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ABSTRACT

The effect of periodical flap motion on the
boundary layer and the wake of the ONERA-RA16SCl1
profile was studied experimentaly in incompressible
two-dimensional turbulent flow. The measurements
were made wusing hot wire anemometry for two
frequencies and two mean flap angles. Instantaneous
velocity and turbulent values measured in the
boundary layer and the wake, were expressed with
their mean value, amplitude and phase magnitude by
using the harmonic analysis method. The mean flow
in these frequencies was not affected by the
periodical flow. Within the boundary layer, up to the
flap region, the velocity amplitude was less than or
equal to the amplitude of the external flow velocity,
whereas around the flap, it has increased when the
frequency and mean flap angle were increased. The
results related to the wake showed that the turbulence
level has decreased significantly within the far wake
region. Turbulence amplitudes were affected by
frequency and mean flap angle and its phase values
have decreased linearly in the x-direction. The
evolution mechanism of the wake region could be
explained by the convection because of the fact that
the phase of the external velocity is a linear function
of the x-direction.

L_INTRODUCTION

The influence of an oscillation flap on the
turbulent boundary layer and wake development has
been investigated experimentaly within the
framework study of generalised active control of
aircrafts(10.12)

In order to correctly interprete the results, the
following experimental studies in periodic unsteady
turbulent flows realised by other authors were
examined:

(i) Boundary layers in pulsed flows with
without mean pressure gradient(2-8,11,13-15,17,18)
(ii) Development of the in a channel
flow(1,6,19,20)

(iii) The flow around the NACA 0012 oscillating
airfoil profile(9).

or

turbulence

Some general conclusions of these studies are as

follows:
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(1) Mean flow is not influenced by the periodic
effect.

(2) Amplitude of the velocity is high in the
boundary layer and increases with positive mean
pressure gradient.

(3) Phase lag of the velocity is low for an external

flow without phase lag in x-direction.

(4) Phase lag of the turbulence components is low
in the vicinity of the wall but it can take every value
towards the exteriour of the boundary layer.

(5) Influence of the unsteady motion on the
turbulence production can not be clearly explained.
(6) In the wake, unsteady effects are low, except in
the case of separeted flow on the profile.

In this paper, the results related to the
boundary layer and the wake region, are presented
using the harmonic analysis method. The mean
values of the velocity and the longitudinal component
of the turbulence in the boundary layer on the
ONERA-RA16SC1 airfoil profile are compared with the
results carried out in the steady case. Amplitude and
phase lag profiles are presented for four
configurations. The evolution of the external velocity
has shown clearly the influence of the perturbation
created by the oscillating flap. The results of the
harmonic analysis of the wake axis position, defined
as the line of minimum velocities, highlighted the
effect of the mean flap angle and the frequency.

ME
CONDITIONS

N

The wind tunnel has a test section of 30cm x
40cm and a length of 1,5m. The flow velocity is
regulated by a charge loss intermediate in the
downstream of the aerodynamic circuit.

The ONERA-RA16SC1 airfoil profile used in
these experiments has a chord length of 180 mm and
is equipped with a flap which swivels around an axis
sitnated at 75% of the chord length from the leading
edge (Fig. 1). Oscillation mechanism of the flap is of
the type of connecting rod-eccentric. Eccentric is
assembled on an inertial wheel driven by an electric
motor with constant revolution. A mechanic speed
variator serves to obtain frequencies between 10 and
60 Hz.
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Fig. 1
Velocity measurements - Data reduction technique

All unsteady velocity measurements have been
made using hot wire anemometry, with a single wire
in the boundary layer and a cross wire in the wake.
The data coming from these instruments must be
analysed in terms of ensemble averages. On the other
hand, the flow is periodic and each cycle is
considered as a particular realisation of the same
phenomenon. To perform the ensemble averages, the
samples must be taken at the same phase angles in
each cycle. To obtain this, a marking in time is
necessary, which is insured by a rotating cogwhe¢l
with a photocell assembled on the oscillating
mechanism of the flap (Fig. 2). The cycle is divided in
48 points. The mean velocity is calculated on 900
periods and the relative error of this sampling is 0,5%
for the velocity, with the probability of 0,9 for a
turbulence ratio of 0,1 (8),

" 180. - J

Eccemricity

R

Fig. 2 Oscillating mechanism of the flap.

The data acquisition is done by using a HP2IMX
computer which also controls the displacement of the
hot wire with a microcontrol ground intermediate, as
well as the digitalisation of the measurements with 5
milivolts resolution. The volume of the data is kept on
magnetic band and the reduction is made on DPS6S.

Experimental conditions

The experiments were carried out for two
frequencies and two mean flap deflections which
give the total of four configurations. The freestream
velocity is 35 m/s. The Reynolds number based on the
chord length is 400 thousand. The angle of attack of
the profile is 0°. The turbulence is artificially
iriggered by using a wire located at 10% of the chord
length from the leading edge on the upperside and at
14% at the lowerside of the profile. The reduced
frequency (k=wc/2Ujinf) based on the freestream
velocity and the chord is %k=0,35 and 0,89

corresponding to the frequencies of the flap motion
of 21,5 and 51,4 Hz respectively. The equation of the
flap motion is:

B=E+Aﬂsinwt
where E is the mean flap angle of 0° and 5°. The AB is
the amplitude of 1°.

R ION OF

External velocity

Harmonic analysis of the external velocity is
presented for the configuration B=0° and k=035
(Fig.3). Mean velocity gradient is rather important on
the upperside of the profile, whereas it is constant in
the wake. On the profile, the effects of the periodical
flap motion, go back to the upstream of the mean
flow. This transmission phenomenon of the
information, from the downsiream to the upstream, is
one of the well known characteristics of the subsonic
flows. The amplitude and phase values decrease
progressively from the flap hinge to the upstream,
whereas they decrease abrubtly from the hinge to the
downstream until 85% of the chord length where the
phase gradient reaches its maximum when the
amplitude reaches its minimum value.

External velocity phase lag is 1800 between the
upper and lower wake . The evolution mechanism of
the wake region could be explained by the convection
because of the fact that the external velocity phase is
a linear function of the x-direction. The convection
velocity calculated with the phase lag is 0,9Ujnf to
0,98Ujns.
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B=0° and k=0,35.

Results related to the boundary layer

Measurements of the boundary layer profiles
on the upperside of the airfoil profile had not been
made on the flap in the unsteady case. First, a
comparison between the steady and the unsteady case
is presented. The velocity and the longitudinal
component of the turbulence are shown in Fig. 4a and
4b respectively. The mean velocity and turbulence
profiles of the unsteady flow and the velocity and
turbulence profiles of the steady flow, give analogous
results. This fact shows that the mean flow in these
frequencies is not affected by the flap motion.
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Instantaneous velocity and turbulence profiles
near the flap hinge are expressed by a sinusoidal
function and there is a 180° phase lag between them
(Fig. 5). COOK(5) found similar results for the
boundary layer on flat plate, the Strouhal number
being less than 5. Using the harmonic analysis
method, the velocity vahllues are expressed as follows:

U(t)=ﬁ+r§‘AUnsin(nmt+¢n)

where U is the mean velocity, AU is the amplitude and
O is the phase angle.
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Fig. 5 Instantaneous velocity and turbulence
values at x/c=0,72, for four stations normal to
the wall.

In the boundary layer, up to the flap region,
velocity amplitude is less than or equal to the
amplitude of external flow. But near the flap hinge
(x/c=0,72), for the reduced frequency k=0,35 and for
both mean flap deflections, it increases to 1,6AUe.
When the reduced frequency is increased to k=0,83,
the velocity amplitude for B=0° and 5°, is 2,4AUe and
3,2AU, respectively (Fig. 6). These results show that
the increase of the frequency and mean flap angle
increase the amplitude.
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Fig. 6 Amplitude and phase lag profiles for four
configurations at x/c=0,72.
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In the vicinity of the wall, the phase lag
between external and local velocities is 10° to 15°. For
the reduced frequency k=0,35 and the mean flap
angle B=59, a higher phase lag of 30° is observed. The
reason is the flow separation because' in the steady
case the velocity and longitudinal turbulence
component profiles show that, the separation occures
on th flap when the deflection is higher than 5°. In
the unsteady case, the deflection angle becomes 6° in
the period, and an unsteady separation appears on the
flap, which affects also the upstream phase profiles.
But, in spite of the same B angle, the phase Iag
decreases again for k=0,83. This surprising behaviour
can be explained by the reattachment of the flow on
the flap when the frequency is increased. DE RUYCK
and HIRSCH(9) obtained similar results during their
experience with oscillating profile.

Results related to the wake

Measurements were carried out at 14 stations
until 400 mm from the trailing edge of the flap. The x-
axis is parallel to the tunnel axis and the y-axis is
normal to the previous one with its origin at the
trailing edge of the flap in average position.
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Fig. 7a Mean velocity profiles in the wake.
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Mecan velocity profiles show essentially the
mean position of the wake axis and the thickness of
the wake (Fig. 7a), on the other hand the amplitude
decreases progressively in the wake (Fig. 7b), and
both are influenced mainly by the mean flap angle.
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The origin of the phase is defined with the
mean position of the flap. The velocity phase lag is
approximately constant at each given x-station and is
in advance compared to the external velocity phase
lag for f=0° (Fig. 7c). For B=5° and k=0,35 the effect of
the separation on the flap, appears also on the phase
profiles in the wake (Fig 7c).
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The conclusions of the harmonic analysis of
the wake axis position yy(x,t), defined as the line of
minimum velocities, are as follows :

(1) The mean value is affected by the mean flap
angles in the far wake region (Fig. 8a).
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Fig. 8a Mean value of the wake axis pgsition.
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(2) The amplitude is affected by the frequency,
where a linear increase is observed as a function of x
(Fig. 8b). g,
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Fig. 8b Amplitude of the wake axis position.

(3) The phase lag decreases linearly in x, and the
convection velocity has a value close to the
freestream velocity Ujpf with the increasing
frequency (Fig 8c).
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Fig. 8c Phase value of the wake axis position.

<(u)2>1/2 the
longitudinal component of the turbulence and -<u'v'>

the Reynolds stress are presented for k=0.35 and B=00
& 59 in Fig. 9a, 9b and Fig. 9c, 9d respectively. The

Harmonic analysis of

evolution of the mean profiles show important
decrease of the turbulence level. In the far wake,
maximum value of the longitudinal component

<(u")2>12 is half of its value near the trailing edge.
Profiles are almost symmetric for $=0°. On the other
hand, for B=5°, the shape of the mean profiles
changes, the maximum of the upper wake becomes
greater than the maximum of the lower wake.

Amplitude profiles are modified by the change
of the mean flap angle. The frequency has an
influence on the amplitude only in the far wake. We
note that the amplitude profiles seem to be the
derivative -~ function of the mean profiles. On the
amplitude profiles of the longitudinal component of
the turbulence, four layers are observed, where the
amplitude changes sign. For B=59, these different
layers appear very clearly on the phase profiles,
whereas for B=00, the phase value is practically
constant in y for each given x-station. But the phase
lag in x is observed for all cases. The phase lags of
<(u)2>1/2 and -<u'v'> on the wake axis are
presented in function of the x (Fig.10). The linear
development brings to the fore, a convection velocity
of the turbulence components, 0,7Ujnf and 0,8Uinf for
the reduced frequency k=0,35 and 0,83 respectively.
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Fig. 9d Harmonic analysis of the Reynolds stress.
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1V, CONCLUSIONS

This experimental study has allowed the
analysis of a certain number of specific points
concerning the wunsteady incompressible two-
dimensional turbulent flows. Various flow behaviours
due to the peridical flap motion, have been observed
within the boundary layer and the wake.
Perturbations created by the flap oscillation, reach
and affect the boundary layer on the wing, by
diffusion and pressure waves, whereas it spreads in
the flow direction mainly by convection to affect the
wake region. In other words, the phase value of the
external velocity decreases on the wing and increases
in the wake.

The mean flow in the boundary layer and the
wake is not affected by the periodical motion of the
flap for the frequencies studied in this work.

Instantaneous velocity and turbulence values
around the flap have 180° phase lag between them.

In the boundary layer, especially near the flap
hinge, the velocity amplitude increases when the
frequency and mean flap angle increase. Near the
wall, the phase lag between the external and local
velocities is 10° to 15°.

The influence of the unsteady separation on
the velocity phase value at this near hinge boundary
layer station, decreases for higher frequency. This
surprising  behaviour is explained by the
reattachment due to the increased frequency.

The effect of the mean flap angle and the
frequency is observed very clearly by the harmonic
analysis of the wake axis position. The amplitude
profiles of the wvelocity and the turbulence
components are influenced mainly by the mean flap
angle. Phase values decrease linearly in the flow
direction. In addition the rather important value of
the convection +elocity calculated with the phase lag
of the external velocity, shows the important effect of
the convection in the wake region.

The author wishes to acknowledge the helpful
and instructive advice and encouragement of Mr. R.
Houdeville and Pr. J. Cousteix, ONERA/CERT/DERAT,
during her doctoral studies.
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