PREDICTION OF VORTEX SHEDDING

ICAS-90-3.5.2

FROM FOREBODIES WITH CHINES

Michael R. Mendenhall
Daniel J. Lesieutre

Nielsen Engineering & Research, Inc.
510 Clyde Ave., Mountain View, CA 94043

SUMMARY

An engineering prediction method to calculate vortex
shedding from noncircular forebodies with sharp chine edges
in subsonic flow at large incidence angles is presented. The
forebody is represented by two- and three-dimensional
singularities, and the lee side vortex wake is modeled by
discrete vortices in crossflow planes along the body. The
computational procedure is described, and comparisons of
measured and predicted surface pressure distributions and
predicted flow field vectors are presented to illustrate the
method.

INTRODUCTION

Current flight vehicle applications requiring increased
aerodynamic performance can involve a variety of
noncircular body shapes in subsonic flow at high angles of
attack and nonzero roll angles. When these bodies have
sharp edges, chines, or wing leading edge extensions,
separation is fixed at the sharp edge, and the lee side vortex
wake is different from the wake formed on the lee side of a
smooth body. As in the case of smooth bodies, the chine-
body vortex shedding characteristics are directly influenced
by the body cross-sectional shape and the local flow
conditions. It is desirable to model the lee side vortex wake
by means of a rational method capable of considering a
variety of body shapes over a wide range of incidence angles
and Mach numbers. It is important that the nonlinear
aerodynamic characteristics of the configuration caused by
vortex wake-induced effects be modeled with a method
which correctly represents the physical characteristics of the
actual flow field. However, for preliminary design and
analysis applications, it is'also important the method be
economical to use.

The flow phenomena of concern are the sheets of
vorticity formed when the fluid flow separates from the
sharp edges on both sides of the body (Fig. 1). One approach
for modeling these distributed vorticity fields has involved
the use of clouds of discrete potential vortices. Underlying
the basic approach is the analogy between two-dimensional
unsteady flow past a body and the steady three-dimensional
flow past an inclined body. The three-dimensional steady
flow problem can be reduced to the two-dimensional
unsteady separated flow problem for solution. Linear theory
for the attached flow model and the vortex analogy are
combined to produce a nonlinear prediction method.

A method to predict vortex shedding flow phenomena
from smooth bodies, both circular and noncircular, in
subsonic flow, is described in Refs. 1 and 2. The extension of
the prediction method to supersonic flow is described in Ref.
3. Other investigators have used this approach to
successfully model the subsonic flow phenomena in the
vicinity of circular cross section bodies.*) Ref. 5 provides a
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comprehensive review of many of the discrete vortex
methods currently available and the inherent problems
involved with their use.

The purpose of this paper is to document the extension
of the subsonic analysis of Ref. 1 to predict the vortex
shedding characteristics of forebodies with sharp corners or
chines. A code, VTXCHN, was developed for this
purpose.®)  This code is an engineering prediction method
which provides a preliminary design and analysis capability
with reasonable accuracy and economy.

LIST OF SYMBOLS

Ay coefficients of conformal transformation

C o pressure coefficient

K total number of Fourier coefficients used to
describe transformation

M, free-stream Mach number

r radial distance to a point on a noncircular body,
Fig. 3

e radius of equivalent circular body
o radius of transformed circle

5 semispan

u,v,w  velocity components in real plane

U local velocity

Ve, free-stream velocity

w complex potential

X,y,Z body coordinate system with origin at the nose: x
positive aft along the model axis, y positive to
starboard, and z positive up

a angle of attack

a, angle between free-stream velocity vector and body
axis

B angle of sideslip; also polar angle in o-plane, Fig. 3

B local slope of body surface, Fig. 3

Ax axial interval for marching procedure

y ratio of specific heats

r vortex strength

4 complex coordinate in an intermediate plane, Fig. 2

v complex coordinate in circle plane, Fig. 2

én lateral and vertical coordinates in an intermediate
plane, Fig. 2

g complex coordinate in real plane, Fig. 2

T,A lateral and vertical coordinates in circle plane, Fig.
2

o velocity potential in real plane

v stream function in real plane

Subscripts and Superscripts

O equivalent body

O vortex m

Opan perturbation due to noncircular shape

0] incompressible quantity; or surface values in Fig. 3
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METHODS OF ANALYSIS

Background

Prediction of vortex shedding from configurations with
sharp edges at high angles of attack has been an important
research area for a number of years because of the
dominating effect of the vortex field on the nonlinear
aerodynamics of fighter aircraft and missiles. Most of this
work emphasized sharp edged delta wings because of the
availability of experimental data. Unfortunately, forebodies
with chines have not experienced this same intensity of
study; therefore, the knowledge base for this flow
phenomena is not as well developed.

A brief examination of the methods and techniques
applied to the prediction of vortex shedding from delta
wings and wing-bodies at high angles of attack was made to
help put the chine problem into perspective. It is not the
purpose of this work to review all the theoretical analyses of

delta win%s; others have already accomplished detailed
reviews.®

An early successful model of the vortex shed from the
leading edge of a delta wing is described in Ref. 8. In this
model, the feeding sheet from the wing leading edge is a
straight vortex sheet ending in a concentrated vortex. The
effect of the feeding sheet on the crossflow plane is neglected;
however, the results are good for low aspect ratio wings. A
more detailed treatment of slender delta wings is presented
in Ref. 9. In this method, the effect of the feeding sheet is
considered, but a conical flow assumption is required which
limits the application to low aspect ratios. A complex vortex
model consisting of a cloud of discrete vortices is described
in Ref. 10. This model is more flexible in the shape and
influence of the feeding sheet and the rolled-up vortex, but as
implemented in Ref. 10, it can be used only to calculate the
force and center of pressure on thin wings and bodies. This
latter approach has a number of features which make it
desirable for bodies with chines, and it is very compatible
with the smooth body vortex shedding technique.

The next improvement to the vortex cloud approach is
the representation of the wing with a panel method as
described in Ref. 7. This method has the capability of
predicting wing pressure distributions under the influence of
the shed vorticity, and it could be extended to more complex
configurations. However, a conical flow assumption is part of
the method, and it is not clear if the method is applicable to
very small wings or chines. Finally, the use of three-
dimensional panel methods to represent both the wing and
shed vortex have proved to be accurate and applicable to a
wide variety of configurations.{1:12) These methods require
an iterative calculation procedure to converge on the proper
vortex strength and position, which can cause the run times
to be excessive in many cases.

The next level of complexity beyond the methods
discussed above involves solutions of the Euler and Navier-
Stokes equations. There is no doubt that the state of the art in
computational fluid dynamics is changing dramatically at
this time, and the capability of handling the forebody with
chine is available for research purposes. However, for
preliminary design analysis, the CFD methods are still much
too expensive and difficult to use.
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General Approach

The calculation procedure for chined forebodies is
carried out in a manner similar to that for smooth bodies
described in detail in Ref. 1. The volume of an equivalent
axisymmetric body is represented by discrete point sources
and sinks and doublets, and the strengths of the individual
singularities are determined to satisfy a flow tangency
condition on the body in a nonseparated uniform flow at
angles of incidence and roll. Compressibility effects on the
body are included by a Gothert transformation which keeps
the cross section shape unchanged but stretches the axial
body coordinate. This compressibility correction is valid up
to Mach numbers where local shock waves develop. Starting
at a crossflow plane near the body nose, the pressure
distribution on the body is computed using the full
compressible Bernoulli equation. The body shape determines
the location of separation as the assumption is made that
separation occurs at the sharp edge, and the shed vorticity
originates at that point.

At the separation points, incompressible vortices with
their strengths and positions determined by the requirement
that the Kutta condition at the sharp edge be satisfied are
shed into the flow field. The trajectories of these free vortices
between this crossflow plane and the next plane downstream
are calculated by integration of the equations of motion of
each vortex, including the influence of the free stream, the
body, and other vortices. The pressure and trajectory
calculations are carried out by mapping the noncircular cross
section shape to a circle using numerical conformal
transformations. Image vortices are required inside the circle
to satisfy the flow tangency boundary condition on the body
Cross section.

At the next downstream crossflow plane, new vortices
are shed, adding to the vortex feeding sheet and cloud
representing the wake on the lee side of the body. This
procedure is carried out in a stepwise fashion over the length
of the forebody.

The development of an engineering method to predict
the pressure distributions on arbitrary missile or aircraft
forebodies in subsonic flow at high angles of incidence
requires the use of a number of individual prediction
techniques. In the remainder of this section, the individual
methods are described briefly, and the section concludes
with a description of the complete calculation procedure.
Since many of these individual methods have been described
previously, they will be included by reference.

Conformal Mapping

The crossflow plane approach requires the means to
consider a noncircular cross section shape in the presence of a
uniform crossflow velocity and free vortices in each plane
normal to the body axis. The procedure used to handle the
noncircular shapes is to determine a conformal
transformation for mapping points on or outside the
arbitrary body to a corresponding point on or outside a
circular body. The two-dimensional potential flow solution
around a circular shape in the presence of a uniform flow and
external vortices is well known and has been documented
numerous places in the literature.(1314) Thus, the procedure
is to obtain the potential solution for the circular body and
transform it to the noncircular body. For certain limited
cross section shapes like ellipses, analytic transformations are



possible, but for complex noncircular shapes, the
transformation cannot be carried out analytically and a
numerical transformation is required. The numerical
transformation currently in use is described in detail in Ref.
15 with a brief summary presented in Refs. 2 and 6.

The sequence of events in the numerical mapping is
shown in Fig. 2. The arbitrary cross section shape of the
body in the o-plane is required to have a vertical plane of
symmetry. The transformation of interest will map the
region on and outside the body in the g-plane to the region
on and outside a circle in the v-plane.

The final transformation has the form

Kr];+1Ak
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where the A, coefficients are obtained through an iterative
scheme described in Ref. 15, and r is the radius of the
transformed circle in the v-plane. The derivatives of the
transformation required for velocity calculations described in
a later section are

K rk+1 kA
g—‘;--i[l-z%rk] (2)
=0 v
K (k + 1)r*A -dr K = oaa
[ ° k] o, [Z o k]
av _ L9 VAR Al = B AR
ax x 51 -
- [1 - > °__]
& T

For similar cross sections along the forebody, the second
term of Eq. (3) is zero.

Body Model

A three-dimensional representation of the missile
volume is needed for purposes of gredicting the absolute
pressure coefficient on the surface.(*) An appropriate body
model for missiles with noncircular cross sections is a surface
panel method similar to that described in Refs. 3 and 16;
however, the use of a panel model adds significantly to the
cost of each computation. For this reason, a method using
discrete singularities on the body axis is selected for use with
chine forebodies. The noncircular body is replaced with an
equivalent axisymmetric body having the same cross
sectional area distribution as the actual body. There are
approximations involved with this model since the induced
u-velocity due to noncircular effects is obtained from two-
dimensional considerations as described later. This aaproach
is based on high angle-of-attack slender-body theory,!'” and
it has been verified with exact solutions and found to be in
good agreement.®

The volume of the equivalent axisymmetric body is well
represented by a series of point sources and sinks distributed
on the axis. A number of models in varying degrees of
complexity are available for this task; for example, see Refs.
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18-22. For use in this analysis, the same discrete source/sink
model (Ref. 21) used for the earlier work (Ref. 1) was selected
for its accuracy, economy, and reliabilty. A new method
described in Ref. 22 appears to have much promise in
modeling axisymmetric bodies, and it should be considered
as a possible improvement to the current approach.

Vortex Shedding Model

The body vortex shedding model for forebodies with
chines is significantly different from the model for smooth
bodies described in Refs. 1 and 2. The major difference is in
the formation of the discrete vortices themselves. Since the
chine is the origin of separation, it is no longer necessary to
predict the separation location; however, there are other
problems associated with the specification of the vortex
characteristics that must be addressed.

Vortex Tracking. The equations of motion of a shed
forebody vortex in the presence of other free vortices in the
vicinity of a body in a uniform stream are described in Refs.
1,2,and 6. In summary, the two equations which must be
integrated along the body length to determine the trajectory
of a vortex I are

dy v
_n_._ ™ (4)
dx Vwcosac + u
and
dzm wm
(5)

-
dx V cosa_ + u
® c

where u is the axial perturbation velocity in the flow field.
There are a pair of equations like (4) and (5) for each vortex in
the field. As new vortices are shed, the total number of
equations to solve increases by two for each added vortex.
These differential equations are integrated numerically using
a predictor-corrector algorithm which automatically adjusts
the step size to provide a solution within a specified
accuracy.

Velocity Field. The velocity components at all points in
the flow field are needed for pressure calculation and vortex
tracking. The procedure for determining the u,v,w-
components of velocity from all singularities in the flow field
is described in Refs. 1, 2, and 6.

In a crossflow plane, the complex potential in the real
planeis

W(o)=0-i¥ (6)
and the corresponding velocity at a point "In" is
dWm (o)

Vm ~ iwm T 4o - E[ Wm(o) ]

dv

Y (7

0=0
V=y
m

The velocity components in the crossflow plane are
obtained from the derivative of the complex potential as
shown above. If Eq. (7) is written at a vortex location for
tracking purposes, the complex potential of [ is not



included in Eq. (7) to avoid the singularity at that point. The
derivative of the transformation required in the above
equation is obtained from Eq. (2).

It has been demonstrated with panel methods and exact
potential methods that the u-velocity perturbation due to
noncircular effects is important in the calculation of surface
pressures and flow field velocities.‘6) Since all the
singularities in the flow model are two-dimensional, with the
exception of the axisymmetric body volume model, it is
necessary to calculate the u-velocity components from the
known complex velocity potentials. The u-velocity
contribution of the discrete vortices in the flow field is
neglected for vortex tracking, but it is included in the surface
pressure calculation.

The axial velocity, given the complex potential, is

dd d

dx dx

[Real (W] = Real | (8)
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From the various components of the complex potential,
the noncircular contributions to Eq. (8) are

Crossflow due to a:

dw

1
K = =3 Vmsina E}—( (9)
Crossflow due to 8:
dw
dv
K -VwS inﬁ E)—( ( 10 )
Cylinder in a flow (two-dimensional doublet:
dr
dW3 2vr° _dxo - ri %’!‘
e = i Vmsina [ 3 ] (11)
v
Cylinder in g flow (two-dimensional doublet):
dr
dw 2vr° ————dxo - ri %
o = V.sing [ 2 ] (12)

where dv/dx is available from the transformation in Eq. (3).

Since the axisymmetric body source singularities are
three-dimensional, they contribute an induced axial velocity.
However, as noted previously, these axial velocities are
axisymmetric, and they exhibit no direct effect of the
noncircular shape. This deficiency can be corrected using the
techniques of high angle-of-attack slender-body theory.(1 7
An approximation to the perturbation u-velocity due to the
growing noncircular shape is obtained as follows.

The equivalence rule, described in Section 6-4 of Ref. 23
and expanded for application to this problem in Ref. 17,
states that [1] the flow far away from a general slender body
becomes axisymmetric and equal to the flow around an
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equivalent axisymmetric body, and [2] near the slender
general body, the flow is different from that around the
equivalent axisymmetric body by a two-dimensional
component that is required to satisfy the tangency boundary
condition. Or, the difference between the velocity potential
for the noncircular body and that for the equivalent body of
revolution is equal to the increment of the velocity potential
due to the noncircular effect. Thus,

- Qeq = °An (13)

For purposes of including the effect of the noncircular
body on the u-velocity, the following analysis is included.
The velocity potential for an expanding cylinder in the
crossflow plane, represented by a two-dimensional source
singularity, is

dr
eq

Wyloy = Teq dx (14)

lnv V cosa
(-]

Applying Eq. (8) to Eq. (14) for both terms on the left
side of Eq. (13), remembering that dv/dx=0 for circular cross
sections, the contribution due to the growing noncircular
forebody becomes

dv
dx

dr
eq

= (15)

This velocity represents the increment in the u-velocity
caused by the noncircular shape of the body.

Finally, the u-velocity in the flow field of a noncircular
body is calculated by including Eqs. (9) through (12) and (15)
in Eq. (8). This result is combined with the axial velocity
from the three-dimensional source/sink model to obtain the
total u-velocity on the body surface and in the flow field.
This approach, though slightly different from that presented
in Ref. 17, produces results that are in excellent agreement
with high angle-of-attack slender-body theory when applied
to ellipsoid bodies.

Surface pressure distribution.- The surface pressure
distribution on the forebody is used to calculate forces and
moments. The surface pressure coefficient is determined
from the Bernoulli equation in the form

14
2 —_—
e -— | [1+ 5w )17 -1} ae
Popd Pr
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U is the total velocity (including V) at a point on the body.
The last term in Eq. (17) represents the axial velocity
contribution from the two-dimensional shed vortices in the
flow model. Details of the calculation of this important term
are presented in Ref. 6.

Separated wake.-The separated wake on the lee side of
the body is represented by a large number of discrete
vortices, each vortex originating on the chine edge at each
axial marching step in the calculation. The major portion of



the lee side vortex wake has its origin at the chine edge, but a
portion of the wake originates from the secondary separation
points located in the reverse flow region on the lee side of the
body. Secondary separation is not included in the
calculations for this paper.

For smooth bodies,{!+?) the separation causing the
vortex shedding into the lee-side wake is of a type
traditionally associated with boundary layer separation. The
strength of the vortex is determined by the vorticity in the
boundary layer, and the initial position of the shed vortex is
determined such that the surface velocity in the crossflow
plane at the separation point is exactly canceled by the shed
vortex and its image.

For bodies with chines or other sharp edges, the primary
separation location is fixed at the sharp edge, thus negating
the need to predict the separation location on the body. The
appropriate boundary condition is to assume the flow leaves
the sharp edge smoothly; that is, the Kutta condition is
satisfied at the edge. This boundary condition transforms to
a stagnation point in the circle plane at the separation point.

The common difficulty for all vortex cloud methods
applied to sharp edges (e.g., Refs. 5, 7, and 10), including the
present method (Ref. 6), lies in the solution for the shed
vortex at each time step. Only one equation is available from
the Kutta condition to solve for two unknowns, the vortex
strength and its position. In the smooth body analysis, an
external boundary condition provides the missing equation.
This condition is the determination of the strength of the
vortex from the vorticity in the boundary layer prior to
separation. In some methods noted above, the analysis was
developed for delta wings, and the assumption of conical
flow provided the necessary information. A slightly different
approach was selected for the present work.

The initial approach is based on the method developed
by Sacks.{10 At the first shedding station on the forebody
and chine, there is no vorticity in the field; therefore, the
chine edge is a singularity and it is not possible to calculate a
realistic v-velocity near the sharp edge. Thus, the solution is
started by assuming the velocity outboard at the chine edge
is approximately represented by v = 0.5sina, and the shed
vortex is convected outboard a distance vAt, where At is
defined as Ax/V _cosa. With the position of the vortex
determined in this manner, the strength is obtained from the
Kutta condition at the sharp edge.

In the current model, the pressure distribution is
calculated at the initial station with no vorticity in the field;
therefore, there is a singularity at the chine edge. The
average tangential velocity over the outer 10-percent of the
chine, excluding the singularity, is used to locate the initial
shed vortex. This initial vortex position satisfies the
requirement for one of the two equations, and the remaining
equation can be used to calculate the strength of the vortex
such that the Kutta condition at the chine edge is satisfied.
With a vortex in the field which satisfies the Kutta condition,
it can be convected with the local flow field during the next
axial marching step. Now, though the Kutta condition is not
satisfied after the vortex moves, the tangential velocity can be
calculated at several points on the forebody near the chine
edge. The velocities on the outer ten percent of the chine
semispan are averaged to find a convecting velocity for the
next shed vortex. As before, when the position is known it is
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possible to determine the strength by satisfying the Kutta
condition at the chine edge.

The method of convecting the shed vortex to its initial
position has been the subject of much discussion between
investigators, and there are nearly as many methods as there
are investigators. When a sheet of vorticity is shed from the
trailing edge of an airfoil in unsteady motion, a case is made
in Ref. 24 that the sheet should leave the edge tangent to the
surface. In Ref. 25, another procedure for locating the shed
vortex next to the edge of a cambered plate is described.
Several alternative methods are described in Ref. 6. In the
analysis described herein, the shed vortex is convected to its
initial position along a line tangent to the windward surface
of the chine.

Vortex core. - The diffusion core model for the point
vortex-induced velocities removes the singularity at the
vortex origin and effectively reduces the velocities near the
vortex.{?) A number of core models have received
considerable attention in the context of body vortex-induced
effects, and use of these models has a number of
shortcomings; however, the practical aspects of tracking
vorticity and calculating discrete vortex effects on bodies
dictate that some kind of core model is essential. In the
current model, the radial location of the maximum induced
velocity is fixed at a specific radius.

Vortex Tracking Calculation

Calculation of the motion of the discrete vortices after
they are shed from the body is a key component of the
prediction method. The location of the vortices and the cloud
formed influences the strength and subsequent positions of
later vortices shed from the body, and ultimately, the tracked
positions of the vortices determines the induced loading on
the body. As noted by other investigators,(zs) it is common
for tracking problems to arise during the normal calculation
of the motion of the individual vortices. The usual nature of
these problems is a vortex inside the body, and the usual
solution is to simply eliminate the offending vortex from the
flow field.

In the current model,(®’ the solution is to replace the
vortex back into the flow field outside the body and allow it
to continue as part of the cloud. This procedure has been
reasonably successful on axisymmetric bodies, though the
problem occurs so infrequently in most configurations
examined by the authors that it is difficult to test the validity
of this approximate solution. Initially, this procedure did not
prove very successful for the analysis of chine configurations;
therefore, some work was directed at understanding the
mechanics of the tracking problem in the anticipation that it
could be eliminated.

The equations of motion of the vortices are shown in
Egs. (4) and (5). The motion of a vortex is determined by
integrating these equations, along with those for the other
vortices, from one axial station to the next, a distance Ax. For
most purposes, Ax is a constant over the entire length of the
body; although, as discussed in Ref. 3, Ax can be a variable
length. When the tracking procedure was originally
developed, the u-velocity in the denominator of Egs. (4) and
(5) was included to correct for the effect of a growing body
near the nose. For axisymmetric bodies, the u-velocity was
determined by the three-dimensional source singularities
representing the body. This velocity was essential for the



successful tracking of vortices shed near the nose, and, upon
a brief analysis, it becomes obvious why this is the case. Eqs.
(4) and (5) represent to first order the slope of the vortex
filament between the two axial stations. If a vortex is very
near the body surface, the slope must be the same as the
body slope or greater, or the vortex will be tracked inside the
body; therefore, near the body nose the u-velocity from the
sources (which is opposite in sign from V_cosa,) is necessary
to decrease the magnitude of the denominator and increase
the slope of the filament, thus keeping the vortex from
penetrating the body surface during tracking.

For noncircular bodies, the effect of the body shape on
the v- and w-velocities ih Egs. (4) and (5) is included by
means of the conformal transformations. In the original
work,(1-2) the u-velocity was included as an axisymmetric
effect from the equivalent body, and there was no
noncircular effect on the u-velocity. In the extension of the
original analysis reported in Ref. 6, the approximate
contribution of the noncircular shape to the u-velocity is
determined from Equation (8). When the full u-velocity is
included in the tracking, the vortices track inside the body on
a regular basis. The difficulty appears to be a subtle violation
of one of the basic assumptions inherent in the vortex cloud
procedure.

Under the unsteady flow analogy approximation, vortex
tracking in the axial direction assumes that all the vortices
are moving at the same u-velocity such that they traverse the
Ax-distance between axial stations in the same time. When
the u-velocity consists of a free-stream component and a
volume or source component, this assumption is nearly
correct for all vortices near the body, even when the body is
noncircular and there is a variation in u-velocity around the
body. However, when the doublet effects are included, the
u-velocity can vary significantly around the body and with
distance from the body. In this case, the vortices are not all
traversing axially at nearly the same velocity, and the
unsteady analogy approximation is incorrect. The numerical
problems can be explained using Egs. (4) and (5). On the lee
side of the body, the doublet singularities represent the
acceleration of the u-velocity on that side of the body, the
denominator becomes very large near the body, and the
slope of the vortex filament decreases until it can be less than
the slope of the body. As a consequence, the vortex tracking
calculation may force the vortices inside the body.

For purposes of the current prediction method, the u-
velocity used for tracking purposes does not include the
doublet terms; however, these terms are included in the
surface pressure and velocity field calculation.

RESULTS

Comparison of measured and predicted aerodynamic
characteristics on typical forebodies with chines is the most
reliable means to evaluate the strengths and weaknesses of
the engineering method. Since pressure distributions
provide the best assessment of the capabilities of a prediction
method, the configuration and experimental data of Ref. 26
provide a wide range of information for verification of the
method. The forebody model with the three specific axial
stations at which pressures are measured is shown in Fig. 4.
The experimental data shown in the following figures were
measured with a 60-degree delta wing in place aft of the
forebody, but it appears that the wing had a minimal
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influence at all but the last pressure station on the body. The
effect of the wing is not modeled in the prediction method.

Measured and predicted pressure coefficients on the
upper surface of the forebody are shown in Fig. 5 for the
configuration at @ = 10°. Though data are not available,
predicted pressures on the lower surface are shown in these
figures. The predicted vortex cloud pattern at each station is
shown to provide some perspective on the region of
influence of the lee side vortex. In Fig. 5(a), the measured
and predicted pressure coefficients at the first forebody
station, x = 7 inches from the nose, are compared. The
predicted pressures have the correct characteristics on the
suction side of the body, but the suction peak caused by the
vortex seems to be spread over a larger region than that
measured. The pressure on the lower surface is nearly
constant. The predicted pressure distribution without vortex
effects is shown as a dashed curve. At this low angle of
attack, the vortex-induced effects are confined to the upper
surface of the chine.

In Fig. 5(b), the second axial station exhibits lower
suction pressures on the upper surface, and the predicted
results are in very good agreement with experiment except
for the suction peak near the chine edge. The last axial
station at x = 20 inches in Fig. 5(c) shows good agreement
between the measured and predicted pressure distributions
on the upper surface. The vortex-induced effects are less at
this station than at the previous station even though the
vortex strength has increased. This is caused by the
increased distance between the rolled-up vortex and the
chine upper surface. At the aft station, the rolled-up vortex is
displaced outboard and upward from the chine edge, thus
decreasing the vortex-induced pressure.

Measured and predicted results on the same
configuration at & = 20° are presented in Fig. 6 for the same
three axial stations. The predicted pressure distribution on
the forebody without separation is shown as the dashed
curve to illustrate the induced effects of the vortices. As
expected from the vortex fields, the influence of the chine
vortex is concentrated on the chine and the region of the
chine-body junction.

In general, the results at a = 20° with separation effects
included are the same as shown in the previous figures for
the first two axial stations. The agreement between
measured and predicted pressures is very good. At the aft
axial station, the predicted suction pressure on the lee side is
significantly lower than that measured. The explanation is
not obvious at this time, but the problem could be with the
predicted strength and/or position of the shed vortex, or it
could be due to some external influence such as the wing.
There is not sufficient experimental data available to assess
the effect of the wing; however, the presence of a lifting wing
could contribute to lower pressures on the forebody in the
vicinity of the wing.

When the angle of attack is increased to 30 and 40
degrees in Figs. 7 and 8, respectively, the results become very
consistent at all stations on the forebody. The predicted
pressure distribution is in good agreement with the
measurements on the fuselage upper surface away from the
chine, but the agreement is generally poor everywhere on the
chine. The predicted suction pressure is always less than that
measured; therefore, the integrated normal force will be less
than that measured at the higher angles of attack. The



problem on the chine could be caused by the vortex position.
It is apparent from the vortex fields shown on each figure
that as the angle of attack increases, the vortex moves farther
from the body thus reducing its effect. Comparison of the
predicted pressures with and without the vortex field show
that the method does represent the qualitative effects of the
vorticity even though the actual pressure levels are not in
good agreement with experiment.

1t is possible that secondary separation on the lee side of
the forebody can be changing the vorticity distribution in the
flow field sufficiently to have a measurable effect on the
pressure distribution. Secondary separation effects were not
included in these calculations.

When the forebody at angle of attack is yawed to some
nonzero sideslip flow angle, the separation becomes
asymmetric. The assumption is made that separation still
occurs at the chine on both sides of the forebody, but the
asymmetric flow field changes the tracking and subsequent
vortex distributions. This assumption is good for moderate
yaw angles, but when the yaw angle approaches the angle of
attack, the flow is approaching the windward chine at a low
incidence angle, and separation may occur on the body
surface rather than at the chine edge. It is possible in such a
flow condition for multiple separation points to exist, but the
present method will not permit separation at a location away
from the chine edge.

In Figs. 9 and 10, comparisons of measured and
predicted pressure distributions are shown for the forebody
at B =10° and a = 20° and 30¢, respectively. The agreement
at the first axial station is only fair on the chines at both
angles of attack, and it is clear that the vortices are not
having enough influence on the local pressures on the
downwind chine. Some of the difficulties with these results
can be explained by studying the vortex field, also shown in
the figures. At the first station, the vortex on the right side of
the body seems to be spread out over a large region of the lee
side of the body, and the influence of the vortex on the
surface pressure reflects this phenomenon. The predicted
vortex induces a low pressure over more of the upper surface
than is measured, but the pressure peak near the chine edge
for a = 30° is lower than indicated by the experiment. As for
the g = 0° flow condition described above, the pressure level
at the lower angle of attack is in better agreement with the
measured pressures. On the left side of the body the vortex
is rolled up in a loose fashion and is concentrated away from
the body surface. As a consequence, the predicted suction
pressure peak is significantly lower than that measured.

At the second axial station shown in Figs. 9(b) and 10(b),
the vortex on the right side is much stronger than at the
previous station; it is tightly rolled up, and, as a consequence,
the suction peak is in better agreement with experiment. The
vortex on the left side is also tightly rolled up, but it is
concentrated away from the body, and its influence on the
pressure distribution is less than that measured at the higher
angle.

Finally, at the third axial station shown in Figs. 9(c) and
10(c), the vortex is tightly rolled up near the body, and the
predicted pressure peak on the chine is in good agreement
with experiment. Though the left chine vortex is rolled up a
large distance from the chine surface, the pressure levels are
in reasonable agreement with the measurements except for a
small region on the body near the junction with the chine.
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The discrete vortex fields shown in the above pressure
figures help illustrate the extent of the vorticity shed from the
chine, but these results do not provide much information on
the nature of the physics of the flow in the vicinity of the
forebody. To better understand the full effect of the shed
vorticity, flow field calculations provide a direct visualization
of the velocity field. A representative set of velocity vectors
in the flow field adjacent to the forebody at a = 20° is shown
in Fig. 11. The accuracy of the flow vectors inside the vortex
or very near individual vortices will be in question because
of the influence of the discrete vortices, but the overall
character of the flow field is correct. These vector plots are
most useful in visualizing the region of influence of the
vortex, particularly if there is concern about vortex-induced
loads on other components of the airframe.

To illustrate the effect of angle of attack on the shed
vortex strength near a forebody with a chine, the predicted
vortex strength as a function of angle of attack and distance
along the forebody is shown in Fig. 12.

CONCLUSIONS

An engineering prediction method based on a rational
flow modeling technique to predict the vortex shedding from
forebodies with chines in subsonic flow at angles of attack
and roll is described. Comparisons of measured and
predicted aerodynamic characteristics and flow field
quantities are used to verify the flow model and prediction
method for a chine forebody configuration under a wide
range of flow conditions. The method has proved successful
in representing the principal features of the complex flow
field on the lee side of these configurations at moderate
angles of attack; therefore, it has application as an
engineering or preliminary design technique directed at the
prediction of nonlinear aerodynamic characteristics resulting
from high angle of attack flows.

The prediction method described herein has further
application as one component of a larger prediction method
for complete configurations consisting of an arbitrary body
and multiple fins. The ability to model the correct flow field
in the vicinity of the body leads to the capability to calculate
body separation wake-induced interference effects on fins
and other control surfaces. The vortex shedding analysis and
prediction techniques are also applicable for use in other
codes; for example, the methods developed in this
investigation can be transferred to higher order codes such as
panel codes.
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Figure 1. - Lee side vortex formation on a forebody with chine.
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Figure 8. - Measured and predicted pressure distributions on a forebody with chine, a = 40¢.
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