range w<kV/2, the solution II
converges over the whole flow region, so we do
not need solutions I and III, which converge
over disjoint regions y>y. and y<y.. Over each of
the four frequency ranges, we can have either
propagating (27a,b) or evanescent/divergent
(28) acoustic fields in the free stream, as
indicated in Table HI

8 - Acoustic fields in the limit of strong vorticity

The Table II shows that in the frequency
range 1/2 kV<w<kV the solutions I and II,
obtained by expansion around the free stream,
do not cover the whole flow region, and apply to
distances from the wall greater than y2 in (42).
In order to obtain the acoustic field in the
region O<y<ysq, we need the solution III, which
is an expansion about the singularity at infinity
{=co, i.e. below the wall y=-c in (12), where the
vorticity (4) is infinite. The singularity at infinity
for {=co, corresponds to the origin n=0 for:

n=1/¢, (46)

and the differential equation (24) transforms to:
M-1) n j" + {(2v-3) + N(1-2v)} §' +

+ {(2v-A2)/n + 3A2/n3} j=0, (47)

for jim) = f(§) = f(1/n). Since (47) is no simpler
than (19) for y(n)=n-" j(n), we use the latter.
The origin n=0 is an irregular singularity of

(19), and thus the solution appears as a series of
ascending and descending powers:

-+ o0
YoM = Y dnlon®",
n=-o

(48)
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where the coefficients satisfy the infinite system
of linear homogeneous equations:

+ oo
z Dn,m {c)dn(oc}=0,

n=-co

(49)

involving a four-banded diagonal matrix, whose
non-zero elements are:

Dnn=M+0)2 + A2-T2-1, (50a)
Dp.n+1 = 3A2 - (n+o) (n+o+4) -T2, (50Db)
Dn,ns+2 = - 3A2, (50c¢)
Dnn+3 = -A2. (50d)

Note that (49), unlike (30) and (37), is not a
recurrence formula, because there is no finite
lower or upper value for n.

A necessary condition for (49} to have non-
trivial solution is the vanishing of the infinite
determinant:

Det{Dn m(0)} = 0; (51)

this plays the role of indicial equation, and has
two roots o1, o2 specifying two particular
integrals:

p+ Ps+(yik, @) = yoq.00((1-0/kV) e¥/1),  (52)

whose linear combination is the general
integral:

p(y;k,(l)) =C. p*(y:k,(l))v'l' Cas pn(y;k,O)), (53)
where C., C. are constants. For each value of the

index (48) may be solved as a infinite non-
homogeneous system of equations:

+ oo
Dn,m dp/de = 'Do.m ’

1=-c0
Il #o0

(54)

for the ratio of the coefficients to dg, where we
may put do=1 by incorporating do into Cs or Cas.
The solution of (48) by means of infinite
determinants suggests that it can be
transformed to {8] Hill's equation:

h"(8) + { i cpcos(2n8)ih(8) = 0.

n=0

(55)
This can be done via changes of independent:

n= cos?2 6, (56)



and dependent:

h(8) = e48 sind y(cos2 8), (67)

variable, which transforms (19) to:
h(0) + {T2-A2 + (3A2-T2+1) sec26 - 3A2 sec?0 +
+ A2 secb0 - 4 sec2 20 +

+ (4 + tan® + 2 cot 26)2) h(6) = O, (58)
where the term in curly brackets has a series of
cosines of even argument as in Hill's equation
(55).

We conclude our discussion of solutions of the
acoustic wave equation in an exponential
boundary layer, by showing that it is possible to
obtain one particular solution valid in the
neighbourhood of the irregular singularity [9],
without using infinite determinants. The latter
solution appears in the form {10] of a normal
integral:

y(n) = exply (1/n)} q). (59)

where, if the function %(1/m) represents

accounts for essential singularity, then q(n)
should be an ascending power series obtainable
by the Frobenius-Fuchs method:

o0

q(n) = cn(®M°.
ngb (60)

Substitution of (59} into (19) yields:
nn-1) q" + {2 x'nn-1 + -3} q' +
+ "+ x2) nin-1) + M-3) ¥’
+ A2-T2 4+ (I'2-3A2) /7
+ 3A2/n2 - A2/n3} q = 0. (61)
Choosing the function y in the form:
2 =1A/n2) - (A + 1/2)/n, (62)

eliminates all singular terms of the second curly
brackets in (61), which simplifies to:

n2(n-1) q" + 2n{-iA/n + 2iA-1-iAn) ¢

+ {(1/4+3iA-T2) 1 + (3/4-iA+3T2 - 6A2} q = O.
(63)

Although the singularity at n=0 is still irregular,
the Frobenius-Fuchs method is partially
successful, since (60) leads to a recurrence
relation:
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iAMM+o+1) cn+1 =
= {3/4-iA+3IM2-6A2 + (n+o) (2iA-n-o}} cp +

+ {(n+0-1) (N+0-2-iA) + 1/4 + 3iA -T2} cp-1,
(64)

which for n=1 implies the indicial equation 0=0,
of first degree. Thus we obtain from (59), (60)
and (62):

- 2-A —
yin) = eM>2N S enom®,

n=0

(65)

as one solution of the differential equation in
the neighbourhood Ini<l or 1{{>1 of the limit
of infinite vorticity.

7 - Conclusion

The sound pressure fields calculated by the
preceding methods can be normalized to the
wall value and plotted in logarithmic scale.

Q(X) = log {ply:k,0)/p(0:k,0)}, (66)

versus dimensionless distance from the wall:

0<X=y/L<5. (67)
In the case of evanescent/divergent acoustic
fields (66) is real, and in the case of propagating
fields:

QX) = log lplyik.o)/plO:k,w}l +

+ 1 {arg ply:k.0) - arg p(O:k,m)}, (68)
the real part is the logarithm of the ratio of
amplitudes, and the imaginary part is the
difference of phases. The acoustic field is
affected by three dimensionless parameters: (i)
the frequency:

Q=w/kV; (69)
(ii) the Mach number of the free stream:
M =V/c; (70)

(iii) the compactness (15). The plots show the
degree of attenuation of incoming and
amplification of outgoing waves. There is a large
number of combinations needed to cover all
cases in Tables II and III, and their exploration
is continuing at present.
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TABLE 1

Solutions of the acoustic wave equation in an

exponential shear flow

Singularity {=0 o=1 {=c

Location y=oo y=yc =-00

Meaning free stream critical level below wall

Solution P+, P- P1.p2 D+, P

in powers of { 1-g 1/¢

valid for ~1<f<+l 0<(<2 {<-1or{>+1
TABLE II

Regions of convergence of solutions for four

frequency ranges

Solution I Ir m
Acoustic P+ P- p1.p2 P*. D
pressure

Spectral range:

w>2kV O<y<oo — —
2kV>w>kV y>y1 — ¥<¥c
kV>m>—;- kv Y>Ye y>y2 Y<yc
m<% kv Y>Ye O<y<eo ¥<¥c

314

TABLE III
Conditions for evanescent/divergent or
propagating acoustic fields in the free stream

Frequency Acoustic field in free stream
range Evanescent/divergent  Propagating
w>2kV c>V —_
2kV > 0> kV V<e V>c
kV>o0> 21 kv — V>2
1
0>z kv v<e —
Legends for the es

Figure 1 — Sound wave of frequency o and
horizontal wavenumber k in a boundary layer.

Figure 2 — Position of sound rays relative to the
Mach cone, as criterion for the existence of a
critical level.

Figure 3 — Regions of convergence of the three
pairs of solutions of the acoustic wave equation
in an exponential shear flow.
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