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Abstract

The flow about a 65-deg sharp-edged cropped delta
wing is simulated by solving the Euler equations.
Solutions are obtained for the wing of a subsonic,
free-stream Mach number and high angle of attack,
wvhere a strong vortex forms above the wing upper
gsurface as well as for the wing at a trapnsonic
free-stream Mach number and high incidence resul-
ting in shocks and strong vortices. For the latter
case the development of the flow field with the
incidence is studied, while for both cases the
formation of the wake downstream of the trailing
edge is investigated. The influence of the mesh
regolution on the details of the solution is ana-
lyzed utilizing a mesh of 0-0 topology with on its
finest level more than one million grid points in
the half-space around the starboard side of the
delta wing.

Introduction

vVortex flow associated with flow separation from
swept leading edges is of extreme importance for
the high-angle~of~attack aerodynamics of fighter
aircraft. For aerodynamically sharp leading edges
the formation of the leading-~edge vortex due to
flow separation at the sharp edge (see Fig. 1) and
the effect of the vortex on the flow over the up~-
per surface of the wing is only slightly dependent
on Reynolds number. This implies that this type of
high-Reynolds-number flow can be simulated by
inviscid flow models.

For the sub-critical flow about delta-like wings
potential-flow methods have met some success in
modelling leading—edge vortex flow (Ref. 1). In
these methods the free shear lavers are modelled
by vortex sheets "fitted" into the potential flow
field, 1.e. one has to decide a priori on the
presence of vortex sheets and vortex cores,
although their position and strength is determimed
as part of the solution. This implies, that the
topology of the flow must be well-defined and
known in advance.

A mathematical model based on the Euler equations
allows for rotational flow everywhere in the flow
field and numerical methods based on it are able
to capture, along with shock waves, vortical flow
regions as an integral part of the discrete solu-
tion. This renders computational methods based on
Fuler's equations rather attractive for cases with
a complex vortex flow pattern. This is particular-
1y true for transonic flow with vortices and with
(strong) shock waves, where there is the additio-
nal complexity of the mutual interaction of these
two non-linealr flow phenomena. The computer re~
sources required for an Fuler method can be met by
present~day supercomputers and Euler methods begin
to demonstrate their capabilities for attached
flows, including cases with propeller—-slipstream
interactions, and in particular for the high-

angle-of-attack separated flows such as leading-
edge vortex flow,

In the literature many computational investiga-
tions report on predicting the steady vortex-domi-
pated flow based on the FEuler equations (Refs.
2~7), addressing various aspects of the numerical
simulation of this type of flow.

Viscous effects neglected in an Buler method,
which are known to be responsible for the occur-
rence of secondary separation (see Fig. 1) and
which affect the development of the flow near the
center of the primary vortex core, will have to be
assessed through a more elaborate model of the
flow. Several investigations have already made
efforts utilizing a Navier-Stokes method (Refs.
8-10) to simulate the flow about wings with
leading-edge vortex separation. Navier-Stokes
methods, however, require compared to Euler
methods fine grids to resolve the relative
small-scale viscous effects, leading to large
computer time requirements.

One of the motivations of the present investiga~-
tion using an Euler method was to study the ef-
fects of grid refinement on the solution and es-
pecially on the artificial dissipation. The latter
ig introduced explicitly by the numerical algo~
rithm and implicitly by the non-upiformity of the
grid, the implementation of the far-field boundary
conditions, the treatment of the solid-wall boun-
dary condition (see Ref. 11}, etc.

The influence of the mesh resolufion on the de-
trails of the Euler solution will be analyzed uti-
lizing a grid with more than one million cells on
its finest level.

In the present paper the Euler method under de-
velopment at NLR is applied to the simulation of
the flow about a 65~deg sharp-edged cropped delta
wing at subsonic and transonic speed. The wing has
a taper ratio of 0.15. The chordwise airfoil sec-
tion is the NACA 64A005 airfoil which upstream of
its point of maximum thickness (0.4 ¢) is smooth~
1v blended into a biconvex shape. For this confi-
guration, with an under-wing body, experimental
data is available (Refs. 12, 13) and the flow
structure is reasonably well known. It is presumed
that the presence of the body has only a small
effect on the flow field away from the apex of the
wing. Earlier computational results on different
aspects of the simulation have been reported in
Ref. l4.

Qutline of the methods used

The computational mesh is obtailned using the grid
generator developed at NLR (Ref. 14). This grid
generator produces multi-blocked surface-fitted
grids initialized through transfinite interpola-
tion and tuned through a method based on a system
of elliptic partial differential equations. The

%) This investigation has been carried out under contract with the Netherlands Agemcy for Aerospace
Programs (NIVR) for the Wetherlands Ministry of Defence.
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grid lines are continuous but may be slope-
discontinuocus across block boundaries.

The Euler method (Ref. 16) used solves the time-
dependent Euler equations employing the fully-
conservative, cell-centered scheme of Jameson et
al, (Ref. 17). The five equations in integral form
for the conservation of mass, momentum and energy
are discretized using a central-difference scheme.
Fourth~difference dissipative terms are added to
the discretized equations to provide the back-
ground dissipation that suppresses the tendency
for odd-even point solution decompling. In regions
with large pressure gradients, e.g. near shock
waves and stagnation points, second-difference
dissipative terms take over to damp pre- and
post-shock oscillations.

To obtain a steady-state solution, integration in
time is carried out by a four-stage Runge-Kutta
scheme, in which the dissipative terms dre evalu-
ated at the first step only., Convergence to a
steady state is accelerated by the application of
local time-stepping, enthalpy damping and residual
averaging.

For the conditions on the solid surface the method
emplovs a linear extrapolation of the pressure
from the flow field to the wall. The boundarvy con-
ditions at the outer boundary of the computational
domain are implemented using Riemann invariants.

The numerical flow simulation system at NLR can
handle a grid with a multi-block structure, imple-
menting a special boundary condition at internal
blok interfaces to accommodate possibly slope-
discontinuous grid lines and jumps in cell size
across block boundaries. It is permitted to have a
grid with degenerated cells, i.e. cells with faces
and/or edges collapsed to a line or a point.

Grids

For the present investigations two (8-block) grids
have been used to compute the flow about the crop-
ped delta wing. A "fine" grid, 0-0 topology, has
been generated around the starboard half of the
wing. This grid has grid dimensions 288x76x56
(1,225,728 cells), that is in chordwise direction,
144 cells on both the wing upper and lower sur-
face, in spanwise direction 76 cells and 56 cells
between the wing surface and the outer boundary of
the computational domain. It is symmetric with
respect to the horizontal plane of symmetry of the
wing. By combining groups of eight cells a
"medium" grid with dimensions 144x38x28 (153,216
cells) has been extracted from the fine grid.

On the forward portion of the wing surface the
grid is "conical" as can be seen in Fig. 2 which
shows details of the medium grid. This quasi-
conical arrangement of the grid preserves the grid
resolution near the apex. Grid lines are clustered
near the apex, near the leading edge and near the
trailing edge. Near the wing, i.e. in the region
where large gradients in the flow quantities are
expected, the cell stretching ratio has been kept
close to unity.

The outer boundary of the computational domain is
formed by the surface of a sphere with its center
at £ =x/ep = 0.7, n=v/s =0, ¢ =2/s =0 and a
radius of %cR, where c_ denotes the rvoot chord and
s the local semi-span.

The grid consists of eight patched blocks, the
grid lines are continuous across block boundaries
while the slope of the grid lines is nearly conti-
nuous. The grid contains a singular line which

starts at the apex and runs in upstream direction
to the outer boundary.

Results of computations

With the Euler method the flow around the delta
wing has been simulated in the subsonic flow re-
gime for a free~stream Mach number of 0.5 and in
the transonic flow regime for a free-stream Mach
number of 0.85. For both cases the influence of
the grid density on the flow details is discussed
for the wing at 20 deg angle of attack, i.e. cases
with a strong leading-edge vortex. Furthermore for
the transonic free-stream Mach number we consider
the development of the flow with incidence, while
for both cases the development of the near wake is
investigated.

For all calculations the Fuler method converged in
1500 to 2500 iterations, in which the root mean
square norm of the time-~like variation of the den-
sity dropped by four orders of magnitude, starting
from the solution on the preceding grid level and
from uniform free stream on the coarsest level.

The calculations were carried out on the NEC SX-2

supercomputer installed at NLR. Typical computing

times are one CPU hour for a complete computation

on the medium level, five CPU hours for a complete
computation on the fine level of the grid.

Subsonic flow Moc = 0.50, a = 20 deg

Solutions obtained on both levels of the grid are
discussed. The result on the medium level was com~
puted with the parameters controlling the dissipa-
tive terms at theilr standard setting for subsonic
flow, 1.e. with just the 4th-difference term
switched on. It turned out that the resulting so~
lution features a (weak) cross-flow shock.
Therefore the calculations on the fine level of
the grid were run with the second-order dissipa~—
tive term switched on at locations with steep gra-
dients.

The isobar pattern on the upper wing surface ob~-
tained from the computed results on the medium and
fine level of the grid are shown in Fig. 3a and
3b, respectively.

For both levels of the grid the low-pressure re-—
gion on the wing upper surface, forming the foot-
print of the leading-edge vortex, indicates that
flow separation from the sharp leading-edge starts
very close to the apex. The lowest values of the
surface pressure coefficient are found near the
apex underneath the vortex, typical for subsonic
flow cases where there is a relatively large ef-
fect of the singularity at the apex as well as a
relatively strong upstream influence of the trai-
ling edge. For higher free-stream Mach numbers the
region with lowest pressures moves to a more aft
position on the wing, as will be shown later om.

Comparison of figures 3a and b shows that the
Fuler solution on the medium level of the grid and
the one on the fine level of the grid do not dif-
fer in character. However, on the fine level of
the grid the pressures in the suction peak are
substantially lower than those found in the result
on the medium level of the grid.

For both grid levels the flow on the upper wing
surface is supersonic in the low-pressure region,
reaching Mach numbers above 1.5 on the fine grid.
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In Fig. 4a the spanwise pressure distributions as
computed on the medium and the fine level of the
grid are compared with each other and with experi~
mental data (Ref, 13) for the stations x/cR = 0.3,
0.6 and 0.8,

Comparison of the solution on the fine mesh with
the one on the medium level shows that when the
grid is refined, the upper-wing surface pressure
peak becomes steeper and higher while its position
shifts slightly in outboard direction. For all
three chordwise stations considered there is an
excellent agreement in the spanwise pressure dis-
tributions on the lower wing surface, as well as
on the upper wing surface in the regiom close to
the plane of symmetry and the region near the
leading edge. A cross-flow shock, defined as a
shock outboard of the suction peak at approximate-
1y constant percentage local seml span, is diffi-
cult to detect in these plots although upstream of
x/cR = 0,75 in the isobar patterns isobars tend to
cluster (Fig. 3) and the spanwise pressure distri-
butions steepen up in the first two sections shown
in Fig. é4a.

Comparison with experimental data shows that for
the lower wing surface the agreement is satisfac-
tory for the stations x/cR = 0.6 and 0.8. For sta-
tions upstream of x/c, = 0.45 (not shown here) the
agreement is not as good due to the presence of
the body of the windtupnel model not represented
in the present numerical simulation. The compari-
son further shows that the Euler method grossly
over-predicts the suction peak on upper wing
surface, also resulting in overprediction of the
11ift coefficient by about 15 percent. This is
primarily due to the circumstance that the Euler
method lacks the ability to simulate flow separa-
tion from a smooth surface, here the so-called
secondary separation, without explicitly incorpo-
rating some kind of a model for such viscosity
dominated phenomenon. Studies within the framework
of potential-flow theory with free, rolling up,
vortex sheets (Ref. 18) have indicated that inclu~
sion of a model for smooth-body separation will
lower the upper wing surface suction peak and will
shift it in inboard direction, while also the
spanwise pressure distribution features the
plateau region just outboard of the positionm of
secondary separation.

In Fig. 4b the spanwise distribution of the total
pressure losses at the chordwise stations x/cR =
0.3, 0.6 and 0.8 are shown. For inviscid flows
without shocks the total pressure should be con-
stant, equal to its free-stream value. In Euler
methods errors are caused by the artificial dissi-
pation introduced by the numerics. Primarily due
to a fine grid resolution in the direction normal
to the wing, the error im total pressure on the
major part of the upper wing surface is small
(less than 17 gain) for the solution obtained omn
both levels of the grid, with the fine level
having the smallest error. The error on the lower
wing surface is due to the smaller gradients in
the solution an order of magnitude smaller.

Near the leading-edge there are larger errors im
total pressure on both levels. In the solution ob~-
tained on the medium as well as in the solution on
the fine level of the grid one observes that on
the upper surface, at between 707 and 807 local
span, there is a sudden increase in total pressure

loss. This increase suggests the occurrence of a
weak cross-flow shock just outboard of the suction
peak induced by the leading-edge vortex. The re-
duction in total pressure and therefore presumably
the strength of the shock is largest on the fine
grid level and for both levels the largest on the
forward part of the wing, i.e. there where the
suction peak is also highest (up to ~4.2 on the
fine level of the grid).

Right at the leading edge, where the flow separa-
tes, without explicitly prescribing separation, a
spike in the total pressure occurs.

In Fig. 5a the lsobar patterns in the plane x/cR =
0.6 obtained from the solution on the medium and
the one on the fine level of the grid are presen-
ted. Fig. 5b shows the corresponding contours of
equal total pressure in the same plane. These
results clearly reveal the presence of a leading-
edge vortex above the wing upper surface. The
minimum value of the pressure, attained at the
center of the vortex core, is lower for the solu-
tion on the fine level of the grid than for the
solution on the medium level of the grid. The po-
sition of the center of the vortex core, taken as
the position of minimum static pressure or posi-
tion of maximum total-pressure loss, is almost the
same for the two grids.

In the cross-flow plane isobar pattern the weak
cross~flow shock is most clearly seen as a clus-
tering of isobars in the fime grid results.

The value of total pressure loss at the center of
the vortex core is higher in the fine grid solu-
tion than in the medium grid solution.
However, on the fine grid the area in which there
are total pressure losses is smaller, i.e. more

. confined around the center of the vortex core.
Apparently for the present subsonic case the re-
ductions due to grid refinement of the errors in
total pressure cause the area in which they occur
to be reduced but at the center of the core the
reduction due to grid refinement cannot balance
the increase of the errors associated with the re-
solution of steeper gradients.
Spanwise cross-sections taken all along the cen-
terline of the wing indicate- that there is very
little variation with streamwise distance of the
total pressure loss at the center of the vortex
core.

It may be concluded that the computational results
on the two levels of the grid are qualitatively
the same, i.e. both solutions feature the same
flow phenomena. Quantitatively there are some dif-
ferences which can be understood in terms of dif-
ferences in grid density, however, which are con-
siderably smaller than the differences with expe~-
rimental data.

Transonic flow M00 = (.85, a = 20 deg

For this case of compressible vortex flow solu-
tions are discissed obtained on the medium and
fine level of the grid. The solutions on both
levels were obtained with the parameters control-
ling the dissipative terms set at their standard
values for transonic flow, i.e. with the fourth-
difference term switched on, the second-difference
term taking over at locatioms with sharp gra-
dients.

In figure 6a the upper wing surface isobar pattern
for 20 deg incidence is presented for the medium
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level, in figure 6b for the fine level of the
grid. Both figures indicate that the formation of
the vortex starts very close to the apex.
Furthermore, in both pictures the closely-spaced
isobars outboard of the pressure minimum indicate
the presence of a "cross~flow shock", most clearly
so on the rear part of the wing. On this part of
the wing also a second shock appears which, at
about 937 root chord merges with the cross-flow
shock, forming a Y-shaped shock system, with as
stem the strong cross-~flow shock downstream of the
937 root chord station. On the central part of the
wing at about 837 rqot chord a third shock ap-
pears, the so-called "rear shock”, This weak shock
is normal to the plane of symmetry and extends
some distance in the direction of the leading-
edge. Comparison of the upper wing surface iscbar
pattern of the solution on the fine with the one
of the solution on the medium mesh shows that the
shocks are steeper, but more importantly, that no
new flow features evolve.

Compared to the pressure distribution at the lower
Mach pumber the suction peaks are much reduced and
in height about constant in chord-wise direction,
i.e. at least on the forward part of the wing the
solution is more conical in appearance.

In figuve 7a (note change in vertical scale com—~
pared with Fig. 4a) the spanwise pressure distri-
butions computed on the fine and the medium grid
are compared with each other and with experimental
data of the International Vortex Flow Experiment
(Ref. 12), Results are shown at the same three
spanwise stations that we considered at the lower
Mach pumber. In addition to these spanwise sec-
tions figure 8 presents the pressure distribution
along the chordwise section situated in the plane
of symmetry. In the computed results (Fig. 7a) the
cross—flow shock is located between 70 and 757
local semi-span, in the measured data the much
weaker cross~flow shock is situated further in-
board, pamely at about 607 local semi-span. The
experimental data further indicate, as may be con-
cluded from the pronounced second suction peak,
that the cross-flow shock provokes an early secon-—
darv separation that results in a relatively
strong secondary vortex. As for the case of sub-
sonic vortex flow it is clear that in order to
improve the correlation of the numerical simula-
tion with experiments secondary separation effects
must be included in the simulation. However, be-
cause of the less negative pressures for the
higher Mach number for the present case the effect
of secondary separation is less severely felt in
the integrated forces and moments.

At x/c, = 0.8 the level of the pressure on the up-
per wing surface near the plane of symmetry is
much lower than measured. Fig. 8 shows that this
can be attributed to the difference in the mea~-
sured and the predicted position of the "rear
shock"”, Fig. 8 also proves that on the fine level
of the grid the "rear shock" is better resolved,
but still at the same position as on the medium
level of the grid.

It may be expected that the position and stremgth
of the leading edge vortex, the cross-flow shock
and the rear shock are strongly interrelated. Im~
proving the simulation by including a secondary
separation model will affect all three flow featu-
res.

For the lower wing surface the agreement of compu~
ted and measured pressure distributions is excel-
lent, except near the apex where the influence of
the body is greatest.

In terms of 1lift coefficient the Euler solutions
result in values which are about 7.53% higher than
the value found in the experimental investigation.

Comparison of the results on the medium and on the
fine level of the grid indicates that for the sur-
face pressure distribution increasing the grid

density

-results in a steeper but also somewhat stronger
"crogs-flow shock”

~ghifts the suction peak, i.e. the position of the
vortex, slightly inboard

-steepens the "rear shock”

~has no effect on the lower wing surface pressure
distribution.

In figure 7b (note change in vertical scale com=-
pared to Fig. 4b) spanwise sections of the distri-
bution of the total pressure are presented for
x/cR = 0.3, 0.6 and 0.8. Tt shows that as the flow
passes through the cross-flow shock the total
pressure is reduced by 13~14% on the medium level
and by 23-~24% of its free-stream value on the fine
level of the grid. For the latter grid the shock
is stronger, which explains the larger loss in to-
tal pressure. As expected it is indicated that
away from the shock the errors ip total pressure
are smaller on the fine level of the grid than
those on the medium level of the grid and compara-
ble to those encountered at the lower Mach number.

Fig. 9 presents the iscbar pattern in the plane
x/c. = 0.6 and the corresponding pattern of con-
tours of equal total pressure in the same plane
obtained from the solution on the fine level of
the grid. Corresponding plots for the medium level
of the grid are included in Figs. 12a and b (bot-
tom sub-figure).

For this case of compressible vortex flow the
cross~flow shock is strong and clearly shows up in
both the patterns of contours of equal static and
those of equal total-pressure. The shock appears
to bridge the gap between the wing upper surface
and the vortical flow region. Outboard (i.e. down-
stream) of the cross~flow shock and underneath the
shear layer emanating from the leading edge there
exigts a relative large region where both the
static and total pressure are only slowly
changing. Especially on the fine level of the grid
(Fig. 9), where the shock 1s somewhat stronger,
this is a rather extensive portion of the flow
field.

The "rear shock" is clearly visible in the i1sobar
pattern in the plane of symmetry (Fig. 10), obtai-
ned from the solution on the fine level of the
grid. Although it is a weak (pormal) shock it ex-
tends quite some distance into the flow field.

The cross-flow-plane contours of the equal total
pressure show that at the center of the vortex
core the total pressure drops to 45 percent of its
free stream value, both on the medium and on the
fine level of the grid, i.e. giving at the center
of the vortex core about 20%Z more total pressure
loss than we found for subsonic flow. Further note
that compressibility has a considerable effect on
the shape of the vortex core. Increasing the Mach
number results in a more flattened vortex core
which as a result of the interaction with the
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cross~-flow shock is at a more inboard location. As
for the lower Mach number the total pressure loss
at the center of the core does not vary very much
with longitudinal distance along the vortex core.

Comparing the cross-flow-plane results obtained on
the medium level of the grid (Fig. 12a and b, lo~
wer figures) with those obtained on the fine level
(Fig. 9) one observes in addition to the points
already noted in the discussion of the surface
guantities that on the fine level of the grid the
region of the flow field with total pressure los-
ses has shrunk in dimension. However, the minimum
total pressure, which occurs at the center of the
vortex core, is about the same for both levels of
the grid, It is hypothesized that as far as the
total-pressure loss mnear the center of the core is
concerned here also refining the mesh tends to de-
crease the discretization error and at the same
time increases the gradients in the flow solution
and thus the discretization error, now apparently
such that, on this grid for this free stream flow
condition and this setting of the artificial dis-
sipation parameters, the net effect 1s about the
same loss in total pressure.

The first overall comclusion that can be drawn for
this flow condition is very similar to the one
drawn for the subsonic flow condition at the end
of the preceding section, pamely that grid refine-
ment does not resolve in new flow features and
differences between computed and measured results,
considerably smaller here, are due to the Euler
method not simulating secondary separation. The
second conclusion is that effects due to compres—
sibility result in very significant changes in the
flow solution, not unlike those found in the expe-
rimental investigation of for instance Ref. 19 for
a similar configuration.

Variation of the solution with incidence, Mw = {,85

This section considers for the transonic flow case
the development of the flow with angle of attack,
i.e. pumerical results are presented for a = 10,
15 and 20 deg. Since the preceding sections indi-
cate that the grid density of the medium level of
the grid suffices to resolve most details of the
flow only results on this level of the mesh have
been computed for the lower incidences.

Figure lla shows the development of the spanwise
pressure distribution with increasing incidence at
x/cR = 0.6, which is typical for the distribution
on the forward and central portion of the wing.
The figure indicates that as the angle of attack
is increased and the vortex increases in strength,
the suction peak on the upper wing surface grows
in height and in width and moves in inboard direc-
tion while on its outboard (i.e. downstream) flank
the "cross-flow shock” develops.

The re-attachment point on the upper wing surface
(the point of locally maximum pressure), which at
10 deg is at 607 local semi span has at 20 deg
moved to the plane of symmetry. On the lower wing
surface the pressure iIncreases gradually, while
the (primary) attachment point moves away from the
leading edge, i.e. from a point at 95 to a point
at 807 local semi-span location. Increasing the
incidence slightly further will move the primary
attachment point to the plame of symmetry also.

Figure 1lb presents the development with incidence
of the chordwise pressure distribution along the

intersection of the wing with the plane of symme-
try. It clearly shows the development of the "rear
shock' on the upper surface at 15 and 20 deg inci-
dence. At o = 10 deg the flow in the plane of sym-
metry is still sub~critical.

At the apex there is a distimct (suction) spike in
the pressure distribution, indicative for a singu-
larity at that point.

Figures 12a and b illustrate for x/c, = 0.6 the
development with incidence of the flow field about
the forward and central part of the wing. These
figures show the gradual, nearly conformal, deve-
lopment of the region with significant total pres-—
sure losses (i.e. the region with vortical flow).
The center of the vortex core moves inboard and
upward. Furthermore the region on the upper sur-
face influenced by the vortex becomes larger.

It further shows how, in the flow field above the
upper surface, the cross-flow shock developes ac~
companied by a gradually more backward leaning of
the isobars around the center of the vortex core.
With increasing incidence the static pressure and
the total pressure at the center of the core de~
crease, indicative for a stronger vortex with
steeper gradients near its center.

Flow field near the trailing edge

In this section the development of the flow just
upstream of the trailing edge and in the near wake
just downstream of the trailing edge is considered
in some detail for the wing at 20 deg incidence
and for both the subsonic and the transonic free-
stream Mach number. This region of the flow field
is of extreme importance for cases at somewhat
higher incidences where the experiments (Refs. 12,
13) have shown that vortex breakdown occurs. The
objective of the present study is to investigate
how the wake just downstream of the trailing edge,
i.e. the near wake, develops. For subsonic flow it
has been shown {(Ref. 20) that downstream of the
trajling edge a complex vortex wake develops. The
constitutive elements of this mushroom~shaped vor-
tex wake are the leading-edge vortex and the so-
called trailing-edge vortex. The latter vortex
contains vorticity of sign opposite to that con-
tained in the leading-edge vortex and forms imme-
diately downstream of the trailing edge. Although
the sign of the vorticity ip the trailing-edge
vortex is the same as that in the secondary vortex
resulting from the secondary separation it is a
different vortex. It forms, even in inviscid flow,
as a consequence of the wake in the plame x/c, =
1.0 containing vorticity of both signs, i.e. pega-
tive in the shear layer between the plane of sym—
metry and the wing tip, positive in the shear
laver from the leading edge and in the leading~
edge vortex (Ref. 18).

Figure 13a shows for M_ = 0.50, a = 20 deg the
contours of equal total pressure in five consecu-
tive planes x/c, = constant, namely x/c, = 0.95,
1.0, 1.025, 1.0 and 1.10, as obtained trom the
solution orn the fine level of the grid. This figu-
rve indeed indicates the formation of a wake with
two regions of increased total pressure losses,
indicative for regions with vortical flow.

In the near wake the leading-edge vortex can be
identified as the continuation of the structure
depicted in Fig. Sb in the plane x/c, = 0.8 and in
the top two plots of Fig. 13a. This vVortex moves
outboard and upward. Apparently because in the re~
gion considered the grid is still relatively fine

490



and not yet stretching too much the vortex remains
compact and is not diffused. The level of the to-
tal pressure losses at the center of the core
stays the same (~ 35-407).

The formation of the trailing~edge vortex starts
right at the trailing edge (x/c_, = 1.0) as eviden~-
ced by the local maximum (0.15) in the total pres-
sure loss at about 907 semi-span, caused by the
high gradients in the solution in that region.
Further downstream a vortex-like structure deve-
lops with increasing total pressure losses at its
center. Indeed a mushroom-shaped vortex wake, con~
sisting of the leading-edge and the trailing-

edge vortex evolves.

For the transonic case (M_ = 0.85, a = 20 deg) the
contours of equal total pressure are presented in
Fig. 13b, for the same 5 cross-flow planes, again
obtained from the solution on the fime grid. For
the case of compressible vortex flow the situation
is complicated by the presence of the strong
cross~flow shock. It follows from figure 13b that
downstream of the trailing edge the cross-flow
shock has disappeared (between x/c_ = 1.01 and
1.025). As for the lower Mach number the leading-
edge vortex continues downstream of the trailing
edge, again without much diffusion, but now it
does not appear to move upward and outboard that
much. Furthermore, the formation of the trailing-
edge vortex, by the voll-up of the wake, is now
more vigorously resulting in higher total pressure
losses at its center. At x/c_ = 1.1 the wake has
again a mushroom-shaped structure but now occupy~
ing a larger area 1p the cross~flow plane than is
the case for the lower Mach number.

In the first three cutting planes presented in
Fig. 13b an additional flow feature is identified,
characterised by a local minimum in the total
pressure distribution. This feature can be traced
back to the kink in the leading edge, i.e. to x/c
= .85, and is termed the "tip vortex'. Seen in
consecutive cross~flow planes this vortex travels
around the leading-edge vortex and at x/c_ = 1,05
is so close to the core of the leading-edge vortex
that it can no longer be distinguished and may be
assumed to be fully merged with the latter.

Concluding remarks

Results of an Euler method have been obtailned for
subsonic (M” = 0.50) and tramsonic (¥, = 0.85)
vortex flow around a 65-deg cropped delta wing.
The calculations were carried out on the medium (~
150K cells) and fine level (~ 1,2M cells) of a
high-quality grid.

It is demomstrated that the results on the two
levels of the grid are qualitatively the same. The
solution on the fine level of the grid does not
reveal any flow features not already present in
the solution on the medium level of the grid.
However, in regions with large gradients the re-
solution of flow details is improved on the fine
grid level,

The differences between the computed surface pres-
sure distributions mutually are smaller than those
between computed pressure distributions and expe-
rimental data. The differences between theory and
experiment are primarily due to the effect of se~-
condary separation, which is not modeled in the
present numerical simulation. To obtain a better
agreement between theory and experiment it is ne-
cessary to include some modeling of the effect of

secondary separation in the simulation.

For the 65~-deg swept cropped delta wing there is a
substantial effect of compressibility on the flow
solution. At tranmsonic speed a strong "cross-flow
shock" develops on the forward part of the wing, a
"Y-shaped” cross-flow shock and a "rear shock” on
the aft part of the wing. It is shown that these
shocks develop quite gradually for the incidence
increasing from 10 to 20 deg (still below the on~-
set of vortex breakdown).

It is demonstrated that the Euler method is capa-
ble of simulating in the near wake of the wing the
mushroom-shaped vortex structure formed by lea~
ding~edge and trailing-edge vortex. This investi-
gation has also revealed the occurrence, at tran-
sonic speed, of a third vortex, termed the "tip
vortex',
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Fig. 1. Vortex flow about a delta wing
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