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THREE DIMENSIONAL DYNAMIC AND STATIC STABILITY OF VORTEX SYSTEMS
AND THEIR OBSERVABILITY AND CONTROLLABILITY

Z. Rusak* and A. Seginer™*

Abstract

A general theory for the three-dimensional long-
wave linear stability of a general system of straight po-
tential vortices immersed in an incompressible inviscid
potential external flow field and in the vicinity of solid
surfaces, is presented. The flow fleld equations are gov-
erned by the streak-line equations for the vortices and
by the satisfaction of the tangency boundary condition
on the solid surfaces. In their basic state, the vortices
are assumed to be straight parallel filaments, near in-
finite two-dimensional steady surfaces that are repre-
sented by a potential source surface distribution. Small
three-dimensional long wave perturbations, constructed
of two orthogonal waves, are imposed on the vortex fila-
ments, concurrently with fluctuations in the intensity of
the source distribution, and with known unsteady per-
turbations along the shape of the solid surfaces. The
singularity in the calculation of the self-induced veloc-
ity of a curved vortex line is treated by the “Cut-off
distance” model. A linearization of the flow-field equa-
tions followed by a Fourier transformation, results in a
system of zero-order equations, for the two-dimensional
dynamics of the vortices in their basic state, and first-
order equations, that are constructed of Fredholm inte-
gral equations of the second kind for the source fluctu-
ations distribution, and of first-order linear differential
equations that describe the time-history of the vortex
perturbations. When the basic state is steady, or quasi-
steady, the first-order equations result in an eigenvalue
problem. Analysis shows that the perturbations devel-
opment in time can never be asymptotically stable. The
outcome of the model are the new concepts of “Gener-
alized Damping of a Vortex System” that govern its dy-
namic stability, and “Rigidity” that governs the static
divergence of a vortex system, which was never consid-
ered before. Also, a control approach is presented, to-
gether with the new concepts of “Controllability” and
“Observability”, that lead to the challenging idea of
“Active Control” of vortex stability.

1. Introduction

Modern flight vehicles, and especially highly ma-
neuverable modern fighter aircraft and missiles, gener-

ate highly complex, three dimensional flow fields that

contain concentrated vortices. The vortical lows strongly

affect the aerodynamic characteristics of the vehicles.
In the case of military maneuverable vehicles, as well
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as in several novel designs of general aviation vehicles,
the vortices contribute to the vehicle performance and
extend its operational flight envelope to super maneu-
verability and increased agility!. In more conventional
aircraft, such as large transports, the vortical wakes in-
duce drag on the aircraft and can endanger small vehi-
cles that inadvertently happen to cross these wakes?.

The utilization of the vortex fields to enhance flight-
vehicle performance is strongly limited by vortex insta-
bilities. These are usually accompanied by strong un-
steady phenomena that can endanger the stability of
the flight vehicle itself'. On the other hand, destabi-
lization of the tip vortices of heavy transport aircraft
could reduce their drag penalty, and could alleviate the
air-traffic controllers’ problem of keeping a small craft
out of the wakes of the larger ones?. The ability to pre-
dict the flow-field conditions that destabilize the vor-
tices, and even better, the ability to control this sta-
bility would, therefore, be beneficial for future utiliza-
tion of vortex flows in the aerodynamic design of flight
vehicles. Future vortex-stability control (either stabi-
lization or destabilization), could greatly enhance the
aerodynamic performance of flight vehicles.

The investigation of the stability of vortex systems
has challenged researchers in fluid mechanics for over
a hundred years. Among the best known works on
this subject are the classic analyses of Lord Kelvin3,
J. J. Thomson*, von- Kérman®, Féppl®, Havelock” and
of Lamb®. Most classic approaches to vortex stability
were limited to particular cases of discrete straight vor-
tices in a two-dimensional, steady or quasi-steady flow,
under two-dimensional perturbations only.

Of the small number of three-dimensional long-wave
stability analyses known to date, none is of a general
character. They all deal with specific problems of self-
preserving configurations. These include: a single dis-
crete straight line vortex (Crow®), a pair of parallel
identical counter-rotating vortices, or trailing wing-tip
vortices (Crow?), a pair of parallel identical co-rotating
vortices (Jimenez!?), the von-Kirmdn symmetric and
asymmetric vortex streets (Robinson and Saffman!!),
the Féppl vortices (Widnall!?), and a discrete line vor-
tex running along the axis of a straight circular tube
(Rusak and Seginer'?®). The classic approach is to study
the linear stability of the perturbed vortex system, by
determining the character of the eigenvalues of the lin-
earized equations that describe the development of the
perturbations. However, this approach had never been
extended to a general theory for the three-dimensional
linear stability of vortex systems. Also all of the above-
mentioned analyses, be they two- or three- dimensional,
strove ta identify the conditions under which a partic-



ular vortex system became unstable. They all identify
the limits of stability only, without explaining physical
reasons or mechanisms, that were responsible for the
stability, or instability, of a vortex system. Further-
more, all the known stability analyses dealt with dy-
namic instabilities only, by examining the character of
the eigenvalues of the given problem. In none was the
possibility of a static instability (divergence) ever found
or even considered.

Also, despite the large number of analyses of two-
dimensional stability problems®~® and several three- di-
mensional studies =3 the classic linear control approach
that could predict the observability and the controlla-
bility of vortex systems has never been proposed. Such
a prediction could lead to the measurement of the devel-
opment of the perturbations in vortex systems and to
their control. ‘Controlling vortex instabilities could open
the gate to a new technology of stabilizing or destabi-
lizing vortices at will.

Presented in this paper is the general theory of
Rusak!* for the calculation of the three-dimensional long-
wave linear stability of systems of straight potential
vortices immersed in an external inviscid and incom-
pressible flow field and in the vicinity of solid surfaces
(Section 2, 3). To the best of the authors knowledge,
this theory is the first of its kind. The outcome of this
general model are new ideas that were recently pre-
sented by the authors of this paper, on the dynamic
and static stability of vortex systems and the param-
eters that govern it (see Sections 4, 5 and Rusak and
Seginer'®), and on the control possibilities of vortex sys-

(see Section 6 and Rusak and Seginer!®).

2. Mathematical Model

The model developed by Rusak!* considers a con-
figuration of N concentrated potential vortex filaments
with different, but known, circulations ' (n = 1,..., N),
in an inviscid and incompressible, potential external
flow field. The velocity- potential field (¢) of the flow,
u = /9, is described by the Laplace equation,

=0 (1

The solution of Eq. (1) is governed by:

(i) The streak-line equations that describe each of the
N vortex lines R,(S,,1),

DR,
Dt

=un(Sat) (n=1,....N) ()

where R,(S,,t) is the position vector to a point S, on
the n-th vortex filament at time t, and u,(Sn,t) is the
velocity induced by the flow field on this point.

(ii) When solid but flexible surfaces, given by their time-
dependent shapes Fr(Rpg,t) = 0, also are presented in
the flow field (where R g is the position vector to a point
on the surface), the flow-tangency boundary condition
has to be satisfied at each point Rp and time ¢,

DFp _ O0Fp . . ;
ot = & +up-GFr=0 on Fr=0 {3)

where ug is the velocity induced by the flow field on
any point on the surfaces, and 7 Fpg is a vector normal
to the surface Fg = 0, pointing into the flow field.

In order to satisfy the tangency condition (3), the
solid surfaces Fr = 0 are represented by a potential
source distribution, @, over them where,

Q =QRg,?) 4)

(iii) For unbounded flow fields the velocity perturba-
tions vanish at large distances r from the vortices and
the solid surfaces like 4 and,

V¢~ U as r— 00 (5)

where Uy is a given flow velocity vector at infinite.

(iv) Initial conditions that describe the vortex lines at
time t = tg are also given for every n by, R,(Sn,%0) (n =
L.

The total velocity u, at a point R, in the flow field
is given by the sum,

u,,=U+u;’+uf (6)
where,

(i) U is a given external incompressible and inviscid,
potential flow field,
v-U=0, vxU=0 (7)
(i1) u is the velocity induced by all the vortex lines on a
point R, and is given by the Biot-Savart law (Batchelor!"),

R’ dR!,
/ T ®)

in terms of the relative positions R;,, = Ry, — Ry,
length elements dR!,, and circulation strengths I'},.
The primes are used here to designate points on a vortex
filament and terms related to them when p = n.

m—l

(iii) u? is the velocity induced by the source distribution

Q on a point R, and is given by (Batchelor'"),
u = - / [ LRl 9)
P 4m|Rp, |

R

in terms of the relative position Rz, = R — R, the
area of the surface element of d F, and the source strength
&' at a point Ry. The primes are used here to desig-
nate points lying on the surfaces Fp = 0 and quantities
related to them when p = R.

All three components of the velocity u, satisfy Egs. (1)(5)
identically.
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Using Eq. (8) to calculate the velocity (uY), raises
a difficulty with the self-induced term (when m = n).
For a crooked vortex line it results in a logarithmic sin-
gularity of the self-induced velocity when |[R! .| = 0
(Batchelor!”). This is a nonphysical singularity because
the physical vortex has a finite rotational core where the
velocities are bounded. In order to relax the singular-
ity in the self-induction integral, the theory presented
here uses the “cutoff-distance” model. The idea is to
cut the integral off at an arc-length of {+d) around the
point [R,,| = 0. This idea has been used to calcu-
late the self-induced velocity in other vortex stability
analyses®~!%, Widnall'® proposed an analytical expres-
sion for estimating the cutoff-distance (d) as a function
of the rotational core characteristics, where (d) is pro-
portional to the diameter (¢) of the vortex core. Wid-
nall’s expression is valid only when the wavelength and
radius of curvature of the perturbations in the vortex
line are larger than the diameter of the core by an or-
der of magnitude, and when the vortex core is slender
with respect to a characteristic distance (¢) between the
vortices, (c/¢)* « 1 (Moore and Saffman!?).

The system of Eqs. (1) through (9) together with
the “cutoff- distance” model of the self-induced veloc-
ity, are used to analyze the motion and stability of the
vortex filaments under the interaction between the vor-
tices, the interaction with the solid surfaces, and the
influence of the external flow field. Although Eq. (1)
(Laplace Eq.) is linear, the problem defined by Egs. (1)
+ (9) is mathematically non-linear because of the un-
known spatial trajectories of the vortex filaments that
has to be determined as part of the solution.

3. Linearized Problem

3.1 Assumptions and Basic Equations

An orthogonal and inertial cartesian coordinate sys-
tem (z,y,z) is assumed with unit vectors (ez,ey,€:)
respectively. The N vortices are assumed to be infinite
filaments, each along its r,-axis (which is parallel to the
z-axis), and described by,

(n=1,...,N)
(10)

R, = ez$n+ey(90n+yn)+e:(:0n+zn)

where z, is the Lagrangian variable, z, = S, that goes
from (—o0) to (+00), (yon, 20n) are the basic state posi-
tion coordinates of the n-th vortex that depend on time
(t) only, yon = Yon(t), Zon = zon(t), and (yn,zn) are two
orthogonal displacement waves in the y and z directions,
respectively, that are imposed on each of the vortex fila-
ments and that depend on position (z,) along the n-th
vortex and on time (t), yn = Yn(ZTnst)s 2n = 2a(Zn,t).
The initial conditions at time o are assumed to be given
for every n by,

yOn(t0)7ZOH(tO)ayn(:nvto)v zn(zmto) (11)

The solid surfaces Fr = 0 are defined as'infinite surfaces
along an z g-axis (that is also parallel to the z-axis), and
given at each point Rg = e;zr + e,yr + €:2r by,

FR(Iﬂv YR, zRit) = fﬂ(yR\zR) - RI(‘rRi t) =0 (12)

where zg goes from (—o0) to (+o0), frR(yr,2r) = 0
is the basic state form of surfaces fr = 0, defined as
infinite two-dimensional surfaces, and R;{(z,,t) is an a-
priori known unsteady lengthwise perturbation to the
shape of the surfaces fg = 0. The functions fr and R,
are given as non-dimensional functions.

The characteristic length (£€) of the problem is de-
fined as the minimal distance in the basic state between
the vortices or between the vortices and the surfaces
fra=0,

min :
¢= t { :E:i V(¥om = yon)? + (zom — 200 )2,

m

;:: \/(—y;—yOﬂ)2 +(zr ‘ZOn)2} (13)

All the perturbations are characterized by sufficiently
small amplitudes and slopes compared with the charac-
teristic length (£) of the problem, for every n and (zn,t),

() <r (2) < (2) < (22) <«

{14a)

and for every (zRr,t),

OR.\’

Rg1, £ (-—‘) <1 (14b)
aza

Each point on the surfaces Fp = 0 is assumed to be

given at a specific cross-section TR by,

YR = YRo + YR, zp = zRo + 92R (15)

where (yRo, ZRo) are the (y, z) coordinates of a point on
the basic- state surfaces,
fr(vro, zro) = 0, and (8yr,dzr) are small displace-
ments that depend on Ri(zg,t). The source distribu-
tion Q is also assumed to be constructed of a basic state
term Qo that depends on (yro, zRo, t), and a fluctuation
Q; that depends on (ZR,YRZR>t)s

Q = Qo(yro, zRo,t) + @Q1(zR, YR, 2R, 1) (16a)

where for every n and (Rg, 1),

@\ <1 (16b)
Ta/2ne
The external flow field U is described by,
U=er+eyv(yaZ)+e:W(y’z) (17

where U is a uniform axial velocity and V, W are steady
cross-flow velocities in the y and z directions. This is in
principle a quasi two-dimensional flow, but despite the
dynamic similarity it can be shown that under certain
conditions the U component has a major influence on
the static stability of the vortex system (For details see
Rusak and Seginer'S and Section 5 below).

Substituting Eqs. (6)(10) in the streak lines equa-
tions (Eq. (2)) results for every n and (2n,t) i,
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dyon Oyn
Bon | Fo 117+ (uf)e + (ual 22
V(y()n + Yny 20n + 2a) + (ur‘z/)y + (uf)y
18)
dz,,,. Ozn sy 19 _ (
3t 6t +[U+(u,,) +(“n)z]azn =

W(yon + ¥n, 20n + 20) + (u)), + (ud),

Substituting Eqs. (6)(12) in'the flow-tangency boundary
condition (Eq. (3)) results for every (Rpg,¢) in,

ag‘ +[U + (uR): + (uR):]Fret

+(V(yr,zr) + (uR)y + (uR)y|Fry
(19)

+[W(yr, zr) + (ug); + (u}),|Fr: = 0

where Fr;, Fry, Fr; are the (z,y, z) components of vec-
tor VF R

Eqgs. (18)(19) together with Eqs. (8)(9)(10)(12)(15)
initial conditions (Eqs. (11)) and the “cutoff-distance”
model constitute a mathematical non-linear problem for
the dynamics and stability of the vortex system. Follow-
ing the assumptions in Eqgs. (14)(16b) this problem can
be linearized about the basic unperturbed state where
all perturbations vanish, for every n: y, =z, =0 and
for every Rp : @, = R; = 0. In the basic state the
vortices are straight parallel filaments and the surfaces
are infinite two-dimensional surfaces. In the next sec-
tions the various velocity components in Eqgs. (18)(19)
will be calculated in their linearized form, and will be
substituted back to obtain a linearized model.

3.2 Linearized components of velocities

3.2.1 Velocity induced by all the vortices on

a specific vortex

Substituting p = n in Eq. (8) defines the velocity
uY induced by all the vortices in the flow field on a
point R, onthe n-th vortex. From Egs. (10),

r '
Rmn - e:(zm

—Zm)+ ey (Yom — Yon + Ym = ¥n)

+€:(2om = 20n + 2}, — Z4)

' i 0z},
dR,, = (e,+ey5:—,m- +e,6 . )d '
(20)
The integrals in Eq. (8) along the vortex lines are per-
formed along each (2, ) from (—o0) to (+00). Lineariza-
tion of the terms in the integrand in Eq. (8) for p=n
gives,

1
lRmnra =

R%mn

(21a)

R [(yom yo'l)(ym yﬂ)+(20m—20n)(z _zﬂ)]
omn

;] ’ ’
R, n X dR':n =€z [(y(,)m - yO")EE%n— - (z(,)m - zOn)gz_:n'] dz;n
m m

+ey [(Z(I)m — Zon + Zm = %n) — (Tm

or’ m
(218)
—e,; [(y:)m — Yon + y;n = Yn) — (Ilm - 1")%?!/_”;_] dz),
xm
where Rgm,, = (2}, —z,)? + 33,,,. and eyzm = (Yom —

Yon)? + (25,m — zon)?. Substituting Eqgs. (21) in Eq. (8)
(for p = n) and using the following equations,

Fm zOm 20n
-m dz’, Im =
S [ ¥ fzom
N N
Tm / Yom — Yon r
dl" Z —T—H wv
3 m mn = Yna0
m=1 47\' —o0 ROmn m=1 2
(22a)
— Yom — Yo _ 2ym — 2
o= S Grn= g
+ ay'
ym y,.d , 1 /002(‘9 —Yn) — (.’t —‘En)azlm dz’
Rgmn 383"'" Rgmn m
—o0 ]
+ 3
+°°z'm —Zn 1 ‘/902(;;'m ~zp) = (T = Ta) 5 i
T =
R?)mn m 3@3,," Rgmn
—_00 —00
(22b)
results in the linearized form of the velocity uy
Ta v
ur‘ll = eyvv‘:o—ez n0+ (ey ezwnn)
I‘,,. 2 5V ) (23)
+ ~T MR (e, U, ey vmn——e Wonn
makn
where
ay!
Y —yn = (2 — a5
5V = dz’,,
el (24a)
az
TR~z = (Ta — IR EE
l_)v = - d‘rn
nn lzn _ In‘.'}
—o00
+ o0
9z Y\ 4Tm
Gy = 24b
tmn = / (Hm"a ! Gmn azm Rgmn ( )
—oo
e dz!
"o Zm G (-
‘Dxn = / {Hrznn [z;n —Za — (Im z“)aIIm] mn( m
—-00

’ dz!,
— GmnHmn [2(ym - y") - ( zn)ax, R3
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+oo

.V ’
atin= [ {68 [ —va- (ot 2n) 22| - B (v~ )

-0 m
(24c)
) , 82,1\ de!
GmnHmu [2(2,,, zﬂ) - (Ilm - x")a',;] } Rg:n

The velocity uY induced by all the vortices on a point
R, on the n-th vortex is (Eq. (23)) constructed of ba-
sic state terms (v¥;,wY)) that are the two-dimensional
velocities induced by the vortices in their basic-state
position, of the self-induced perturbation components
(Tyn, ®Y¥,) and of the perturbation velocities

({‘1‘7,11!767‘;"7 u-’r‘r/m) induced by all the other perturbed
vortices on n-th vortex.

As is mentioned in Section 2 the self-induced com-

ponents oy, 0¥ (Egs. (24a)) are calculated by the “cutoff
distance” model in the form,

+oo —dn +o0
JP N AL Wy EA Y2

EASER il B A
-0 o n n +d" n n

(25)

The cutoff-distance (d,) in these integrals is given for
every n as a small fraction C? of the characteristic
length (¢), (C7? < 1),

dn = Cp¢ (26a)

C is defined as the “core diameter” parameter of the
n-th vortex and can be described by Widnall’s*® expres-
sions,

. 2 1
cr= C"Z/ exp [5 —In2— A, + c,,] (26b)
2rfen oo
Ap= lim [ / r-v:,,df—znz—’] Co=2 / FWE,d
2rfcn—0o0 Cn Ca
0 0
Von () Ven(7)
= 2on\T) = =\l 2
Vo Tn/meq’ Won T./mcqa (26¢)

where ¢, is the core diameter of the n-th vortex, r is
the radial distance from the vortex axis, ¥ = 2r/cq,
and Vp, and Wy, are the dimensionless circumferential
and axial velocity distributions (Vj,, Vza) respectively,
in the n-th vortex slender, rotational core. The use of
the “cutoff-distance” model limits the present theory to
slender vortices where {cn/€)? € 1 or C}2 < 1, and to
long-wave perturbations where the wave number (k) of
a sinusoidal perturbation is limited by (kf)® <« C%.‘,

The “cutoff-distance” model gives a simplified ap-
proximation to the self-induced velocity of slender vor-
tices, without the need to calculate the details of the
flow in the vortices core. In the present theory the func-
tional formulation of the “cutoff-distance” model is the
same for every vortex filament and in both the y and
2 directions,and is not affected by the presence of the
solid surfaces. The influence of changing the “cutoff-
distance” parameter C, was examined in many exam-
ples (Rusak'*), and it was found the basic character
of the stability solutions are not significantly influenced
when C} < 0.2 (see also Saffman and Baker??).
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3.2.2 Velocity induced by all the vortices on a

point in the flow field and on the solid
surfaces

Eq. (8) defines the velocity u;’ induced by all the
vortices on a point R, in the flow field. Application
of the same derivation of Eqgs. (20) to (24) results in a
similar equation for the linearized form of u;’ ,

v
uP

N zz
= eyv0—€.wpo+ Z:l F";ﬂ"‘”(e,a,‘,’,p+e,,5,‘,’w—e,w-xp)

" (27)
where the various velocity components in Eq. (27} are
found by substituting n = p and yn = 2z, = 0 in
Eqgs. (22a) (24b){(24c). The velocity u,‘,’ is also con-
structed of basic state terms and perturbations com-
ponents.

Substituting p = R in Eq. (27) gives the linearized
form of the velocity u} induced by all the vortices in
the flow field on a point Rg on the surfaces Fr = 0.
Linearization of this velocity has to be performed also
in the perturbation R,(zg,t) of the surfaces Fp = 0.
A linearization of Fr = 0 about its basic state, using
Eqs. (15), gives,

6Fp = fryo(6yr) + fR:0(62R) —~ Ri(zR,t) =0 (28)

where fryo, frs:o are the (y,z) components of Vfr =

e, U 4 o, 2R 4t 5 point (yRro,2Rro). The solution of
Y 3y Erm

Eq. C‘ZS) results in,

5!/R = FRyORl(IR, t)v 6ZR = FR:ORl(zR7t) (29)

where
FRy0=-f%2, FRzo=IE§'zB‘, f}220=f%2y0+f}22:0
fro ko
(30)
From Egs. (14b)(15)(29),
elgtR = (yﬁm‘yR)2+(26m“2R)2 (310)

where = ZglRO[l—?(HmROFRyo +GmRoFR,0)R1(IR, t)]

2
€2 po = (Yom —yr0)* +(20m —2R0)%,

, ]
— YRo Zom — 2RO 31
HmRO = gomeT_‘—» GmRO = 72!‘2 ( )
mRO mR0O
Also,
'
HmR = gng—y—R; = HmRO + lﬂﬁRuRl(l‘R»t)v
emR
(32a)
Zm — 2 =
GmRr = um,2 R = Gmro+ UﬁRoRI(zth)’
emR
where,

_ ~2 2
wﬁﬂo = 2H  poGmRoFR:0 ~ (Grgo — Hmpo) Fryo

o8 po = 2HmproGmRyFRy0 + (G%ro — Hipo)FRzo
(325)



substituting Egs. (31)(32) in Eq. (27) for p = R results
in the full linearized form of the velocity u},

{2
up = e,uR — e, why + Z = ;'Ro (eziimpo
m=1 _v v
+ €yl pg — exmeO)
+ Z (eyvao .07 po)Ri(zR, t)
(33)
where,
A Yr
m
Vpoe = Z _é;r'GmR()y wgo = Z ﬁHrnRO (340)
m=1 m=1
i 92! y! dz’
_ z Y z
@ = Hppo 2= — Gmr —£> o (34
o i (Bms 32z - Gomite) = o)
+oo
mpo = / {HranO [Z -(z ‘ER)B J G2 ro?
—oo

, ay/ S d.’L"
- HmROGmRO [2ym - (zlm - J"R)gﬁ} }Rfoamm;

+oo

wr‘r/tRO = / {GmRO [ - (2 - zR)a } H2 ROym

-
8z!, } } dz!,
)61:’ OmR

(34c¢)
where Rg . p = (), — zr)? + €2 g,. The velocity u} in-
duced by all the vortices on a point R on the surfaces
Fp = 0 (Eq. (33)) is constructed of basic-state terms
(v%o,wY%o) that are the two-dimensional velocities in-
duced by the vortices in their basic-state position on
the basic-state surfaces, fg = 0, of the perturbation ve-
locities (@Y, gos TV po» Y. o) that are induced by all the
perturbed vortices on the basic-state surfaces fr=0,
and of the perturbation velocities (52 5, wE o) induced
by all the vortices in their basic-state position on the
perturbed surfaces §Fp = 0.

- HmROGmRJJ [22;1 - (I'm

3.2.3 Velocity induced by the sources

distributed on the surfaces

Substituting p = n in Eq. (9) defines the velocity
u: induced by the sources distributed on the surfaces
Fgr = 0 on a point R,onthe n-th vortex. From Eq. (10),

Ry, = e;(z'R—I,‘)ﬁ-ey(yk—yOn ~yn)t+e:(zR—20n—2n)
(35)
Assuming that at a specific section zg the coordinates
(yr,zR) of a point Rg on Fr = 0 are given by a La-
grangian parameter 4g,
yr =yr(ORr),  zr = 2r(0r) (36)
where 8r; < 8r < 8ry, the surface element area dFp
is given by,

dFY = S(8)dz'rd6%, S(6R) = [(6y’ ) +(a_;::)z]l/z

(37a)
Using Eqs. (15)(38), where (ygro, zro) are given by 8py,
the linear approximation of dFp is given by, '2
32 Ro ) .
3,

. 9y
dFg = S(8'ro)dz'rd0'ny,S(0Ro) = {( 39,:3>
(375)

and the integration in Eq. (9) is performed over —cc <
s < +ooand §rp < 0y < Opu. Also, from Egs. (15)(16)
linearization of Q'(z's, #,t) gives

Q'(2'p, 8> t) = Qo(2r: ORo, t) + Q1 (=R, Opa,t) (384)

and
@Rl = LR Ty (atha) 20 san)]
" b
— Qu(a'n, #any ). Using Eas. (28), (30) (31),
R;i R;-no 1+ BH;,RoFky;z:noG;Rthxo Ry(zs, t)}

(39)
where R}, = (z'a—2a) +7 o and Fpy9, Fy 0, £, pos
are calculated by Eqs. (30) (31b) respectively at point
(¥'ho» 2'pg)- Substituting Eq. (39) in (38) and using Eqs.

(28)(30)( 31)(35) results in,

Q’ Rn Q’O + Q’l !
= R
R ,.P RS, AT

/
+ RT@O_[(e!FI'!'O + eti';!xo)Rl(zIR’ t) - (e!l»yu +’exzn)]+

3%
R:s

6o [(HnroFryo + GrroF R0 ) R1(2R t)

—(ynHppe +2n Grro)l Rlﬁ.‘no

(40)
where Rigo = €:(z's — zn) + €y(yRo = Yon ) + €:(2Rp —

2on). Using the following equations,

+oo
/ RRnodle=_,2(eyH:,Ro+e,G',,Ro) (41a)
Rno
iz _ 2 dvp _ _4 (41b)
J By g | Rim 3w
- R}
/ RiGpt) pp L +/'-’Wth,t)-(='a-’~)%’:lzr
Rno 8 31;;!!0 -0 Rﬁno ’
(41¢)

results in the linearized form of the velocity us,

Up = e ungte Whote,vagte wigtes(uan +ung:)
s s s s (42)
+ey(vam +vhq1 J+e:(whp +anl)
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where

9ry

QI
Ufo= /5;0‘ ;Ros(eho)dolmn (43a)
Ori
ru ,
wio= [ BGhnoS(Bhs b
8re
frU
v,,Q='— / [ya( GnRO H?Ro)
fns — 22,G'n o H'p 0] Q0 5(00) 460

L (43b)
wiQ"‘g; / (za(H g0 = Gro)
OrL

’2ynGnRoH Ro] Q05(9 o)do'Ro

+00 ry

win= [ [ SR Hy P + GanoFio)
—00 8pg
(zn — TR)R1(2'p, 1)S(8o )dORodzs
+o0 fpu QLen
Vppt = / OR+3RO' [F' R\(z'gt) (43¢)
—o0 fpt

- Fpu(7s -z,.)a - ]5(0 0)d8'%dz's

’ 12
W = / / ot bl (ARt

—o0 8re ,
- F;n(IR l'n)a ] 5(9 O)dG'ROdIR
+00
Q I Y 7
ulor = -fi;%s—“—( - 20)S(Ba 4030z
—o0 fpt Rno
+
s 7’ Q (:ERaolRovt) 2 ’ ' 9, '
Va1 = Wf wroH nroS (0o )dbpodzn
=00 §RL

]
wSg, = / / Al lanst) o r - (1 )dBppd'y

47TRRn0
—o0 fRt
(43d)
where
Fi, = Fryo(Hro — Giipo) + 2Fr:0GnroHp ros
Fiy = Fryo(Glro — Hlgo) + 2Fp,0GrroHr ros (430)
43e

] ! 2
F2ln = Fk:OG'nROHnRO + FRyOHnRO

F4,n - FRyOGnROHnRO + FR:OGnRO

Eq. (42) shows that the velocity u? induced by the
sources over Fr = 0 on a point R,. on the n-th vor-
tex is constructed of basic-state terms (v3,, w3y) that

are the two-dimensional velocities induced by the basic-

state sources Qg over fr = 0 on the vortex basic-state
position, of perturbation velocities (vnq, ,,Q) induced

by Qo over fp = 0 on the displaced vortex, of per-
turbation velocities (u3g,,v3g,, w3 g,) induced by Qo
over perturbed surfaces §Fg = 0 on the n-th vor-
tex basic-state position, and of perturbation velocities
(ufol,ufm,wfm) induced by the source fluctuations
Q; over fgr = 0 on the n-th vortex basicstate position.

The velocity u3 induced by the sources over Fg = 0
on a point R, in the flow field is defined by Eq. (9).
Its linearized form can be found in a similar derivation
of Eqs. (35) to (43) or by substituting (z,,y,,2,) for
(ZnyYon, 20n) a0d yn = z» = 0 in Eqs. (31)(42)(43),

UJfo +e:(u§}n +qul )+e!l(vaRl +U;,SQX)
+e.(wypy +uwy,) (44)

S _ s
u; = eyvyte;

3.2.4 Velocity induced by the sources on

a pointonthe surfaces

The velocity u3 induced by the sources over the
surfaces Fg = 0 on a point Rg onthe surfaces is calcu-
lated by,

¢ ! dFl
S~ i __/ QRy,dFp
up im ——__47’IR'RPI3 (45)

R

The singular limit in Eq. (45) was calculated by Hess
and Smith?!,

S _ l VFR _/ Q’ RdFR
“r = 3ORRITR ) R
R

Rrr = Rp-Rp (46)
where the first term in Eq. (46) is the contribution of
the sources in the surrounding of point Rg on Fp = 0,
and the second integral term is the contribution of all
the other sources over Fg = 0. Using Eqs. (15)(16)(30),

Q _ %t
RieaP ~ Fino
3 4
2% (4o - v20)(Fhgo B ~ FrgoB) +
RRo
(47)
+ (Z;ZO - ZRO}(F;{zoRll - Fr.oRy )]

where RZg, = (2 — 7r)* + Bgo and £%g, = (Yo —
yro)? +(2ho—2r0)?, and R} = Ry(z’g,t). From Eq. (47)
the linearized form of the integrand in Eq. (46) is,

' . p

% e = Q;gfa < *Rierot 73— Rg ley(FryoRi~Fryo R1)

| Rl RR Ro ' y]
-}-ez(FRzoRl—FRzORl)]

-3 0 ol FrgoBi=FroR)  (49)

+G'ero( FreoRi—Froo s WR'zro
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where Rppy = €:(zp — TR) + €y (Yo — YRo) + €:(2g —
zgo) Using Eqs. (41) for n = R and Eq (37b) results
in the linearized form of the velocity ug,

F
s 2 ¢ VIR
urp = Z[QO(RRO)t)‘i_QI(RROV )]'vF |
+eyvRo + e;wh + ez (uFp + “fwl)*‘
+ ey(vﬁm + Uisqu) + 32(“’79%}21 + wfwl)
(49)
where
8Rrv Q'
vio == [ B HiroS(Om)d0r,
frL
(50a)
SRy Q'
wls%o == / ﬁG'RRoS(GIRo)dGIRo
8re
+o0 Orv 3Q' 2
"SRm = / 4—7‘,0 R',tsm [Hﬁao(FﬁyoRlx — Fryo Ry )+
RRoO
—o0dpL

G'rro(Foo By ~ FazoRl)](z % — TR)S (00 )d'nodz’s

+000anI e
RR '
v}sml = / pym RRR(:) [F{RRQ - Fpk
— 8re a
= Bl —vr) 3 } S (8o )d8noda’y
+o0 8 gu‘Q, e
RR
w}szm = / ar RRR‘:) [FiﬂRlx ‘Fle
—o0 §Rr

oR! o, (500)
- i }5(9 SYAPER

Ql(z ] 7
URQy = — / / 4771RRI::) ( zR)S(0'Ry)dRodz s

=0 031.
(), 0, t
VRQ1 =~ / / % ~(17r1R B ¢ o H RRoS ('R0 )d6'Rod s
~o0 §RrL
(50¢)
Q x ’9 3t) 4
whpy = 4771R B 0 re G rRoS (0o )d8rodz's
~ 6L
where,
! ! —_—
— YRo 7] ZRo RO
Hlpy = 28O IR0 Glopn = RO 2RO
RRO e,[%RO RRO e’}%RO

Flgp = (HBro — G&ro)Fryo + 2Grro HrRo FR101
[}
Fip = (HRro — GBro)Fayo + 2GrpoHrRroF R0,

! [} 3
Fijp = HiroFiyo + G'rroHrroF Rs0
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Fip = (G%ro — HRRro)Freo + 2GrroHRRo F Y05

Firn =(G%go — Hiro)Fr:o + 2GrroHrro Fry0)

Fsp = GrroHRpoFry + G'&roFhzo (50e)
The velocity u3, that is induced by the sources over
the surfaces Fr = 0 on a point Ry on these surfaces,
is constructed (Eq. (49)) of the local influence of the
sources, of two-dimensional velocities (v, whq)
duced by the basic-state sources @Qq over the basic-state
surfaces fr = 0 on a point on these surfaces, of pertur-
bation velocities (3 z,, VAg;, Whg) induced by Qg over
the perturbed surfaces §Fp = 0 on a pomt on fgr =0,
and of perturbation velocities (u RQU”RQDU-’RQI) in-
duced by the source fluctuations @, over fp = 0 on
a point onthese surfaces.

3.3 The linear approximation conserves flow-
field equations

Eqgs. (6)(27){44) define the linearized approxima-
tion of the velocity u, induced at a point R, in the
flow field. Using also Eqs. (22a)(24b)(24c) (for n = p
and y, = z, = 0) and Egs. (31b)(43a)(43c)(43d) (for
n = p), it can be shown (Rusak“) that for every (R, t)
the linearized velocities up and us satisfy,

VP u 0 Vp-up=0

(81)

Up X uy =0, Up x up =0

where the derivation operator is: 7, = e; 3= a; +e, 5 ay +

e, 6: . Egs. (51) are satisfied for each vortex c1rcu1at10n
[a, tor every basic state solution of vortices positions
(yon(t), zon(t)) and sources distribution Q¢(8ro,t), and
for every perturbation function of y,(zn,t), za(Za,t),

Ql(zRv YR, 2R, t)v Rl(:cﬂv t)

In proving Egs. (51), a direct derivation of the different
components was performed. Also the following theorem
was used;

For continuous functions a(z), B(x) with continuous first
derivatives, where % = a(z) and lim|z|—q f(z) = 0,
the following integral f+°°[a(z)h(z) + f(z)$]dz = 0
for every continuous function h(z) with continuous first
derivatives.

For more details of proving Eqs. (51) see Rusak!4
(Appendix C). Eqs. (7)(51) show that the linear approx-
imation of u, satisfies both the continuity and irrota-
tional equations of the flow-field,

Vp up=0, Vpxup=9 (52)
This means that the linearization process of Section 3.2
does not add any sources or vorticity to the flow field,
and that the basic flow-field equations (Eq. (1)) are
conserved in the linear approximation.



3.4 Linearized equations

The basic flow-field equations (Egs. (18)(19)) also
can be linearized by neglecting second-order terms. De-
veloping V, W in Taylor series about (Yon, zon),

ov ) v
6y on Int (5:)0" o

(53)
W ow
= W(yon, z0n) + (5&_)0,. In ¥ (E’—)On -

where the derivatives are calculated at point (yon, zon),
substituting Eqs. (23)(42) in Eqs. (18) and neglect-

ing the second-order terms such as the longitudinal con-
vection of the perturbations by their induced velocity
[(u)z + (u3).] 582, [(uY), + (uz):} 82, results in the
linearized equations for the vortex dynamics for every
n and (z,,t),

V(yOu + Yn, Zon + Zn)

= V(yon, 20n) + (

W(yon + ¥n, zon + 2,) =

d a dy
o A USE = Vivon 200) + 0% 405,
oV v | O _v
(&), (5),, v oot
N p s
+ z ﬁez’"‘l‘l,‘,’"‘ + ’UfQ + vSRl + van
e (54)
IZ]
d;‘;" + %’3 + Uﬁ = W(yon, 2on) — wy‘./o + wgn
ow ow | R
* (g)myn * ( 0z >On‘n 4m "7
Nor s s
- Z 4—';63""“7;/1" + wa T Whpy T Wnqy
m=l
makn

Developing V, W, Fry, Fr, in Taylor series about' the
perturbed surfaces fgr = 0 and using Eqs. (15)(30) gives,

V(yr,2r) = V(yro, zro) +

+[<8V

)%
7) 2 Fryo + (5;)&0 FRzO} Ri(zg,t)
W(yr,zr) = W(yro,zro) + (

[

FRy = fRy0+FflRl(zR’t)a

55a)

ow

ow
i )Ro Fryo + (—a——) FRzo] Ri(zr,t)

Ro
and,

Fr: = fr:0+FpaRi(zR,t)

(55b)
where all the derivatives are calculated at point (ygo, z Ro)
and,

Favso = * fa) Frueo = ( & fr )
Ryy0o = ay?! R0 3 Ryz0 ayaazg R0
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5sz>
az}z Ro

Ffl = fil”oFRyo + fRyzOFHzm

fRzzO = (

(55¢)
Ff2 = fﬂnyFRyO + foxOFHzO

Using Hess and Smith?! expression for the calculation of
the self-induced normal velocity at a point on a source
surface, together with Eqs. (30) (33)(49)(55), the tan-
gency boundary condition, Eq. (9), becomes for every
(zr,080,t), in its linearized form,

IR, OR, 1
& Um + §(Q0 + Q1) fro+

+ [V(ym, zRo) + vy + vRo
Xr
+ Z 4—;"(2%06,‘,’.30 + 208 poR1) + 05, + U}Ssz fRyo
m=1
+ [W(yﬂo,zno) — who + Wiy

N
r _ _
- Z 4—:“:121110’“:;}20 + 2077 po Ry ) + wia + zu?zo,l} frso

m=1
+ Ry [[V(yRo, 2Ro) + Vo + vRolF1

+ {W(yro, zr0) — wio + wRolFr2
6V) (BV

where,

1 2 -
Frs = (ko ~fho)  Fpa= - fruofaeo (57)
fRO RO

Equations (54)(56) must be satisfied in the basic state
when all the perturbations vanish, y, zpn = 0 for
every n and @1 = R; = 0 for every (zg,0g,t). The
basic-state equations (or zero-order equations) result in,

d
% = V(yon, zon) + vr‘;/o + 0;?07
dz

d;n = W(yon, 20n) — wr‘t/O + wfo

(58)

[V(yroy2ro) + v + vgo]fﬂyo

1
+ [W(yro, 2ro) ~— wiy + wiolfrwo + gQO(gRO)fRO =0

where the various velocities in Eqs. (38) are defined
by Eqs. (22a)(34a)(43a)(50a). Egs. (58) represent a
two-dimensional flow-field problem of the dynamics of
N potential vortex points given near a sur'face f{g = (,
The solutionof these equation gives the two-dimensional
dynamics of the vortices, yon(t), 2on(t) for every (n,t),
together with the source distribution Qo(8re,t) over the
surfaces fp = 0. This is referred to the present rnoc!el as
the “basic-state” of the problem. Egs. {(58) are nonlinear



integro-differential equations, the solution of which is
difficult and except for specific well-known solutions
(see Lamb®, Batchelor!”) it requires the use of numerical
methods(Moore??, Leonard??, Dyer et. al.?4, Smith?®).

Assuming that the basic state solution of Egs. (58) is
known, the perturbation equations
(or first-order equations) result from Eqs. (54)(56)(58)
for every n and (z,,t) in,

Oyn 1 0Un _ (BV v
at +Uazn 6y) yn+<a>onzn

Fn V
2 v
nt Z -_emn mn + va +vip + USQI
mﬁn

Ozn Ozn ow ow
4+ U = =
3t + (92:7. <ay>0nyn+<az)0nzn
N
) A I'm
- _w:‘/" - Z —'—[2 mn _rmn + an + wan + anl

4r = 4
man
. (59)
and for every (zg, 030, t),
OR OR
—-#—Ua—'—l'*' Ql(zRaORU’t)fR0+

N
) _ _
[ B st oo

m=1

+R {V  ZRo) + Ko + VBl F
1{{(V(yro,2Ro) + VR + VRolF 1 (60)

+ [W(yro, 2ro) — why + wio|Fra

ov oV
z i F =0
+(ay>RoFf3+(az>Ro f4}

where the various velocities in Eqs. (59)(60) are defined
by Eqgs. (24a)(24¢)(32)(34¢)(43b)
(43¢)(43d)(50b)(50c). Egs. (59)(60) are integro-differen
tial equations for the solution of perturbations yn ,2n

for every n and Q,(zg,fro,t) as functionsof the basic-

state solution and the surface perturbation R;(zr,t).The

solution of these equations has to use the “cutoff- dlstance
model (Eqs. (25)(26)) for the calculation of #Y,,®Y,.
Egs. (59)(60) admit a solution of an exponential form
(Fourier integrals) and can be transformed by a Fourier
transformation into a system of equations for the solu-

tion of the stability of the basic state vortex dynamics.

3.5 Fourier transformation of perturbation
equations

Each of the perturbations is assumed to be given
by a Fourier integral,

N
r _ _ S
- [Z ;’;—(f’,?,mw,‘f.m + 20 go R1) — whpt — wRQl] frso

+0o0
Yn(Za,t) = /ﬁn(k,t)e””"dk,
-0
+co
/é,,(k,t)e””"dk

-0

Zn(.tn,t) =
(61)
Q1(zRr,0Ro,t) = /Ql(gm’k’ t)e*=n g,

Ri(er,t) = / ik, )e*=R dk

where k is the wave number of perturbations in z direc-
tion (k is a real number), : = y/ — 1, and ¢n, én,Ql,Rl
are the Fourier transforms of y,, z,, @1, R) respectively.
No generality is lost by considering such a solution.
Also, £ = 0 describes a two-dimensional perturbation.

Substituting Eqs. (61) in Eqs. (59)(60) and chang-
ing the order of the integrations in the various equa-
tions of the velocities in these equations, changes (de-
tails in Rusak'*) the perturbation equations into a lin-
ear system of equations for ¥, Z5, Q.. R, for every di-
mensionless wave number 3 = k¢ of the perturbations.

For every (n,t)
N

%n B ?l’.) LY
5 +1= Uy,,— n[(ay 0n+2:l 7 omniimn

ma#n
/ L) 7y — G G| +

. [/8V T, 2
+Zn[ (E)on + P (%) w(én)+

+ Z (G, ~ HR,)

mml
m;én

/ Qo Ro,

+z{

m=1
m#En

ROH;ROS(elRO)danO} +

(H2n6(8pmn) = GEnx(Bpmn)]

- ijGmnHmn[w(ﬁpmn) + X(,Bpmn )]}

+R, / Qo(0ro, t)

o7 f2, { nrolHnrofryo + Grpofrs0l¥(Bo) o)

+ GharolHiroFheo = Gy Fayo i ﬂpnm)}swmwe
(6%, 8,1t
/ G (35,015 )

(62a)
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O%n  Brs _ B_VK>
—5t-+17Uz,,—zn[(az

/ QO(GRO’ t)(H

(793

a (5,5 (8) o0

Yr
m
+y E;(GZnn ~Hy,)

mal
makn

/ QO 0;{07 t)GI

- Z fﬂcm
on

mal
mkn

~ G'2po)S(6) o>d9’m]

H;Rosw;m)de;w]

—EZ

m=l

{ym G2 9 (Bpom) — HE, x(Bpran)

man
- 2'meﬂIImnW’(ﬂPm'n) + X(,Bpmn)]}
+R Qq(é’m, { " 20lGarofRyo — HirofR:0)X(BPnRo)
J ot

Gl olHlvmo Fgo + G:.Rof;z,ow(ﬂp;m)}swaomo'm

AR o
/ ) G (351 )S( 0

(626)
and for every (fgo,t),
ru
Q1(fre. B,t) + /Q' (8'0s 8- tY( H raofRyo
S5(6
‘4 G'rofr:0)X(BPRRO) ( )dﬁ'

N .

. OR,
= ~"l — tmiim) + Riam + ———at’aa-l
—

where the various functions @ym,@:m,aRr,,are1 depend
on (fro, 3,t) and are defined by,

= (G2 po¥(Bomro)—HE roX(BPmRo)) fr:0

(63a)
+G roHm ko [$(30m r0)+X( 30m R0 )} FRy0

d:m = [Hrznkol/)(ﬁmeO)_ngROX(ﬁmeO)]fRyo
 (63p)
+GmR0HmR0 {w(:‘jmeO)+X(ﬂme0 )]fRz()

] 2f B8, s Tnm
aRry = —m{ -le+ Z T[G

m=1

mROHmRO(fI%yO - f?tzo)

+(GmR0 iRO)fRyOfRzO]

ol y
+ [V(BRO) + Z 5—;_50'"30

m=1

(5:17]
Qb(8ho,t , Frevo f FRys0f
+/ 0(2:0 )Hfmos( R0)40R0 | (fRyyo fRy0 + fRy:0fR20)

frt

[W(f’m) - Z —-Hmao

m=1l

¥ (00t e Fet Faveof
+f —2—21-*:*’—’—6',2305(9;,0)(10;20] (Freso Frso + Fayeo Fayo)

:7:3%

Vv ; ; v s
+ (%), b= Thor+ () ofunine

(63c)
/ o) (oo + GrroFis)
o (HzrofRyo + G'rpofrzo)¥(BorR0)
+ (Hl'?Roﬁezo - G'RRo.fllzyo)
(G'RRofARyo - H;zaoszo)x(ﬂpkno)

+(HRpy - GgRo)(f?{yo = fo)

+ 4GIRHO H;’tRo fRyO fRzo] S(GIRO )dG’RO}
2

aR.l -_ —
Fro
In Egs. (62), 6, = kd, is the dimensionless cutoff dis-

tance, 8§, = C38,

(63d)

RRo
(64a)
and in deriving these equations the following equations
were used,

emRO
PmRo = ’T )

lmn

Pmn = 7 PIRRD =

+o0 i N
z
/ Z+apr -7 (s =mn,RR0)  (64b)
+oa | .
e:kz — ikxe"“d 3 2'4[’(,3/)3)
(2 + €2)372 = a
+o0 (64c)

et*zdr do = 2x(8p,)
| wrame =g

)
+me”“ — 1 — jkgetks
[z|3 -

-0

(s = mn,mR0, RRO)

2§—:w(5n) (64d)

where x and ¢ are Crow’s? interaction functions and

w(6n) is Crow’s” self-induced function,

x(z) = z K, (z) Y(z) = szo(z) + zK,(z)

5, 1[cosé, —1 siné, (65)
wn) =375 5

- Ci(én)

where Kq(z), K1(z) are modified Bessel functions of the
second kind (Watson?®) and Ci(6,) is the integral cosine
(Jahnke and Emde?7).
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3.6 Model equations

Eq. (62¢) is a Fredholm integral equation of the
second kind for the solution of the Fourier-transformed
source fluctuations @Q1(8ro, 5,t). Assumption of a solu-
tion where @; is a linear combination of all the vortex

Assuming that a solution of Eqs. (67) is known,
substituting the expression of @, from Eq. (66) into
Eqgs. (62a)(62b) resultsin a system of 2V first-order lin-
ear differential equationsthat describe the time history
of the Fourier- transformed vortex displacements of the
vortices, for every (8,t) and n,

and surface perturbations, On ) R OR
N - W = ;[(ayy)nmym + (ayz)nmém] + bynRRl + bynR‘ _aTl
Q1(820,8:8) = 3 (i Qym—imQsm)
m=1 a N ~
. az'n A OR
A = 15) (66) AT = ey )nmYm + 22 )nmZm bzn :nR* :
+R1Qm+‘atlQR-x ot mX=:1[( shem + (@2 Jumin] + bina i + b ot

and substitution in Eq. (62¢) results for every (,t), in
a set of 2N + 2 independent Fredholm integral equa-
tions of the second kind for the solution of the source
distribution functions @Q,(s = ym, zm, R1, R*1)

Oru
QJ(9R01 Bv t) + /
SRL
. s S(O)
+ GnRofR:o)X(BPRno)%dem
(67)

Q;(G'Rm ﬂv t)(H;ZROfRyO

=as(0R01ﬂvt) (S = ymvzva]')R.l)
where the various functions &, are defined by Eqgs. (63).

The solution of Eqs. (67) gives the distribution of Q,
over the surfaces fp = 0 for every wave number # and
time ¢. From Egs. (63)(67) it can be seen that for every
B the solution of the functions Q, depends only on the
basic-state solution (of Eqs. (58)) and it is independent

of the solution of the vortex perturbations development
that is described by Egs. (63a)(63b).

The solution of Egs. (66) is quite difficult as  the un-
known function @), appears both outside and inside the

integral component of this equation. An analytical solu-

tion can be found for specific cases where the surface
fr = 0is an infinite straight plane or a circular cylin-
der (Rusak!*). For general surfaces fg = 0 a numerical
solution is required, such as the well-known source panel
method of Hess and Smith?!. The solution scheme of
Eqs. (67) is identical for each s = ym,zm, R1, R*1 and
only the forcing functions @, have to be adjusted for
each s.

The solution of the source distribution functions Q, for
every wave number § satisfy identically the linearized
tangency boundary condition over the given solid sur-
faces. Since for every § none of the functions a, vanish
identically, the functions Q, always exist and are non-
linear in 3. This means that the inclusion of the source
fluctuations @ is a necessary part of the present model,
for the satisfaction of the linearized tangency boundary
condition over the given solid surfaces. The source fluc-
tuations @) represent the solid surfaces resistance to be
deformed by the influence of the perturbed vortices.

(68)

where for m =n,
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and for m # n,
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The coefficients of Eqs. (68) depend on the basic-
state solution of Eqs. (58) and on the source-fluctuation
functions that are solved by Egs. (67). In the general
case when the basic-state motion of the vortices is un-
steady these coefficients are also time-dependentThe solu-
tion of Eqs. (67) is subjected for every wave number §
to 2N initial conditions that are given by Egs. {11)(61)

in the form,
+o0

?)n(favto) = / y,,(z:n,tq)exp <—i§‘xn> dz,,
- (12)
+oo

. 3
Za(B,to) = /zn(zmto)exz) (—zzrn> dzn
00
Egs. (68) can be writtenin a matrix formulation
for every wave number 3 of the imposed perturbations
as,

8Y /0t = A(B,t)Y(B,t) + B(B,t)¥(8,t) + d(B,t) (73)

where Y(8,1) is a 2N-dimensional column vector of the

2N Fourier-transformed vortex perturbations, (8, t) =

{+,9a(B,1),2(B,1), - -}, A(B,t) is a 2N x2N

influence matrix the components of which are given by,

A2pn—-12m-1 = (ayy)nmv Qn—1,2m = (ayz)nm

a2n 2m—-1 = (azy)nm, a2n2m = (azz)nm

. (14)
P is a 2 x 1-dimensional vector, 7 = (Ry,8R,/dt), and
B(f,t) is its 2N x 2-dimensional influence matrix
the components of which are given by,

ban-1,2 = bynre

b2n—l,l = bynR9
1<n<N)

b2n,1 = b;nr, b‘ln,2 =b,npe

(75)
The matrices A, B are written in Eq. (73) as functions of
(8,t) to stress the major parameters that are needed
for further analysis, but they are also functions of the
basic-state solution, the source functions and the “core
diameter” parameters.

The vector d in Eqs. (73) is added.simply to rep-
resent any other disturbances that may influence the
vortex perturbations, but are not connected to any of
the vortex-displacements or the solid-surface perturba-
tions.

In the general case where the matrices A, B are
time-dependent, the solution of Eqs. {73) can be given
for each wave number 3 by the transfer-matrix ®(5,t,45)
that is a 2N x 2N-dimensional matrix (Kwakernaak and
Sivan?®®),

Y(ﬁ’ t) = Q(:Ba ty tO )?0(57 tO)
: . (76)
+ [ #(8,,1)(B(8,7)6(8,7)+(3, e

where the initiaklconditions vector Yy is given by,

?0(/31 tO) = {' R 9”(5’ to)én(ﬁv tO)i v } a.nd the tra‘nSfer
-matrix ®(8,¢,t,) is solved for every (3,t) by,



(B, to, to) =1 (77

The solution of Eqs. (73) or (77) in the general case is
quite difficult, and can be obtained in most cases only
numerically. On the other hand, when the basic state
is steady or quasi-steady (where the vortex system and
the surface fr = 0 create a self-preserving configura-
tion) the matrices A, B are time invariant and Eq. (73)
can be solved analytically, where the homogeneous so-
lution is constructed of 2N modes that depend on the
2N eigenvalues of the matrix A.

d
d—t@ = Ad,

3.7 Summary

A general theory has been developed for the calcu-
lation of the three-dimensional long-wave linear stability
of a system of straight parallel vortices immersed in an
external incompressible and inviscid, potential flow and
in the vicinity of solid surfaces. Model equations are
composed of:

(i) basic-state equations (Eqgs. (58)) for the solution
of the basic-state dynamics of the vortices yon(t}, zon(?)
for every (n,t), and the basic-state source distribution
Qo(8Rro,t) over the surfaces fg =0,

(ii) sourcefluctuations equations (Egs. (67)) for the
solution of the source functions Q,(s = ym, zm, Ry, R}),

(iil) vortex-perturbations equations (Eqs. (68)) for
the calculation of the stability of the vortex system.

The basic state equations are independent of the
perturbation equations. The source equations depend
only on the basic state solution, whereas the vortex per-
turbations equations depend both on the basic state so-
lution and on the solution of the source functions. In
Eqs. (68) the core-diameter parameters C;, (Egs. (26))
are used as free parameters, the influence of which has
to be investigated in any specific problem.

The model can deal with a general system of straight
parallel vortices, in the vicinity of general two-dimensional

surfaces. Also,the model equations were reduced intoasim-

ple set of equations that can be used for the calculation
of the three-dimensional stability of the vortex system.
Model equations are also applicable to the specific cases
of free vortex systems without any surfaces, where the
sources Qg and Qs and the perturbation R, are identi-
cally zero, and to the two-dimensional linear stability of
a system of vortex points near surfaces, where § = 0 and
x(0) = %(0) = 1 and [F%w(8,)]3=0=0.  The model
equations were validated by Rusak!* by complete agree-
ment with the equations and results of all the known
analyses of References 5, 6, 9-13.

The applicability of the present model is restricted
to cases where a finite characteristic length (¢) can be
defined from the basic-state solution by Eq. (13), to
small-amplitude vortex and surface perturbations, to
long-wave disturbances (8C; « 1), and to slender-
core vortices (Ch « 1). Cases where the characteris-
tic length (£) cannot be defined for all time, or where

the perturbations are not small or the vortices have
thick cores, cannot be  represented by the present
model. However, despite its simplicity and limitations,
the present model is capable of representing the basic
inviscid and long-wave mutual interations between the
slender vortices and between them and solid surfaces,
and of introducing new ideas about the
stability of vortex systems and its control (see Section
4, 5 and 6 below and also Rusak and Seginer!®1°).

4. Mathematical and physical analysis of
vortex-perturbations equations

4.1 Analysis of the influence matrix

Using Eqs. (69)(70)(73)(74) the influence matrix A
can be written generally in the form,

A=A, - i%U[ (78)

where A, is a 2N x 2N-dimensional reduced influence
matrix and [ is a 2N x 2N-dimensional unit matrix.
It will be show that matrix A; has a vanishing trace,
trace (4;) = 0. From Egs. (222)(43a)(58) the velocities
induced in the basic state on each of the vortices are,

(unO)y = V(yOny zOn)+vr‘1/0+va$
(79)
(Uno), = W(UOmZOn)—on‘*'wfo

where the velocities (v¥, w¥,) and (v3y, ws,) are given
by Egs. (22a) and (43a) respectively. Since,

aGmn = aHmn = 2Gmnffmr'u

ayOn azon (80)
OHnro _ _9Gnro _ H?

ay0n - azon nRO™ RO

and since for a periodic perturbation with a wave num-
ber k, 6y0n = Gneiftn,
Ozon = #pe'¥n 5Qy = Qle"‘“‘ Eq. (66) results in,
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Eqs. (79)(80)(82) together with Eqs. (69a)(69c)(74)(78)

result in,

a(uﬂ ) a nl/z
__@_(:‘_y = (a1)20~12n~1, —(él-lz’il = (a1 )zn.2n
(83)

where (a1 ),y are the components of matrix (41). There-

fore,
(a1)2n,2n = =(a1)2n-1,2n—1 (84)

since the basic-state problem (Egs. (58)) describes a
two-dimensional inviscid and incompressible, potential
flow field where,

a(unﬂ)y a(“no): _
ayﬂn aZon =0 (85)

Also from Eqs. (78)(84) for every (3,t),

trace (4;) =0, trace (A) = —2Ni§U (86)
Eqgs. (86) hold in the general case and reflect the fact
that the basic state presents an incompressible two-
dimensional flow. A similar result was found by Levitas
and Seginer?® for the specific case of a free-vortex sys-
tem without any boundary surfaces. Egs. (86) hold also
for any “core-diameter” parameter C; and doesn’t
depend on it at all, since all the C appear only in off-
diagonal components of matrix A (or 4;).

4.2 Stability of a vortex system

Defining the Euclidian norm of vortex-perturba-
tions vector Y ='{-- -, yn, 2a, -} as |Y|| = [E:’:I(y,z,+
2,2,)]1/2, and vector Y, as vector Y at time ¢g, the stabil-
ity of the vortex system can be defined according to
Willems?® by,

(i) The basic state dynamics of the vortex system
are definedas stable according to Liapunov, if for every
initial time o and ¢ > 0 there existsv(e, tp) > 0, such
that if ||Yo|| < v then for every time t > ¢y the norm of
vector Y is limited by, [[Y]| <e.

(ii) The basic state dynamics of the vortex system

are defined asasymptotically stable, if theystable, and if

for every initial time ¢, there existsvy(to) > 0, such that
if | Yoil < »p then limi—o ||Y|| = 0.

(iif) When condition (i} is not satisfied the basic
state dynamics of the vortex system are defined as
unstable.

In the present model both v and ¢ have to sat-
isfy 12 « €%, €¢ « €% to fit linearization requirements
(Egs. (14)). The stability of the vortex system at a
specific wave number 7 can be defined analogously by
replacing vector Y with vector ?, and e, v, v, wi}h
é(3), P(&,8,t0),00(83,t5) where the vectors Y and Y,
are defined in Section 3.6.

Application of Willems® stability theorems to
Egs. (73) results in,
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(i) For every wave number j,
t

det ®(3,1,20) = exp [/ trace (A(8,1))dr (87)

to
(ii) The homogeneous solution of Egs. (73) is asymp-
totically stable at a specific wave number 3 if and only if
the norm of the transfer matrix , ||®(3, t, ¢,/ is bounded
at any time t, and when t — oo, lim,_ o, ||®(8,t,t)|| =
0 (where the norm of matrix & is defined by its compo-
nents &, as |@]| = [ @%,]'/2).

Using Eqs. (86)(87) for every wave number 8
results in,

det &(8,¢, to) = exp[—?NigU(t —t)]  (88)

Therefore, lim;—. [[B(8,¢,t)|| # 0 for every G, which
means that the basic-state vortex dynamics can never
be asymptotically stable in the linear approximation of
small perturbations. The vortex-system basic-state dy-
namics can be either stable (bounded oscillations) or
unstableat a specific wave number, This general con-
clusion holds for every “core-diameter” parameter CJ,
and results directly from the fact that the basic-state
problem represents a two-dimensional incompressible and
inviscid, potential flow. A similar result was found by
Levitas and Seginer?® for the specific case of a free-vor-
tex system. Also, all the known two-dimensional or
three-dimensional long-wave stability analyses®*~!? are
compatible with this general conclusion.

4.3 Basic interactions of the vortex system

Eqgs. (68)(69) can be rewritten for every (n, 3,t) in
the following special form,
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As was mentioned, when the basic state is steady (or
quasi-steady) the homogeneous solution of Egs. (89)
depends on the 2N eigenvalues A;(j = 1,---,2N) of the
matrix A.

The terms in Egs. (89) have been arranged in nine
columns, each of which has a distinct physical mean-
ing. The left hand column represents the rate of change
of the vortex displacement amplitudes with time. The
first column on the right-hand side represents the ef-
fect of the uniform axial flow (U) on the development
of the perturbations. Were only this column effective,
then A; = —i%U ,.which means that the disturbances
would be swept downstream with the uniform flow. The
second column on the right represents the influence of
gradients of the external cross-flow velocity on vortex-
perturbations development. Were only this column ef-
fective, then A, 41 = :t[( +( N2 112 for ev-
ery n(n = 1,--+, N), where Eqs (7 (17) were used. It
means that each vortex displacement would tend to
grow exponentially in time under external cross-flow
gradients, independent of the other vortex displace-
ments and with a growth rate (\,), that is equal to the
rate of deformation of the basic-state cross-flow field at
the'vortex basic-state position.

The third column on the right-hand side of Eqs. (89)
represents the influence of the vortices basic-state po-
sitionson the perturbations of a specific vortex. Were
only this influence effective, then when the vortex basic
state motion is steady,

N

Anngr = [Z 5

m=1

1/2 (90)

for every n = 1,---, N. It means that each vortex dis-
placement would tend to grow exponentially in time
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under the influence of the vortex basic-state flow, in-
dependent of the other vortex displacements and with
a growth rate (An), that is equal to the rate of defor-
mation that the other vortices induce on the basic-state
flow at a specific vortex basic-state position.

The fourth column on the right-hand side of Egs. (89)
represents the influence of the basicstate sources Qg dis-

tributed over the surfaces fr = 0 on the perturbations
of a specific vortex. Were only this influence effective
ina steady basic-state, then,

[ ry

IE 0 (B2 = G120) SO e

Vrr

’\n,n+1 =

2y 172 (91)

+ /QOG RroH o S (870 )by

for every n = 1,---,N. It means that each vortex
displacement would tend to grow exponentially under
the influence of basic-state sources, independent of. the
other vortex displacements and with a growth rate (An),
that is equal to the rate of deformation that the sources
Qo induceon a specific basic state position of a vortex.

The fifth column on the right-hand side of Eqgs. (89)
represents the self-induction effect on the perturbation.
Were only this column effective then (A) would be A, n 5
*1 —“(g)zlw(é )| for every n = 1,.--, N, and the distur-
bances of each vortex would de;velop into independently
stable and bounded oscillations. The nature of the os-
cillations would depend on the initial phase difference
between §, and 2,,. Two modes, a helical vortex lineor a
rotating sinusoidal curve, could be developed. For slen-
der vortices (C;? <« 1) the second column must dom-
inate the other columns, since w(é,) (Eqs. (63)) grows
like ¢n(1/68,) when 6, becomes small.

The sixth column on the right-hand side of Egs. (89)
represents the interaction of a perturbed vortex with the
surface frp = 0. Were only this interaction effective
ina steadybasic-state, then,

Ry
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for every n = 1,---,N. The growth rates A, ,4+1 of
Eq. (92) can be either real, where perturbations tend
to grow exponentially, or purely imaginary, where the

disturbances would develop into stable and bounded os-
cillations.



The seventh column on the right-hand side of Eqs(89)
represents the influence that all the perturbed vortices
in the flow field exert on the basic-state position of a
specific vortex. This interaction depends on the wave
number [ of the perturbations, the various circulations
(Tr), surface shape of fr = 0, and the solution of the
source functions Qym,@:m- This interaction can result
in either stable bounded oscillations or growing insta-
bilities.

The eight column on the right-hand side of Eqgs. (89)
represents the influence of the imposed perturbations
along the solid surfaces and their rate of change with
time, on the development of vortex perturbations. This
influence dependson the function R;(43,t). Under cer-
tain conditions it may result in a static instability (see
Section 5 and Rusak and Seginer!®). Also,using the
time-dependent perturbations to the solid surfaces as a
controller results in a new approach to the control of
vortex systems stability (See Section 6 and Rusak and
Seginer!®).

To summarize, the stability of the vortex system
is influenced by the stabilizing effects of the constant
streamwise component of the external flow and of the
self-induced velocity, and by the destabilizing effects
of the external cross-flow field and the interactions be-
tween the perturbed vortices and the basic-state flow.

5. Dynamic and Static Stability of Vortex

Systems »
Dynamic and Static Stability

5.1

Using the stability definition in Section 4.2, the
basic-state dynamics of a vortex system are defined as
dynamically stable (or unstable)if theystable (or unsta-
ble) according to Liapunov under effects that depend on
the change of the vortex perturbations with time (dy-
namic effects). It is defined as statically unstable if
the instability is not caused by dynamic effects.

This section deals only with flows that have a steady
or quasi-steady (self-preserving configuration) basicstate,
and R, is a general oscillatory perturbation to the solid
surfaces. In these cases the matrices A and B are inva-
riant in time¢ and Eq. (73) can be solved analytically,
and the stability of the basic state can be determined
from the solution for the development of the perturba-
tions along the vortex filaments.

The solution of Eq. (73) is composed of a character-
istic solution of the free (unforced, i.e. Ry = 0,d =0)
problem, and of a particular solution of the forced prob-
lem. The characteristic solution comprises 2N modes
of the development in time of the perturbations. The
growth rate of these perturbations depends on the char-
acters of the 2V eigenvalues, A\;(8)() = 1,---,2N), of
the matrix A(3). Using Eq. (78), the eigenvalues A;(3)
are given by A;(8) = ~i5U + A1;(B), where Ay;(3) are
the 2N eigenvalues of the matrix 4:(3).
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Dynamic instability develops at a certain wave num-
ber 3, when the real part of any one of the eigenvalues
A1;(B) is positive at this wave number. On the other
hand, when the real parts of all 2N eigenvalues A1;(3)
are non-positive, the vortex system is dynamically sta-
ble.

The particular solution of Eq. (73) that is forced by
a general oscillating perturbation R,(8,t) = Ri(8)e***
to the solid surfaces (where R,(3) and a are the am-
plitude and frequency of the perturbation) is given for
every 3 and a by,

Y, = ~A7Y(8,0)B(B)r*(a)Ri(B)e’*
when det{A(3,a)] # 0, or by

(93a)

v, = [B(Ba) + Bo(ﬂ,ao] B(B)* () Ru(B)e"
(930)
when det[A(3, a)] = 0.

In Eqgs. (93) the matrix A(B,a) and vector r*(c)
are given by,

A(B,0) = A(B) - ial = Ay(B) 50T, T = (Lia)
(94)

where U = U + U,, and U, is the phase speed of
the traveling perturbation R; at wave number 8,U, =

al/B.

The matrices By(8,a), Bo(8,a) in Eq. (93b) are
given by,

[AZN—I AN AN 4 A +a!1-]

(95)
1. N o
By(B,a) = a:[A“M + AN AN 4 G A + @)

Bl(ﬂsa) =

e

where @; are the coefficients of the characteristic equa-
tion of the matrix AB),
det]M\—A(B)) = AN +agn AV 4o a@ A +a =0,
where Gy = det[4(3)]. Eqgs. (95) are obtained by using
the Cayley-Hamilton theorem (Bellman®!). A similar
particular solution is found when the disturbance vec-
tor d(3,t) has a general oscillatory form, d = d(8)e'et.

Equation (93b) proves that when det[A(34, a)] van-
ishes at a specific wave number (34, and when the oscil-
latory forcing vectors B(B4)r*(a)R1(84) or d(84) exist
a static instability can occur at this wave-number. This
phenomenon can  be: defined as the
“Divergence of the vortex system”. To the best of the
author’s knowledge, such a phenomenon was never iden-
tified before, in any of the known stability analyses of
vortex systems.

The divergence condition det[A(S, )] = 0 and Eq(94)
show that divergence can happen only at wave numbers
B34 for which the eigenvalues of the matrix A,(3) are
purely imaginary. However, having the freedom to choose
any frequency a of the forcing oscillation, it is concluded
that a static instability can occur at every wave number
B for which the matrix A has purely imaginary eigen-
values, Re[A1;(8)] = 0, where



a= —%U + Im[A;(8)) (96a)

Significantly, the vortex system tends to diverge
statically under the action of oscillating forcing pertur-
bations, at every wave number where it is dynamically
stable!

Of specific interest is the case where the perturba-
tions Ry or d are steady, @ = 0 (or U, = 0). Then 4 =
A, U =U and divergence can occur when det[4(3)] =
0 (Rusak and Seginer’®). It means that a vortex system
tendsto diverge statically under a steady perturbation
at specific wave numbers 84 for which,

RelA;(B0) =0 and B = Imh(B0)]  (965)

5.3 Physical Model

When Eq. (73) can be reduced to a two-rank prob-
lem, the time-invariant matrices A(3) and B(f) are
2 x 2-dimensional. The terms in Eq. (73) can in this
case be written in the following form,

b b
A:Al—i%UI,/h:[an alz]’ B=[“ 12}
a

21 —ar1 ba1  ba

c h . R, 5 dy
Y = = N =

(m)’ f (anx/at)‘ d= <d2)

(97)

where the components of matrices 4; and B are not
functions of the time t. It has to be emphasized at this
point, that the analyses of most of the above-mentioned
two-dimensional stability problems,>~% and of all the
above-mentioned three-dimensional problems,®~!3 can
be reduced to solutions of two-rank problems described
by Egs. (73) and (97).

It can be shown, after performing Laplace transfor-
mations, that Egs. (73) and (97) are in this case equiv-
alent to the following second-order, linear differential
equations for each of the components of the displace-
ments vector Y (for any 8), (j =1,2

29/t +24(8/0)U 0g;/ Ot+det[A(8))g; = &(8,1),

(98)
where €;(8,t) are the forcing functions that depend on
the components of matrices A(p),

B(8), on Ry, on vector d and on the initial conditions
of §;.

The solution of Eq. (98) is composed of a charac-
teristic solution of the free (unforced) problem (¢; = 0),
and of a particular solution of the forced problem. The
characteristic solution comprises two modes. The de-
velopment in time of the perturbations in these modes
depends on the characters of the eigenvalues (A 5) of
the matrix 4(0),

A2 =—i(B/0U £ vV a}; + ajzan (99)

The particular solution of Eq. (98) depends on the func-
tional form of é;(3,t). When &;{(8,t) has an oscilla-
tory form, é; = &;(3)e'™, the respective solution §;, =
;p(8,t)e'*! results from the following equation,

Bijp/ 0t +2 (lé ) 8§55/t + det[A(8, @)]g;p = &(B)

(100a)
and is,
Jip = -ﬁ%—%—;emt when det[A(8,a)] #0
or (1006)
Gip = [ z%(/ﬂf)) t+b,o] ot when det{A(B,a)] = 0
or and AU # 0

Jip = [%éj(ﬂ)tz +bjit + bjo} e'* when (llet[/i(ﬂ,a)] =0
and U =0

where A(3,a) and U are given by Egs. (94) and bjo, bj1

are determined by the initial conditions. It is again

obvious from Eqgs. (100b), that when det{A(8,a] = 0

and when the forcing functions ¢; are oscillatory, a static

instability can occur.

Equations (99)(100) give a new physical meaning to
the stability, or to the development of perturbations of
a vortex system. For each value of 8 and a, let us define
the following parameters (that are new in the context
of vortex-stability analysis):

a. the “Rigidity of the vortex system”
K,(8,a) = det[A(3, a))

b. the “Damping of the vortex system” Cy(f,a) =
W(B8/0OU

c. the “Generalized damping of the vortex system”

C3(8) = (C? - Ku).

Using an analogy to the solid-mechanics model of
a unit point mass on a spring with a damper, a simi-
lar physical model can be proposed for a vortex system.
The development of the perturbations to the vortex lines
relative to the basic state (for each value of 8 and a), re-
sembles the kinematics of a unit point mass on a spring
of rigidity K, (,B,a) with a damper C,(3,a) (Fig. 1).
Of spec1ﬁc interest is the case a =0 or (U, = 0) where

A =40 =U and K, = det A(3).C, = 15U (see
Eq. (98))‘

The stability of the vortex system can now be easily
deduced from this model by the well known and under-
stood classic rules of the kinematics of the equivalent
mechanical system:

I. The dynamic stability of a given basic state of a
vortex system is governed, according to Eq. (99), by
the generalized damping C? of the vortex system (which
from its definition (c) above is C? = a?; + a12021)-

La) Atevery value of 3 for which the generalized damp-
ing is positive (C2 > 0), one of the eigenvalues of A,(8)



has a positive real component. This indicates that the
oscillatory development of the perturbation at these wave
numbers with frequency -‘;U , has a tendency to grow
exponentially in time, which also means dynamic linear
instability (Fig. 2.1).

Lb) If, for a certain wave number (3), the general-
ized damping vanishes, (C? = 0), the two eigenvalues
of A;(B) coincide. The oscillating perturbations with
the frequency %U in this case usually have a tendency
to grow linearly in time, which is defined here as the
“Threshold of Stability” (Fig. 2.2).

Lc) At all wave numbers §, for which the generalized
damping is negative, (C? < 0), the two eigenvalues of
A.(3) are imaginary and, A13 = —z'-‘lgU +|{Cy|. The
perturbations are then bounded and develop as two dis-
placement waves along the vortex lines, and the vortex
system is neutrally stable (Fig. 2.3).

II. The static stability of the basic state of a vor-
tex system is governed, according to Eqs. (100), by
the rigidity K, of the system. When, for a certain
wave number 84 and frequency a the rigidity vanishes,
(K, = 0), a static instability can occur. As mentioned
in Section 5.1 this phenomenon can be defined as the
“Divergence of the Vortex System”, because it resem-
bles the divergence of the analogous mechanical system
(e.g. the aeroelastic divergence of an aircraft wing).
The condition for the divergence of the vortex system
is, according to Eqgs. (97)

2
(é0> +a%, +apay =0 (101a)

4
Eq. (101a) shows that the divergence is strongly affected
by the U component. Divergence can occur at every 8
for which C? < 0, and the oscillating perturbations have
a frequency a = %U’ +{C%(B)| and tend to grow linearly
in time, similarity to the “threshold of stability” case
(Fig. 2.2). However on the specific case when a = 0
(a steady forcing perturbation) divergence develops as
a standing wave at a specific 3, that is given by,

B4, \° | ~
(fv) +C(8a) =0 (1016)
and the amplitude of which tends to grow linearly in
time (see Eqs. (100b) and Fig. 2.4). Eq. (101b) shows
that divergence under a steady forcing is strongly af-
fected by the U component of the external flow.

Egs. (99)(101a) also show that the characteristic
solution under divergence conditions is always dynam-
ically stable, and is composed of the two waves that
travel with group velocities of U, and 2U+U,. Eqs. (100)
indicate that divergence is not just a local phenomenon
at a specific 84, but also that the disturbances tend to
grow statically to infinite values in the vicinit‘y of 34,
when the wave number 8 approaches this value.

It is interesting to note that in two-dimensional sta-
bility problems (for which B = 0), or in three-dimensional
problems when U = 0, the conditions for the stability

threshold and for divergence coincide. This may explain
why static instability was never before identified in any
of the known two-dimensional or three-dimensional sta-
bility analyses.

In summary, when the basic state is steady, and
when the vortex perturbation equations can be reduced
to two-rank problems, the vortex system can suffer ei-
ther a dynamic instability when the generalized damp-
ing is positive, C—’E > 0, or a static divergence under an
oscillating perturbation when the generalized damping

is negative, C? < 0 and the rigidity vanishes, K, = 0 !

The application of these new model and concepts
to several basic vortex flows, (Rusak'* and Rusak and
Seginer!%32.33) demonstrates that a vortex system can
tend to diverge statically, as well as to develop dynamic
instabilities.

This work is, to the best of the author’s knowledge,
the first in which the divergence of a vortex system was
identified as part of its stability characteristics. The di-
vergence phenomenon in vortex systems has to be con-
sidered in all future vortex stability analyses.

6. The Control of Vortex Systems Stability

6.1 Control Theory Approach

When an equation for the output ?c of the mea-
surement of Y at every 3:

Y. (8,t) = C(8,t)Y(B,t) (102)

is added, Eqs. (73) and (102) have the general form of
the basic equations of the classic linear control theory
(Kwakernaak and Sivan?®), where Y is the state-vari-
able vector, A(S,t) is the system matrix, #(3,t) is the
input or control vector, B(3,t) is the control matrix, Y,
is the measurement vector and C(f3,t) is the measure-
ment matrix. Following Kwakernaak and Sivan®®, the
concepts of “Controllability” and “Observability” can
now be defined:

a) A vortex system is defined as “controllable” at a
certain wave number 3, if the disturbances state vector
Y (B,t) can be transferred from its initial state at any
time tg, to any terminal state at time ¢;, within a finite
time interval ¢, — tg.

b) A vortex system is defined as “observable” (or
“reconstructible”) at a certain wave number 3, if for
every time t,, there exists a time ¢y within the interval
—o0 < tg < ty, such that for all £(3,t) and ¢ <t < ¢y,
the condition Y (¢, to, Yo(B, to), £) = Ye(t, to, Y5(B,t0), F)
implies that Y, = Y} (where Y4(8,t0) is the initial
condition at time tp).

Controllability means that the perturbations along
the vortex lines can, for a given 3, be steered from one
given state to any other state. It can be shown!? that
a vortex system that is steady in its basic state, is con-
trollable at a certain wave number 3 if, and only if, the



rank [P(8)] of the controllability matrix P(3) equals
2N, where

P(8)=|B,AB,.--, A'™"'B]  (103)

In this case, the unstable modes of the disturbances
to the vortex filaments, can theoretically be stabilized.
Following Kwakernaak and Sivan?® a controllability cri-
terion can be found also in the general case where the
basic state is unsteady (Rusak!?).

Observability means that the behaviour of all the
disturbances state vector Y can be determined by the
behaviour of the output-measurement vector Y. Ob-
servability also includes the determination of the mini-
mum number of parameters that have to be measured
for the reconstruction of the behaviour of the pertur-
bations. It can be shown!* that a vortex system that
is steady in its basic state, is observable if, and only if,
the rank [Q(3)] of the observability matrix Q(8) equals
2N, where

Q(f) = [CT,ATCT, .. (AN )T CT] (104)

Following Kwakernaak and Sivan?® an observability
criterion can be derived alsoin the general case where
the basic state is unsteady (Rusak!?).

When the problem described by Eq. (73) can be re-
duced to a two-rank problem, the time-invariant matri-
ces A(3) and B(f) are 2 x 2-dimensional and the matrix
c(a) is
1 x 2-dimensional. The terms in Eq. (73) are described
by Egs. (97) and those in Eq. (102) are given by,

Yc = [ycll’ C = [Cl, Cz]

Sufficient conditions for the controllability of this vortex
system at a certain wave number 3 are,

det B(8) = by1bas — biabyy #0

(105)

or
an bl — 2a11by1byy — arb3; #0 (106)
and the condition for observability of this vortex system

at a certain wave number 8, by measuring one param-
eter §c only, is:
det Q(8) = @12C? —2a11C1Ca — anC; #0  (107)

6.2 Active Control of Vortex Stability

The new control-theory approach to vortex-system
stability that has presented above, introduces the
possibility of actively controlling vortex stability by two
basic classic methods.

The first method of controlling a vortex-system sta-
bility is in an open-loop mode. This method is derived
directly from Eq. (73), and uses an apriori known sur-
face oscillation Ri(zg,t) to control the development of
the disturbances along the vortex system. When the
basic vortex state is steady, or quasi-steady, a Laplace
transform of Eq. (73) gives the following transfer func-
tion for each §:

276

2(0.5) = 1s1-4@1 {B6) [ | 26.9)

+Yo(8) +d(B, S)} (108)

where § is the Laplace-transform variable. A descrip-
tion of the open-loop scheme in this case is shown in
Fig. 3 Such a control method can be applied only at
wave numbers 8 when the system is controllable
according to the criteria defined above.

The second control method is in a closed-loop
feedback mode (Fig. 4), that can be derived from
Eqs. (73) and (102), together with an appropriate control-
law in the general form of:

Rl(ﬂ9t) = H{?c(ﬂ,t)} (109)

where H is a control operator that acts on the output
vector Y(8,t). In this method the vortex disturbances
Y(B,t) are measured (Eq. (102)) at each wave number
B. The resulting measured data Y(4,t) are used by
the control operator in a feed-back loop to activate sur-
face oscillations R,(8,t) in order to control the vortex
disturbances vector Y(5,t).

When the basic vortex state is steady, or quasi-
steady, and when H is a time-invariant linear control
operator, a Laplace transform of Eqs. (73), (102} and
(109) resuits, at each 8, in:

SY(8,9) = A(B)Y(8,5) + B(B)¥(B,5)
+Yo(8) +4d(8,5)
Y.(8,5) = C(B)Y(8,5)
{110)
Ry(8,5) = H(B)Y.(8,5)

5.5 = | 3| 205.5)

The controlled vortex disturbances are character-
ized by the eigenvalue of the controlled matrix,

Ac(B) = [I-b2(B)H(B)C(8)) ' [A(B)+b1(B)H(B)C(B)]

(111)
where by(f),ba(8) are the column vectors of matrix

B(8) : B(8) = [b1(B)[b2(8)).

The closed-loop feed-back contro]l can be applied
only at wave numbers § when the system is

controllable and observable according to the criteria
defined above.

8.3 Summary

The linear equations, that describe the linear three-
dimensional stability of vortex systems near a parallel
surface have the general form of the classic linear con-
trol equations,with unsteady surface oscillations as the



controller. “Controllability” and “Observability” of a
vortex-system stability are defined by the classic crite-
ria of the linear control theory. Criteria for the analysis
of the control of vortex systems, result in a proposed
method of actively controlling the vortex stability. The
methods of open-loop control and of closed-loop with
feed-back control are presented for vortex svstems. The

examples shown
Seginer

in Rusak'* and Rusak and

16,3233 demonstrate the powerful potential of

the new combined theories of vortex stability and con-
trol. Using active solid-surface oscillations, a control
law is proposed for the closed-loop method, to suppress
or to amplify at will the well-known Crow instability of
a vortex moving near a straight plane (see Rusak and

Seginer®).
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