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Abstract

numerical method-—Potential
Difference Method(PDM) is presented in
this paper to calculate the nonlinear
steady, wunsteady aerodynamic force on
wings with sharp edge separation at high
angle of attack in subsonic flow. The
method is based on integral technique to
solve the velocity potential equation.
For the arbitrary motion of wings, the
method can give the varying shapes of
the vortex rolling up and velocity field
directly in the time domain. Numerical
results are compared with experimental
data, and are shown to be satisfactory.

A new

Introduction
To obtain good aerodynamic perfor-
mance in modern aircraft design, wings

with separated vortices shed from sharp
leading edge or side edge at high angle
of attack are widely used. As the sepa-
rated vortices roll up over the wing and
induce additional 1ift forces, the flow
displays nonlinear characteristics.
Therefore, the separation flow must be
properly modeled.In the last two decades,
many numerical methods[1~4] to calculate
the nonlinear loads on wings at high
angle of attack have been developed. In
these methods, most attention has been
paid to modifications of the Vortex
Lattice Method(VLM) because of its well-
known advantages. Recent advances in
techniques to get exact solutions of the
Euler equations and the full Navier-
Stokes equations with finite difference
method are limited to low angle of attack
and configurations which are not too
complicated. Besides, they consume large
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amount of computation time. 8o, in the

present,the evaluation of the aerodynamic
loads of wings with sharp edges at mode-

rate and high angle of attack will still

require the use of approximate methods

such as Nonlinear Vortex Lattice Method

(NLVLM) . Unfortunately, most of the

NLVLM, up to now, are applicable only to

the incompressible flow. Some works{3,4]

about the extension of steady NLVLM to

the subsonic flow have been done by

using the Prandtl-Glauert transformation.
Recently, Kandil and Yates[5,6] obtained

the nonlinear loads on wings with sepa-

rated flow at high angle of attack in

subsonic and transonic flow with the

NLVIM based on integration of the non-

linear equations. But their results are

limited to steady flows. Compared with

subsonic steady or imcompressible un-

steady flows, the calculation of subsonic
unsteady flows is much more complicated

where the delay time and varying shapes

of the wake must be considered.

This paper gives a numerical method

to calculate the nonlinear airloads of
wings with separated vortices at high
angle of attack in subsonic unsteady
flows. Because the time domain is used,
the fully unsteady motion can be simu-
lated. If steady flow is concerned, the

method becomes the NLVLM.As the velocity
field is obtained directly, the errors
in Green’s Function Method[7] wusing
finite difference of velocity potential
are avoided.

Basic Equations

The full nonlinear equation for the
velocity potential © =Uw(x+®) 1is used
here
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where ¢ is the perturbation potential and
¥ includes all the nonlinear terms.

-.J_. = 2— + _3__ .
dt at ©ox
By applying Green’s Theorem to Eq.(1),

the following equation is obtained
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To obtain a simpler expression, the
generalized Prandtl-Glauert transforma-
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In this paper, only thin wings are dealt
with. So Eq.(4) becomes
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As finite difference method will be used
in calculating some nonlinear terms in
[Q], the following transformation is used
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Fig.1 Coordinates transformation

X'= X cosa’ - Z sina
Z2'= X sina + Z coso
Y=Y

tga = g tgx

where o is the angle of attack.
Then, the operator

3 2 2 —>, ] . .
V, = 3X;1+ vl ZZP' k is applied to

b4
Eq.(5)
42V, (P» T)—fothcp _aﬁ —éds

L9 or 28’ 1
{7l e 'S )

@r 1
"'vpf{rfft Q] R4V
where V, (P,T)=V,¢(P,T) ;
ad= '[q’]upper ~L[P1ower
O'=[R + Mu(X~Xp)cosa'+ My(Z-Z7)sina’ IMe/P

-e

&=[R = Mu(X-X})cosa= Me(Z-Zp)sin o’ 1Me/p

Eqg.(6) can only be solved by numerical
methods. The wings and wakes are divided
into many lattices. For simplicity, [ad]
in each 1lattice is considered to be
constant at every moment. The improper
integrals in Eq.(6) are more difficult
to deal with than those in Green’s
Function Method.

At first, Eq.(6) is changed to
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where the dots over the [4¢] mean the
derivates with respect to time.

The first term in the right side of
Eq.(7) has the same expression as that
in the VLM for incompressible flow or
compressible steady flow, so it is cal-
culated in the way of the VLM. Other
terms can be treated by a limiting pro-
cess indicated in the Appendix.

Finally, the improper integrals of

the terms which involve [a$], [4$] and
[A¢] can be written respectively as

evaluated in the way
LIV, aN f{] 4% of the VLM

ff{vp @Ii._id-vp Eaaf] 1 ]}ds
s’r

2106



Moo <> Mon F +
>0 21(—-5—1{"'21!-—3—(:050( ? (Z—>0 )

2
zﬂyéii?+21hk°

B
. %{_]dslé—%o

coso 1 (70" )

287

2N (8)

LIV, 8-

In addition, to determine the flow
field wuniquely, the following boundary
conditions must be used.

1. ¢ —» 0, when R —oo, this condition
is satisfied automatically.

2. DF -0 where ¥{(X,Y,Z,T)= 0 is the

DT

equation of wing surface.
3. Kutta conditions at leading, side and
trailing edges, from which the separated
vortex sheds.

4, No pressure difference on the wake
surfaces.

Method of Numerical Calculation

In the time domain, the variation
history of angle of attack is divided
into discrete changes corresponding to
time steps. The problem is then solved
at each time step where the solution of
the preceding time step serves as the
initial condition for the present time
step.

This approach can treat problems
where the flow unsteadiness starts from
a steady flow or starts impulsively from

rest. In this paper, the latter case is
dealt with.
At first, the wing is divided into

many lattices as in Ref.[2], and planar
triangular panels are used to model the
nonplanar and twisted wake surfaces. For
T< 0, the wing is at rest. At T=0, the
wing starts impulsively from rest at
some angle of attack. At the same time
the [a¢] distribution must have values
to satisfy the boundary condition on the
wing surface. Meanwhile, vortices shed
from the wing sharp edges appear and
move downstream with the local velocity.

At T=1AT, a strip of wake lattices
appears around the sharp edges of the
wing and will move with the local velo-
city in the flow.The [ad] distribution
on the wing surface must be altered by
considering the effect of the wake. The
values of [a¢] on the wake are those of

[a¢ ] on the appropriate wing lattices
near sharp edges at T=0, With the
increase of time, the wake lattices
increase. The sketches of wake at T=0,

T=14T, T=2AT are shown in Fig.2.
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Fig.2 The sketches of developing wake

and the lattices on the wing
T=0 ; (b) T=1AaT ; (c) T=2aT ;
G{ means the ith G at jth time
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where
step

Unlike the VLM in incompressible
flow and compressible steady flow or the
Green’s Function Method[7] where the
shape of wake doesn’t change and no
separation appears, the nonlinear un-
steady model of wings with separation at
high angle of attack is more difficult
in considering the delay-time and varying
shape of the wake. In this paper, when
the delay-time is less than one AT, the
numerical method of Ref.[7] is wused,.
When the delay-time is greater than one
AT, the delay-time is changed into n AT
approximately, where n is an integer.

For further simplicity,the integrals
in Eq.(7) except the first term are
treated in the following way
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where 5; and V; are discrete surface
element and volume element respectively.
The TF;; and 4Aj are calculated at the
central points of jth surface element or
jth volume element.

Pressure Coefficient

Because of the presence of separated
flow over the wing, the velocity compo-
nent in Y/ direction and the nonlinear
terms in pressure coefficient expression
must be taken into account in calculating
the 1lift coefficient.

The pressure coefficient
coordinates is
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To calculate the last term,
approximation is used
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time domain
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The numerical method in Ref.[2] is
used to calculate the aCp of Bq.(10). As
the method in Ref.[2] is applicable only
to incompressible flow, additional terms
of [o¢x] must be taken into account
because of the existence of [ad ] in
subsonic flow.

Numerical Results

When the wing starts impulsively
from rest at some angle of attack, its
wake develops. After a certain number of
AT, the wake shape and [a¢] distribution
on the wing approach steady states, then
the steady results are obtained.

In Fig.3, some numerical results at
different Mach number for a rectangular
wing with aspect ratio AR=1 are plotted.
At Me=0.0, experiment data are also shown
in the figure. The rectangular wing has
a sharp side edge, where the separated
vortex sheds from.

Fig.4 shows
culated results

the comparision of cal-
with the experimental
data at M, =0.6 and 0.8. The wing is a
delta wing with AR=1, and 1is divided
into 5X5 lattices. Separation occurs at
leading edge.

Fig.5 shows the comparision of cal-
culated results with the experimental
data at Mo =0.7. The wing is also a
delta wing but with AR=1.865, it is
divided into 6x6 lattices. Separation
occurs at leading edge.

Finally, in Fig.6, the normal force
coefficient of a rectangular wing with
AR=1 oscillating in pitching about
midchord at Mes=0.5 are plotted versus
nondimensional time. The wing is divided
into 4X4 lattices. separation occurs at
side edge.

When the nonlinear term [Q] in Eq.(7)

is taken into account,the 1ift coeffi-
cient 1is somewhat smaller than that
without [Q] term. This result agrees
with the conclusion in Ref.[5].
Conclusion

The numerical method presented in
this paper can calculate the nonlinear
unsteady airloads on wings with sharp
edge separation at high angle of attack

in subsonic flow. It can be applied to
wings with complex planforms and gives
the velocity field directily. Because
is used, fully unsteady
motion of wings can be treated. The
numerical results calculated by the
present method are shown to be satisfac-
tory. Furthermore,the thickness of wings
can be taken into account in the method.
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Appendix
The Improper Integrals in Eq.(7)

When the integration area is in the
lattice containing the collocation point

P, improper integrals arise in Eq.(7).
To solve the problem, the area is
changed into two parts S; and §, as

shown in Fig.(7). The improper integral
is substituted by the integration on the
half-spherical surface S, .

At first, the two terms including
[A¢] are oon51dered
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For the second term in (A-1)
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The present integral is on the thin wing,
then
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The third and the fourth terms in (A-5)
become
—
(X7=X2)L+ (Y -Y%)3
R3
This integral is zero on S, due to
antisymmetry of the integrand.

sinel / ds

the

To integrate the first and second
terms, it is found that in S,, there
. . 2 2
exists the relatlon-arz ~ 3% then,

the first integral in S, becomes
—_——— 8=
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The second integral in S,
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B 28 R

Let the radius of the half-sphere ¢ — 0,
above results are still hold.

So, the improper integral including
[s¢] terms on the surface S, is reduced
to
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In the same  way, the integral

including the [A¢ ] term is found to be
approaching zero on S, wheng —»0.
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