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Abstract: The optimum-optimorum configuration of
the supersonic transport aircraft is the configuration for
which the shapes of its surface and also of its planpro-
jection are simultaneously determined in such a manner
that its drag attains its minimum at a given cruising
Mach number M, The problem of the determination of
the optimum-optimorum configuration of a supersotic
aircraft with small movable leading edge flaps which
presents a minimum drag at two cruising Mach numbers
M,, and M}, are here also considered.

1. INTRODUCTION

The optimum-optimorum theory introduced by the
author in [1] - {5) was used for the determination of the
optimum-optimorum shape of the wing alone at a given
cruising Mach number M, as in [1] - [S], (8] , [16] and
of the wing alone of variable geometry [1], [9], [10] and
[16] , which is of minimum drag at two cruising Mach
numbers M, and M,

More recently, the variational problem concerning the
determination of the optimum-optimorum shape of the
integrated wing-fuselage configuration (at a cruising
Mach number M) was considered by the author in [11]
- [15}. For the integrated wing-fuselage configuration all
its geometrical parameters i.e. the distributions of cam-
bers, twists, thicknesses and also the shapes of the plan-
projections of the wing and of the fuselage are optimized
in order to obtain a minimum drag (at a given cruising
Mach number M, ).

The further step in the optimization of the entire
configuration of the aircraft is to consider that the inte-
grated wingfuselage configuration is of variable ge-
ometry. This variable geometry can be realized with the
help of small movable leading edge flaps. The integrated
wing-fuselage configuration with movable flaps can be
optimized at two supersonic cruising Mach numbers M,
and M, (M5 < M,). At the higher supersonic Mach
number M, the integrated configuration of the aircraft
is flying with the flaps in retracted position. The air-
craft, flying with the flaps in open position, is adapted
for the second lower supersonic Mach number My, .
Copyright © 1990 by ICAS and AIAA. All rights reserved.
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The determination of the optimum-optimorum config-
uration of the aircraft with variable geometry leads to
the solving of
- two three-dimensional boundary-value problems for
the axial disturbance velocity u on the aircraft with
flaps (in retracted and open positions) and of
- two successive enlarged variational problems (with free
boundary) for the aircraft with small leading edge flaps
(in retracted and in open positions).

The wing-fuselage configuration with flaps in re-
tracted position is here considered as a wing alone, for
which the surface is discontinuous along the junction
lines between the wing and the fuselage. The wing-fusel-
age configuration with flaps in open position is con-
sidered also as a wing alone for which the surface is now
discontinuous along the junction lines between the wing
and the fuselage and between the wing and the leading
edge flaps.

2. THE OPTIMUM-OPTIMORUM THEORY

The author has proposed in [1] - [7] a method for the
design of fully-optimized shape of the supersonic aircraft
configuration which she called it optimum-optimorum
theory. This theory allows the simultaneous determina-
tion of the optimal shapes of the surface and of the
plan-projection of the supersonic aircraft in order to
obtain a minimum drag. The determination of the shape
of the optimum-optimorum supersonic aircraft leads to
an extended variational problem for the drag functional
Cd, ie.

C, =

4 J F[ X5 X Z(xl,x2)] dx1 dx2 = min. 1)

S(x1,x9)
Here the function Z(x3,X2) and also the boundary

S(x1,x9) of the integral are a priori unknown and are
determined by the solving of this extended variational

problem. The optimum-optimorum shape of the

supersonic aircraft is chosen among a set of aircraft,
which are defined through some common properties. In
the frame of the optimum-optimorum theory of the
author, two aircraft belong to the same set if:




- their surfaces can be piecewise approximated
through a superposition of homogeneous polynomes of
the same degree;

- their planprojections are polygons which can be
related through affine transformations, and

- the shapes of the aircraft of the set fulfill the same
auxiliary conditions (of geometrical or aerodynamical
nature).

The parameters of the optimization are the coeffi-
cients Z;j of homogeneous polynomes of the equations of
the surfaces and the similarity parameters (v, vs,..., ¥n)
of the planprojections of the aircraft of the set. In order
to solve this enlarged variational problem for the
determination of the extremum of the drag functional
Cd(t) with free boundary the author uses her hybrid,
numerical-analytical method.

This method starts with the remark, that the depend-
ence of the drag functional Cd(t) versus the coefficients
Z;; of the polynomes, which piecewise approximate the
surfaces of the aircraft, is a quadratic form, while the
dependence versus the similarity parameters of the
planform are nonlinear and very complicated. The
method presents two steps.

- In the first step the set of similarity parameters of
the planform (4, vy,..., Vo) are considered as given. The
boundary of the drag functional Cq ®) is now a priori
known. The optimal value of the coefficients of polyno-
mial expansions of the surface of the aircraft are ob-
tained by solving a linear, algebraic system. These
optimal coefficients determine uniquely the value of the
drag functional (Ca®)opt , for the prescribed set of
similarity parameters of the planform. This value of
(Cd(t))opt represents a "point" of what is called here
lower limit hypersurface of the drag functional Cd(t) ie.

(€)= £V Vs 1) @

Each of these points can be analytically determined.

- In the second step, through systematical variation of
the set of similarity parameters the "position" of the
minimum of this hypersurface is numerically (or graphi-
cally) determined and gives the best set of similarity
parameters (14, V..., ¥n) Of the planform, as presented
in (Fig. 1), for two similarity parameters. The optimal
set of similarity parameters together with a chosen area
So of the plan-projection determine the shapes of the
planform and of the surface of the optimum-optimorum
aircraft of a given set of aircraft. The optimum-opti-
morum aircraft is exactly the optimal aircraft

corresponding to this optimal set of similarity
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parameters. The minimum value of the "ordinate” of
the hypersurface represents the drag coefficient of the
optimum-optimorum aircraft of the set. The above the-
ory was successfully used by the author for the effective
design of the shape of optimum-optimorum delta wing
Adela [1] - [7], and of the optimum-optimorum shape of
the integrated wing-fuselage configuration (at cruising
Mach number M, = 2) as in [11] - [15], [25] . The
shape of delta wing Adela is given in (Fig. 2) and the
modification in the shape of the wing Adela, due to the
fuselage integration (in the section X; = 0,6) is given in
(Fig. 3). A further new application of the optimum-op-
timorum theory taken here into consideration is the de-
termination of the shape of the entire aircraft which is
an integrated wing-fuselage-flaps configuration of mini-
mum drag at two cruising Mach numbers M,, and M, .
Two variational problems in cascade are here occurring

- one for the determination of the optimum-optimo-
rum shape of the aircraft at the higher cruising Mach
number M,, with the flaps in retracted position and

- the second for the determination of the optimum-
optimorum shapes of the flap-surface and its planprojec-
tion in such a manner, that the entire aircraft (with the
flaps in open position) is of minimum drag at the lower
supersonic cruising Mach number My, .

3. DETERMINATION OF THE AXIAL
DISTURBANCE VELOCITIE

Let us refer the integrated thick, lifting integrated
delta wing to a three-orthogonal system of axes Oxx2x3
having the apex O of the wing as origin. The plane
Oxixy is the plane of symmetry of the integrated wing

and the axis Ox; is the bisectrix of the angle of the
integrated wing, in the plane Oxixs, at its apex (the
shockfree entry direction). The integrated thick, lifting
delta wing surface is supposed to be flattened in the
plane Ox;x, (Fig. 3) and is considered in a parallel
stream with the undisturbed velocity {’m at a moderate
angle of attack o (measured between the Ox; - axis and
Vo).

In the framework of linearised theory for flattened
integrated thick, lifting delta wings at moderate angle of
attack o, in the boundary value problem concerning the
determination of the axial disturbance velocity u the
effect of lift can be separated from the effect of thick-
ness. Further the following two delta wing components
will be separately considered. The thin integrated delta
wing which is the skeleton surface of the thick, lifting
integrated delta wing and is considered at the same



angle of attack o and the thick-symmetrical integrated
delta wing which has the same thickness distribution as

the thick, lifting integrated delta wing but its skeleton
surface is a plane. This component is considered at zero
angle of attack.

The skeleton surface Z(xy,x2) of the integrated delta
wing is supposed to be continuous but, for the sake of
generality, the thickness distributions Z*(x1,xo) on the
lateral sides OA{C; and OA3C, (corresponding to the
wing) and Z’*(x4,X5) on the central part OC,C; (cor-
responding to the fuselage) are supposed to be different.
Further this wing will be called initial integrated delta
wing. The author introduced, as in [1] - [15] a well-suited
affine transformation in order to obtain dimensionless

coordinates

X X X
v 5 s X X v
xl—}q ,X2—ZI ,X3—Hl—,B- Mw 1 (3)

[1 - / " C/
)lf,(3=h—1,1/=B€, v=B¢ , k=7)

A transformed integrated delta wing is obtained,
which has the maximal depth 1 and the half-span 1
(Fig. 4). The traces C; and (Njg of the junction lines oG,
and OC, (between the wing and the fuselage) have the
following positions on the axis (Niil (parallel to axis Oxs):
Ye + k. The transformed integrated delta wing is
placed in a supersonic flow with the cruising Mach num-

ber My, = 4 1 + v? . Between the dimensionless axial
disturbance velocities u, u* and ¥, ¥* and the dimen-
sionless downwashes w, w*, w’* and W, W*, w*

w" of the
initial and transformed integrated ‘delta wing compo-
nents there are the following relations:

~ —
u={L0, w=w, ut=40, W= W, wt =Wt (9

Further the assumption is made, that the downwashes
W, %" and w* are expressed in form of superpositions of
homogeneous polynomes in x; and X ie. - on the thin
component of the transformed integrated wing

22 2 Vo i Y ©)

and on the thick-symmetrical component of the trans-
formed integrated wing

N il m—1 ok
E X g Wink-1,k

*
W

3 1x ©)

ifk < ¥ <1 (herek = v/v is supposed constant) and

=% N ok
W= 25 Vet I¥1™, )

m=1

if § < k. The coefficients ¥ , %; and W%; and the
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similarity parameter v are unknown and will be deter-
mined through the fully-optimization process. The axial
disturbance velocity U on the thin component of the
transformed integrated thicklifting delta wing with
subsonic leading edges and a central ridge is of the form

E(&y ~ ~2q B(AL
~ N ~n-1 (2) An,2qy ¢ ( 2 )"’ ~2q -1 1
i =2: x| Z —-—7+ Z; C, o cosh —
®

The axial disturbance velocity i* of the thick-sym-
metrical integrated delta wing component of the trans-
formed integrated thick, lifting delta wing with subsonic
leading edges is according to [7] - [9]

i

n—

N ~
=3t { ity [cosh‘lM1 + () cost™'M,
n=1 q=0
n--1 n, .
P e a1 B pr |y
+ > C’;2qucosh — 4 i IS
q=1 i ;,2 q=0 h _ V2?’2
oy -1 -1
+ qz:% Gnqu [cosh R, + (-1)%osh R2} ©
Here the following notations will be made
R - A+ (1=f) R - (149) (1+) (10a)
2(v4¥) 2(w+ry)
M, = A+y) (A-vy) , M,= M_l%’ll (10b)
2v(1y) 2v(1+7)

The coefficients of U for the thin transformed inte-
grated delta wing are related to the coefficients of the
downwash W and the coefficients of ¥* for the thick-
symmetrical transformed integrated delta wing are
related to the coefficients of the downwashes %* and w*
through the following linear and homogeneous relations

n—1

~ - O _
Anza ™ 205 i b
B W, RO @
n2q ~ £t Paq Vagt,i T Pag,i Vo

—x(n)

P2q;)
only of the similarity parameter .

Let us now consider the open integrated delta wing
(with flaps in open positions) (Fig. 5), at cruising Mach

number MY (B*=y M*2 -1 ). The downwashes on the

wing and fuselage are unchanged and are given for the
transformed configuration in the formulas (3), (4) and
(5) and for the initial configuration as in the formulas
(4). The downwashes w and W* on the thin- and thick-
symmetrical components on the flaps of the transformed

The constants 553),5 , 1”)’55‘,13 , etc. are functions



open integrated wing (Fig. 6) are supposed to be ex-
pressed in the form of superposition of homogeneous
polynomes i.e.

N - n—1 o
= Z X wn—k—l k IYI (13)

n=1

1]
w

on the thin transformed flaps component and

N el n—1 o ik
= Z X ; Whnik-1,k |¥1 (14
n=1 =0

on the thick-symmetrical transformed flaps component.
Between the downwashes and axial disturbance veloci-

ties on the initial and transformed flaps there are the
following relations

R
*

o o~ ~ * o fad o fas
w=w o, wr=W, W=r8, §*=¢T 9

The following notations are further made:

7=BYc, P=B%, F=BL, k=L (16)
The transformed open integrated delta wing is placed

in a supersonic flow with the cruising Mach number

M% =/ 1+ /*2 (Fig. 7). The axial disturbance veloci-
ties U and &* on the thin and thick-symmetrical trans-
formed open integrated delta wing with subsonic leading
edges at the cruising Mach number M}, are obtained by
the author here under the following form

- N onet 221~ o
1‘1=in'1{ K, q[cosh N, + (-1)? cosh! N]

B(3h

= ~2 -1
+ E_ Cn,2q ¥“cosh }(17)
q=1 y

I%: ¥ [cosh—lN’;< + (-9 cosh'lN;]

PR L5 RE) .,
t3 o Ay 5 O, 5ok

— ——— — ,2q ~x 202
q=0 Il— #2452 q=1 vy

n~1 ~
+ qZ;G:q 4 [oosh IR+ (-1)% cosh™ IR*]
n—1

+ Z(): ﬁ:q e [cosh 1M* + (-h? cosh™ IM*] } (18)

In the formulas (17) and (18) the following notations
have been made:

‘ PR PR
N. = (1+kN) k" -y) N = (1+k) (k™ +y) (192)

{2k TP 2k sy

T ko ok
A+ (1+07y) (19b)

2% (k+Y)

A 2V (k) T,
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—N _ K ko
1 (147 2!1 b)) M;— (1+’1:*)g 1:—1/ y) (19¢)
25%(1-%) 207 (1+y)
L 1% N*N
.(__M_'E_Xl N;= Ll__Mli_Xl (19d)
205 K*-Y) 205 (K" +¥)

These new formulas are obtained by the author by
using the results of high conical flow theory of Germain
[17], the hydrodynamic analogy of Carafoli [18] , [19]
and the principle of minimum singularities [10] , [21].
The coefficients of the axial velocities i and U* are
related to the coefficients of the downwashes W, w and
w*, W* and W* through linear and homogeneous rela-
tions of the form:

Ao T 25 W i ) @
f, - LS & (n) g + Pt () & +
12 o5 200 i 2,3 " —J—1,J'
FREDE @1
q,) n-j-1,]

The coefficients 553)’1 ’ 55321 , I—’Sg)u s f’ég)’l > P ‘g}
etc. are functions only on the similarity parameters ¥,
P* and J~.

The theoretical determined pressure coefficient Cp
according to the present theory (i.e. by using the formu-
las (8) and (9) with Ghq = 0) are in good agreement
with experimental results for a large range of Mach
numbers (M, = 1,25 -2,2) and angles of attack o
(la] < 10°) as it can be seen in Fig. (8a,b) and Fig.
= () and
for the transversal section X; = 0,599 of the upper side
of the optimum-optimorum delta wing Adela (Fig. 2)
and for the angles of attack o = - 8°, +8°.

This agreement between theory and experiment is due
to the accuracy of the solutions of the boundary value

(9a,b) for the longitudinal central section (X;

problems for the axial disturbance velocities §i and i
given in formulas (8) and (9). These solutions for Ui and
I* present the following advantages in comparison with
the ones obtained in the frame of slender body theory
[26] - [29] :

- they fulfil the full-linearised partial differential equa-
tion, which is hyperbolic, includes the influence of Mach
number M, and does not need any restrictions con-
cerning the magnitude of span;

- the boundary conditions along the characteristic sur-
face, i.e. the Mach cone of the apex of the integrated
wing, and at the infinity (forward) are satisfied;

- according to the hydrodynamic analogy of Carafoli



[18], [19] the singularities in these solutions of u and u*
are located only along the singular lines (i.e. along the
leading edges of the wing, along the junction lines of the
wing-fuselage configuration etc.) and therefore are easier
to be applied as the solutions for axial disturbance
velocities given in [28] , [29] , which are obtained by
using singularities located on the whole wing surface;

- these singularities are chosen according to the prin-
ciple of minimum singularities [14] , [15] and therefore
the potential solutions for u and u* given here are
matched with a boundary layer solution and are zonal
solutions similar as in [31] ;

- the solutions (8) and (9) for u and u* can be also used
for the calculation of pressure distribution and of aero-
dynamic characteristics of an aircraft which shape is
given in discrete form. The surface of the integrated
wing can be piecewise approximated in form of polyno-
mial expansions which are obtained by using the two-
dimensional minimal quadratic error similar as in [7] .

4. OPTIMIZATION OF THE AIRCRAFT WITH
RETRACTED FLAPS

The optimization of the shape of the thin and thick-
symmetrical integrated wings, components of the thick,
lifting integrated delta wing are further treated. The
variational problem for the thin integrated delta wing
component (for a given value of the similarity par-
ameter v) leads to the determination of the coefficients
wij of the downwashes W in such a manner, that the
drag coefficient Cq ,

N

N
22
m=1

=1 k=0 3=0
In addition the following auxiliary conditions must be
fulfilled. The lift coefficient (C, = LC,) is given
N n—1 .

~o ~ [0
¢,z g J;; Ry W oy =~ (23)

The pitching moment coefficient (C, = /£ &m ) is also
given

—1

=
=
ot

N

C nmk] n-3-1,] m—k 1,k

= min. (22)

e

N n-1 ~ Cmo
ADIPIE I N @
The axial disturbance velocity u vanishes along the
leading edge

LB

Ft = J;O \IltJ wt._j_l,j = 0 s (t = 1,..-.,N) (25)

The coefficients 511,,,1(3, Anj, Tyj and \%t,‘ are only
functions of the similarity parameter v. The correspond-
ing Hamilton’s operator H is

Hz(H =¢(C, + AIC, + \®C +i,\f= 26)
= B d ! m o LTt ¢

In this formula the Lagrange’s multipliers /\(1), A
and A, are functions of the similarity parameter ». By
cancellation of the coefficients of each independent
variation 6Wg, entering in the first variation of H the
following equations are obtained

>

—_

n— ~ ~

{ n,0+0+1,0,j M ﬂ'9+¢-r+1,n,j,c] wn—j—l,j +
n=1 j=0
(1)~ (2)~ ~ -
+A Ae+c+1,u +A g+o+l,0 + ,\0+a+1 ‘I’9+a+1,o 0

(1<0+0+1<N, 6 =0,1,.,(N-1)) 2N

These equations together with the auxiliary condi-
tions (23), (24) and (25) form a linear algebraic system
of equations which determines uniquely the optimum
values of the coefficients Wi; as well as the Lagrange’s
multipliers )\(1), AP and At for a given value of the
similarity parameter ». Similarly, the optimization of
the shape of thick-symmetrical integrated delta wing
component leads to the determination of the values of
the W%; and w¥; of the downwashes %* and w* (on the
wing and on the fuselage) in such a manner, that the
drag coefficient

NN mtat (e
C:Eezzlgf?d [Qnmkjwn—j-l,j+

n=1 m=
ok o~k 0* ~ ok
ﬂnka n—j-1, j] Wink-1,k [Qnmkj W1,
7% —% = ]Ill.ICI 28
Qnka n-J—l,J] wm—k—l,k} : (28)

Additionally, the following auxiliary conditions must
be fulfilled:

- the cancellation of the thickness of the wing along
its leading edges

N

m—1
d® g+ =0 29)
= mk m-k-1,k

¥
Ft

- the continuity of class C; of the surface along the
junction line between the wing and the fuselage

E*:= §N 5 w* )=0 30)
t ] EO 'mk m-k—l 'S m—k—l,k
Gt = ZN & g @ ) =0 31)
t 22 5 m—k—l k- m—-k—l k
N m—1,.
My o_ t) * =
Lt = Z ( nk-1,k ~ m—k—l,k) 0 32
m=t+1 k=0
t = 0,1,..,(N-1) )

2215



- the given relative volume of the wing

N
DI ‘7":-1(-1 K =T 02 33)

_— N . —_—
TEZ; k m-k-lk’Ton 34)

The corresponding Hamilton’s operator H* of this
variational problem is

~ ~ N ~N
H*=¢H* =¢ [C’g + W3 4 D7 Zl(”tFt +
t=

+BE, + 1,6, + ﬁtLt)J (35)

1 - -
Here 4V, 4@, 4y, By , o , 7 are Lagrange’s multi-
pliers. If the first variation of H* is cancelled, the
following equations are obtained

N 11—1 N* ~
> > {10 o+ O W
1§ [ n,8+0+1,0,j 6+0+1,n,j,0 wn—j-l,j +

~ _
Q/* + * . 3
[ n,b+0+l,0,j Q0+<r+1,n,j,cr Wn—j—l,j +

N
(1)~ d® 7 )
+ T +
K 6+0+1,0 g t 0+o+1 <] ﬂt 8+0+1,0 +
3(t) 7(t)
”t g9+o+1 [ nt 6+0+1,0 =0 (36)
and
N n-1 ~
+ Q/* . Nk
HZJ=0 [ n,8+0+1,0,] 8+0+l,n,j,0 wn-—j—l,j +

-+

ﬁ,* o+ 0¥ —*
{ n,6+0+1,0,j Qe+o+1,n,j, n-j-1,]j *

PRI Sl AP 5(6)
O0+0+l,0 = ﬂ't 6+0+l,0 ”t ge+a+1 o +

1) =
0, €9+¢7+1,0] =0 37

(1<0+0+1<N, 6 = 0,1,..,(N-1) )

These equations together with the auxiliary condi-
tions (29) - (34) form a linear algebraic system of equa-
tions which determines uniquely the optimum values of
the coefficients W§, and Wio as well as the values of
Lagrange’s multipliers for a given value of y. By using
the hybrid analytical-numerical method of the author 1
- [4] the optimum-optimorum shape of the thick, lifting
integrated delta wing is determined. The limit line I of
the drag functional C(St) of the thick, lifting integrated
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delta wing is introduced in (Fig. 7) i.e.

Cgpe =, € = +Ch (38)

Each point of the limit line is analytically determined
by solving a classical variational problem for a given
value of parameter v. The value v = vypt , for which the
limit line I attains its minimum is obtained numerically
by systematical variation of the similarity parameter v
as in [4] , [14], [15] . The fitting of an integrated fusel-
age produces an important modification of the optimal
thickness distribution as it can be seen in (Fig. 8), for
the section X; = 0,6.

5. _OPTIMIZATION OF THE FLAPS SHAPE

The optimization of the shape of the thin and thick-
symmetrical open integrated wing (i.e. the wing-fuselage
configuration with flaps in open position) at the second,
lower Mach number M} is here considered (Fig. 13).
The shape of the integrated wing-fuselage configuration
(with flaps in retracted position) is determined by the
solution of the precedent variational problem and re-
mains unchanged in this second variational problem,
which consists in the determination of the shape of the
flap in such a manner, that the entire aircraft (with
flaps in open position) is of minimum drag at the second
cruising Mach number M, . The variational problem of
the thin operi integrated delta wing is firstly considered.
The downwashes W (on the transformed thin integrated
wing-fuselage configuration) and W on the flap are given
as in formulas (5) and (13). The coefficients w;; of w
are previously determined by the precedent variational
problem and are here supposed known and constant.
The optimization of the thin flap component (for a
given value of v) leads to the determination of the
coefficient VgVij of the downwash W in such a manner,
that the drag at the cruising Mach number M}, attains
its minimum i.e.

o~ N N m-1n-1 ~ ~
Ci=2_2 Z{ [Qnmkj W1, 1

n=1 m=1 k=0 ;=0

4 o~ ~ o ’ ~
ks Wani, jJ W1k b [‘Qnmkj Wiei-t,i T
’ = & = mi
- n—j—l,j] ¥ } = min. (39)

with the following auxiliary condition (at the cruising
Mach number MJ).
- The lift coefficient Cy is given:



C/
5 =4
ni Wacit,i + Aag Yoy, =T GO

=
2
=12

~ N n-1 C
- = r g - __I8Q
Ce 2 2 Wy s+ Ty Wy ) =7 4D

- The axial disturbance velocity i vanishes along the
leading edge

t
. EQ
Ftsg \Iltj LAPE =0 ,

iR

(t =1.,N) “42)

- The wing and the flap surface are continuous of
class C; along the junction line between the wing and

the flap

N m1n

E = c® % -

B2 2 2 % SRRl ATEL “3)
~ N m-l.

Cy = —(t) N, & -—

G, = g 2 Bk et ™ Vot 1) =0 (44)
> N_m—1 24) o o

Loz 202 b Gy = Fpgq ) = 0 43)

All the coefficients 7\',13, Knj etc. are depending only
on the similarity parameters +* and ¥* (P* is here
constant). The corresponding Hamilton’s operator of
this variational problem is

~ ~ ~ ~N ~ N ~N
e [8 4508 L 308 5 £
= e[ &+ 308, + 3O+ S GF, +

Lo | 46)

Remark The Lagrange’s multipliers ’i(l) 3@ s Ao P
p,t and Ji; are only functions of the similarity parameter
V. If the fust variation of the Hamilton’s operator His
cancelled (6H 0) the following equations are obtained:

N_n-t ~ ~
, o
Z [ n,0+0+1,0,j + Q(9+¢7+1,n,j,<7] wn—j-l,j +

n=1 3=0

+
R

+

[Qn Ho+l,0,] 6+o+1,n,j,o] wn—j—l,j} +

Mm% (@)%

0+0+1,0 +

[~

>R
>R

+
O+0+1,0 \I’9+a+1 56

N Y

(1<0+5+1<N, 8 = 0,1, (N-1) )

6+0+1,0 +

This algebraic system, together with the auxiliary
conditions (26)-(31) determine uniquely the coefficients

%n—ﬁl ; of the downwashes and the Lagrange’s multi-

pliers i(l) s §(2), ;\t , T, ;i and Jiy (as functions of the
similarity parameter /* ).

Let us consider now the second variational problem
concerning the optimization of the thick-symmetrical
component of the flap by cruising Mach number M, .
The downwashes coefficients w1j are determined in such
a manner that the drag coefficient 5’5 of the thick-sym-
metrical component of the open integrated wing attains
its minimum (at cruising Mach number M, ) i.e.

S N N m—1n—-1 New ok
C); = Z Z Z [ Qrunls:j wn—j-l,j +

+ O W

Gk X ok
nmkj +0 ] w

n-j-1,j nmkj n—J—l ) m—k~1, k

; ?2’** W +ﬁ,** w* +
mmkj  n-j-1,j amkj " n-j-1,j

sk Mk — % (k%) ok
+Qnmk] wn—j—l,j] Wakx t [Qnmk] Waej-1,j

o (%) = 5 (kk) Ik o i
Qs Vi * kG Vnojet, ) Vet k[ =00 (48)

Additionally auxiliary conditions are considered:
- the flap is of null-thickness along its leading edges

2 S (t) &
Ft m§1 ‘

- the thick-symmetrical flap is integrated i.e. along
the junction line between the wing and the flap the
surface must be continuous of class C; i.e.

—k—-l k=0 49)

v N m—l

0k - M (t) * _

e m:};I go & W Va0 =0 60
~ N n—1

ok g (t)

% = Z g H~1,k m—k—l W= (V)

m=t+1

~ N
Mo . .
L: ) m§1 Fo Z*( ) *, nk-1,k " Vmek, W =0 (52

(t =01,.,(N-1))

- the relative volume 7/ of the flap is given:

g mk m—k—-l k= Tod? (53)

The~ Hamilton’s operator H of this variational
problem is

o~ n o~ . N i~
B = ¢A* = ¢ [c: + +Zl(,;:1:: + B, +
t=

+i81 + LD | (54
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Here 4%, it , it , i and 7% are the Lagrange’s
multipliers. If the first variation of H* is cancelled the
following equations are obtained

N n-1

ZZ{ [ 1(1*:~)+a+1 a,] + _(()t::ll n } ‘%*—'—1  t

n=1 3=0 ' 23,0 n-)-1,)

+ [ 1(1*’(;-)m+1 ,0,] :taﬂ,n,j,a] G;fl‘{l—j—l,.]' +

+ [ IE*);LHI ,0,] ét:ﬂ,n,j,a] V_v):l—j—l,j } +

e T9+c+1 ot Z [ d’éfill + ‘—‘t—:gh o
ﬁ:ngzll o :l);f-zz-l,o] =0 (35)

(1<f+c+1<N, 0 =0,1,.,N-1))

These equations, together with the auxiliary condi-
tions (52)-(56) form a linear algebraic system which
determines uniquely the values of the coefficients W§o of
the downwash W* and the values of the Lagrange’s
multipliers u*, %% , % , 7% and 7% as function of the
similarity parameter »*. The best value of the similarity
parameter »* for the thickdifting flap (at cruising Mach
number M) can be also determined by using the hybrid
numerical-analytical method of the author as in [1] - [4].
The optimal value of v (¥ = yypy) is the position of the
minimum of the lower limit line (Fig. 7) of the drag

functional (éét))opt ie.

€D =ter  EP=E+E (56)

6. AGREEMENT WITH EXPERIMENTAL
RESULTS

The aerodynamic characteristics of the optimum-opti-
morum wing Model Adela (Fig. 2) were measured in the
framework of DFG research contracts, by the author
and collaborators, in trisonic wind tunnel (section
60 x 60 cm®) of the DFVLR-K6ln. The theoretically
predicted values of the lift and pitching moment coeffi-
cients Cy and C, according to the above theory are in
very good agreement with the experimental results for
the all range of Mach numbers (M, = 1,25 - 2,2) and
angles of attack o (ja| < 14°) taken here into considera-
tion as in [7], [23], [34]. The dependence of lift- and
pitching moment coefficients Cy and C, versus the
angle of attack o is linear in supersonic flow also at
higher angle of attack o as in (Fig. 11a,l.:i), but non-
linear with respect to the Mach number M, as in
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(Fig. 12 a,h’). Recently the measurements of Cy and Cy
on wedged delta wing given in (Fig. 14), performed [37]
at angles of attack |o| < 16° and higher supersonic
Mach numbers (M, = 2,4 + 4,0) are in good agreement
with the values of C; and C, predicted by the present
theory for supersonic leading edges (Fig. 15a,b) for all
the ranges of angles of attack a (i.e. [a| < 16" ) for Cy
and C, at My, = 2,4 + 3,2. At higher Mach numbers
ie. My, = 3,6 + 4,0 the range of angles of attack a for
a good agreement is more reduced i.e. |a| < 10° for Cy
and |a| < 12° for Cy . The time of calculation of the
aerodynamic characteristics of the aircraft, by using own
softwares according to this theory is less than 4 seconds
on Cyber 175 !

7. CONCLUSIONS

The optimum-optimorum theory of the author can be
successfully applied for the global-optimization of the
entire configuration of the aircraft, which shape presents
the following advantages: a) it is total integrated (i.e.
wing-fuselage and wing-flap integration) and therefore
has no drag due to corners; b) it is of minimum drag for
two different
numbers and therefore is useful for the supersonic

supersonic/hypersonic cruising Mach

aircraft flying at higher supersonic cruising Mach
number (i.e. My =3 + 4); ¢) it is of high lift due to
Kutta auxiliary conditions along the leading edges; d) it
presents a reduced drag and increased lift for a large
range of Mach numbers and angles of attack. The
hybrid numerical-analytical method of the author which
allows the effective determination of the opti-
mum-optimorum shape of the supersonic aircraft
presents the following advantages: a) it is accurate
because it allows the simultaneous optimization of all
geometrical parameters of its shape; b) it is flexible
while it can be applied to the optimization of complex
shape of supersomc aircraft and allows, to add or to
suppress some auxiliary conditions and to change the

cruising Mach number chosen for the optimization; c) it
is able to determine the shape of the aircraft of variable
geometry in order to obtain a minimum drag at two,
very different, supersonic/hypersonic cruising Mach
numbers; d) it is fast (6 sec. computer time at Cyber
175) for the full-optimization of the shape of supersonic
aircraft !
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