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Abstract

The problem of four-dimensional fuel-optimal
flight into and out of a terminal area is studied
using a reduced-order (energy state) system for-
mulation. The Minimum Principle of Optimal Control
Theory is employed to generate climb-out and
descent extremals (turning and nonturning) in the
form of a three-parameter family. Extremals that
pass through specified end conditions at a specif-
ied time can be obtained by searching in the
three-dimensional parameter-space. The trajectory-
family structure allows significant insight into
the energy management features of four-dimensional
fuel-optimal flight. Numerical examples are given
to illustrate these energy management features, as
well as to quantify the penalties in fuel consump-
tion which result from operational (ATC) con-
straints.

I. Introduction

Aircraft approaching a high density Terminal
Area (TMA) are often confronted with unforeseen
delays. In order to absorb such time delays, ATC
generally enforces route extensions or holdings,
which obviously results in a significant waste of
fuel. Time-based traffic management procedures
hold the key to solving such problems by assigning
each arriving aircraft a landing time as early as
possible. Indeed, if a reassigned arrival time can
be made available early during the flight, then
revised trajectories can be generated to absorb
time in a fuel-efficient manner. These potential
fuel-savings have spurred a considerable research
interest into Four-Dimensional {(4-D) guidance
systems in recent years. The feasibility of 4-D
guidance algorithms has already been demonstrated
in experimental investigations, however, the main
focus was on time-based metering rather than on
fuel-optimality [1].

By specifying total fuel consumption as the
Performance Index, the 4-D terminal area trajec-
tory problem can be analyzed as a fixed-time
Optimal Control problem. Unfortunately, however,
application of Optimal Control Theory to a point-
mass-vehicle dynamic model results in a Two-Point-
Boundary~Value Problem (TPBVP) which is known to
be of a formidable computational complexity. For
this reason, reduced-order concepts, in which
dynamics that are believed to have little effect
on the solution behavior are neglected, have
received considerable attention.

The earliest and best-known reduced-order
concept is that of energy-state [2]. This ‘concept
makes use of total energy as a state variable and
reductions of model-order by ignoring altitude and
path-angle dynamics. In the area of transport
aircraft performance optimization, energy-state

Copyright © 1990 by ICAS and ATAA. All rights reserved.

approximations along the lines of Erzberger et.
al. [3] have formed the basis for fuel savings
systems on many commercial aircraft. In more
recent studies involving flight in a vertical
plane, Erzberger's energy state approximation was
extended to include a fixed time-of-arrival
{4,5,6].

Terminal-area minimum-fuel climb-out and de-
scent problems are rather difficult to solve,
because vertical and horizontal maneuvers involv-
ing speed, altitude and heading changes, which are
all of comparable significance in influencing
fuel-consumption, occur simultaneously. This
precludes model-order reductions beyond a fourth-
order system, if the most important dynamic ef-
fects are to be taken into account. For this
reason, the analysis of terminal area maneuvers
based on complete three-dimensional problem for-
mulations has received modest attention only. In
Refs. 7 and 8, time-free minimum-fuel three-dimen-
sional flight paths have been computed using a
performance model intermediate in complexity
between the energy-state and full-order point mass
vehicle models. However, only representative
flight paths below 10,000 ft altitude have been
generated using an extremal field approach,

This paper documents the outcome of a research
effort in which the terminal area trajectory
optimization problem is treated in reduced-order
approximation, using the fourth-order "energy-
state" system model of Ref.2. Since the capability
to absorb time is proportional to how long in
advance the arrival time is known, an extended
Terminal Area (200-250 km) was considered, motiva-
ted by the so-called "Zone of Convergence" concept
of Benoit et. al. [9]. Realistic propulsion and
aerodynamic models, representative of a jet trans-
port, have been used in the computations. In
addition, the most important performance and
operational (ATC) constraints have been taken in
account.

Representative climb-out and descent trajec-
tories can be generated in the form of a three-
parameter family. Two-Point-Boundary-Value Pro-
blems are then solved by performing a search in
this three-dimensional parameter-space.

The present investigations are essentially
theoretical in nature and primarily aimed at
obtaining insight into the energy management
features of U4-D fuel-optimal flight. Indeed, the
observed structure of trajectory-families allows
the essential energy nmanagement features, i.e.,
the characteristics that provide most of the fuel
savings, to be identified. Eventually, this in-
sight may be beneficially exploited in the develo-
pment of sub-optimal algorithms that can be imple-
mented on board. The current investigation
provides standards against which such developments
can be evaluated. In addition, it is possible to
assess the penalties in fuel consumption which are
brought about by operational (ATC) constraints.
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II. Optimal Control Formulation

Equations of Motion

The three-dimensional energy-state model is
described by the following equations [2,10]:

.

x = V cosX {1)
y = V sinx (2)
E = V(T - D)/W (3)
1 = (g/V)Lsinu/W (4)

Here the states are, x and y the position coor-
dinates in the horizontal plane, E the specific
energy and X the heading angle. It is assumed that
the aerodynamic forces have the form:

L(h,v.C;) c as (5)

D(h,V,C;) = (€ [ () « KNG ® + €aC }aS . (6)

where £ is the speedbrake setting and gACD ac-

counts for the speedbrake incremental drag. The
equations of motion embody the assumptions of a
constant-weight vehicle with thrust directed along
the flight path and coordinated turns. The condi-
tion of force equilibrium in the vertical plane,
which results from the order-reduction (i.e.,
neglecting the path angle dynamics), relates the

1lift coefficient CL to the bank angle u through:

(C aS)cosp = W (7

The thrust T is constrained to be between idle and
maximum allowable settings:

Tmin(M’h) STES Tmax(M'h) (8)

The throttle setting n, defined as:

T- Tmin
nET T o ®)

max min

is introduced to serve as one of the aircraft's
control variables. Thrust T in Eq.{3) can then be
written as:

T = n[Tmax(M,h) - Tmin(M,h)) + T in{Mh)  (10)

Obviously the permissible range of n is 0 £ n § 1.
The three remaining control variables are bank
angle p , altitude h and speedbrake setting §
(also with permissible range, O £ £ £ 1). Airspeed
V is to be merely regarded as a function of con-
trol h and state E:

v =(2g(E-h))1/? (11)

The inequality constraints on the state and con-
trol variables are specified by:

g, =h - hT 20 {terrain limit) {12)
B, =y -a20 (Vo limit) (13)
By = My - M 20 (Myo limit) (14)

p, = cosp - W/(qscL )y 2 0 (lift limit)  (15)
max

(bank angle limit)
{16)

Bg = cosp = cosp o 20

B =n(l-n) 20 (throttle setting

limits) (17)

(speedbrake setting
limits) (18)

B, =E(L~%)20

In addition to the constraints (12) through (18),
there are also operational constraints involving
the flight path angle (or rate of climb/descent).
Unfortunately, however, these constraints can not
be directly enforced, simply because flight path
angle is not a variable in the energy-state model.
However, it is possible to examine possible viola-
tions of these constraints a posteriori, once the
solution in the (V,h)-=space has been established.
Moreover, these constraints can be imposed in-
directly by introducing additional constraints in
the (V,h)-space.

Figure 1 shows several of the constraints in
the (V,h)-space for the aircraft model used in the
numerical examples. The aircraft model concerns a
Lockheed C-141 type of jet transport [11]. A
description of this model, a modified version of
the model of Ref.12, is given in the Appendix.

Also shown in Figure 1 is the FAA imposed
constraint which states that the indicated
airspeed in the terminal area must not exceed 250
kts, below an altitude of 10,000 ft. This
constraint has been enforced in some of the
numerical examples.

The so-called "corner-velocity" locus indicated
in Figure 1, will play an important part in the
analysis that follows. The corner velocity is
defined as the velocity at a given energy level at
which the constraints in Egs.(15) and (16) are met
simultaneously:

Vé(E) = [2W/(pSCL cosp,
max

The significance of the corner-velocity locus is
two-fold. Firstly, this curve represents the locus
of maximum instantaneous turn rate. Secondly, this
curve separates two distinct regions in the (V,h)-
space: to the left of the locus the 1lift coeffi-
cient is constrained by the 1ift limit; to the
right of the locus the 1lift coefficient is limited
by the maximum allowable bank angle.

The loft ceiling indicated in Figure 1, repre-
sents the maximum altitude that can be attained at

any given energy level, without violating the lift
limit in Eq.(15).

ax)) (19)
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Problem Statement

The equations of motion are written in a coor-
dinate frame that has its origin at the entry
point (descent) or exit point (climb-out) at the
boundary of the TMA. For the descent this is
illustrated in Figure 2. Within the context of the
current investigation, descent flight paths are
those flight paths that start at the TMA boundary
(entry fix) from a specified cruise energy level
and that end on the centerline extension of the
approach runway (metering fix) with the proper
final heading, ehergy and time-of-arrival. The
orientation of the reference frame is such that
the line connecting the entry fix and the metering
fix has a direction relative to the x-axis (see
Figure 2):

X, = arctan (y(tf)/x(tf)l (20)

Since the final cross-range is generally very
small compared to the final down-range ({typically,

L < 1°), the assumption xX.® R seems justified,

f
where R is the radius of the extended TMA.

The optimal descent problem to be solved is
thus to determine the controls n,g,u,h such that
starting from the initial conditions:

x(ty) =0, ylt,) =0,

E(t,) = E (21)

cr
the aircraft reaches the final conditions:

x(tf) =R, E(tf) = Ef , X(tf) = Xp (22)

while minimizing the total fuel consumption:
Toudey) = | Pty at (23)
= Hpttp) = Jg oWH, ,

where tf

flow rate ¢ is modeled by [12]:

is the assigned arrival time. The fuel

o(h,M,T) = K, (M,h) + K, (M,h)T + K, (M,h)T° (24)

At this stage it is noted that neither the
initial heading X(t,) nor the final cross-range

y(t,) are specified as boundary conditions. The
f

reason for this particular problem formulation
will become apparent in subsequent analysis.

The optimal climb-out problem can be formulated
in an entirely analogous fashion. It is obvious,
however, that the initial and terminal boundary
conditions in Egs.(21) and (22) need to be
“*switched":

x(t,) =

[
|
=

X(t) =%,  (25)

x(tf) 0, y(tf) =0, E(tf) = Eér: (26)

Note that, in contrast to the descent problem
formulation, the x-axis of the reference frame is
pointing outward in the climb-out problem.

Necessary Conditions for Optimality

The variational Hamiltonian can be formed in
the usual fashion [13]:

H=o0 + AchosX + AstinX + AEV(T - D)/W +
Ay (g/V) tany (27)

In order to facilitate treatment of the inequality
constraints by the technique of Valentine, the
augmented Hamiltonian is introduced [2]:

_ 7
H=H+7} Ay (28)
j=1

where the Aj‘s are multipliers satisfying the

conditions:

A, <O, if B, = 0
3 iRy

Ay =0, if g, >0, J= 1,...7 (29)

The necessary conditions of optimality include the
adjoint equations:

. 3l

A= =0 (30)
. 3H

A:--—:O 1
. oy (31)
A= - L) A_VsinXx - A_VcosX (32)
X~ Tx y

s gﬁ _ _ 3 _ _ . _
Ag = =55 = = 35 = A l&/V)cosx Ay(g/V)mnx

- A&/ (T = D)W~ ag(v/wTP)

4 ap .
+ A (&°/v%) tany Y = @

It is worth noting that only three multipliers
actually enter the adjoint equations.

The unspecified boundary conditions lead to the
following transversality conditions:

©®

Ay(tf) 0, Ax(tu) =0 (descent)

)‘y(tn)

1t
o

{climb-out) (34)

o, Ax(tf)

A substantial simplification of the TPBVP is
obtained by closed form integration of the adjoint
Egs.{30)~(32). Using the boundary and transver-
sality conditions, the following expressions
result [14]:

Ay = Constant , Ay =0, A=Ay (35)

The Minimum Principle can be used to express the
optimal controls in terms of the state and adjoint
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variables. The conditions determining the optimal
controls and the multipliers are:

3H _ aH _ aH _ o el _
=0, 3;=0,3,0,5,=0 (36)

For the optimal throttle setting, the first ex-
pression in Eq.(36) leads to:

*
n =1 ifn 21

LN if0<n<t

= i <
0 if n, $ o, (37)
where:
oo K, + ZK’Tmin +AE(V/W) o
u 2K, (T -T . (38)
max min

It is readily observed that, since both K, and K,

are greater than zero, interior throttle setting
n = nu can only occur if AE < 0. Moreover, if

AE > 0, the optimal throttle setting must be:

n = 0.
The optimal speedbrake setting is found from
the second expression in Eq.(36):

*

g =1 if AE >0

0 if A; <O, (39)

The extremal bank angle is found by minimizing H
with respect to p and is given by:

* - -
= i 2
u p if M, 2w and Ap <0

=, if -u < p<pu and AE <0

=-n if s -p  and Ag < O

n sign(AX) if Ap> 0 and A =0 (o)

X
where:
Axpg
Py = TR_(W/SIK (41)
u = min | arccos(W/(qSCL )], umax] (42)

max

The case AE > 0 and AX = 0 is special, due to the

convexity condition that is violated [2,7,8]. This
nonconvexity can be removed by allowing a
so-called "relaxed control", i.e., a chattering
bank angle p(t), oscillating at infinite frequency

between -u and +p in such a way that a nonturning
flight path results. Although chattering is hardly
practical, it makes sense from an optimal control
point of view in situations which call for maximum

* *
drag at zero thrust (recall that n =0 and § = 1,
if A > 0) to achieve maximum deceleration.

Another approach to resolve violations of the
convexity condition is by introducing additional
artificial constraints [7]. Although this approach
avoids the need for relaxed control, it decreases
the performance. This approach has not been
pursued here.

At each point on the trajectory, the altitude
that minimizes H is found by a numerical one-
dimensional search. The analytic expressions that
have been derived for the three remaining extremal
controls facilitate this possibility. It is noted
that the minimum of H as a function of h will
often exhibit a "cusp", when it occurs at an
altitude corresponding to the corner-velocity.
Consequently, the numerical search should be
performed with grate care. There are generally
four possibilities for a minimum of H at a given
energy level: at the upper altitude limit
(loftceiling), at the corner-velocity locus , at
an interior minimum (3H/3h = 0) or at the lower
altitude limit (which can be either the terrain
limit, the dynamic pressure limit, or the Mach
limit). The value of h that gives the global
minimum of H is taken as the extremal altitude.

The calculation of the multipliers Aj from

Egs.(33) using the Valentine technique, is cer-
tainly not trivial. In particular, the calculation
of these multipliers is complicated by the fact
that some of the constraints can be active simul-
taneously [2].

III.Numerical Results

Calculation of Extremals

Extremals can be computed by numerical integra-
tion of the fifth-order system, consisting of the
state Egs.(1) through (4) and the adjoint Eq.(33),
using the extremal controls derived in the pre-
vious section and starting at the appropriate
boundary conditions.

The computation of descent extremals requires
the specification of the "missing" initial values:

X{ty) ,

Ag(te) o A () (43)

Descent trajectories can then be generated by
integrating the fifth-order system forward in
time, starting at the initial (cruise) conditions
(21).

Climb-out trajectories can be obtained in a
similar fashion, however, now the system is in-
tegrated backward in time, starting at the ter-
minal {cruise) conditions (26). Climb-out trajec-
tories are thus found as functions of time-to-go,
with each extremal specified by the triplet:

X(tf) , AE(tf) R Ax(tf) (44)

Figures 3 and 4 show a typical family of de-
scent extremals. Only one parameter of the triplet
(43) is actually varied, namely the initial head-
ing angle. If the initial heading angle is chosen
identically zero, a nonturning flight path
results. This is not really a surprising result.
Substitution of the transversality condition (34)
in the control Egs.{40) and (41), shows that for
AE < 0:
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plte) = X(t,) = A, (ty) (45)

X

If in addition the initial heading angle is
selected as identically zero, we have from Eq.(32)
that:

(46)

Consequently, bank angle and heading angle will
remain identically zero along the extremal flight
path. It is noted that a significant part of the
trajectory is flown at idle thrust.

The turning members of the trajectory family in
the Figures 3 and 4 (obtained by extremely small
variations in the initial heading angle) all
reveal a similar behavior: starting from the entry
point the trajectories closely follow the central,
nonturning, member of the family, but, when the
turn is initiated altitude increases until the
corner velocity locus is reached. The trajectories
will subsequently "ride" the corner-velocity
locus, with heading increasing and energy decreas-
ing. Obviously, an extremal may follow one of the
lower altitude constraints for some period of
time. In figure 3, for example, one of the ex-
tremals follows the terrain limit for a period of
time.

The results clearly indicate that turning
should generally be performed at low altitude. The
behavior of altitude during the turning phase is
fairly transparent. If the emphasis in the op-
timization process is to be shifted towards high
turning rates, the control actions are such that
the flight is directed towards the corner-velocity
locus, where the instantaneous turn rate is maxi-
mal.

The ground tracks shown in Figure 4 make clear
how sensitive the system actually is to small
variations in the initial heading angle. It is
worth noting that the extremals are symmetric with
respect to the x-axis for positive and negative
values of the initial heading angle. Since ex-

tremals with a heading change larger than 180° are
generally not globally optimal [10], turns are

limited to a heading change of +180°in the present
analysis.

In figure 5, a climb-out trajectory-~family is
shown. It is recalled that climb-out extremals are
obtained by retrograde integration (i.e. in a
direction opposite of that of the arrows). The
energy management features of the climb-out
trajectory-family are not essentially different
from those of the descent family. Similar to the
descent profiles, climb-out trajectories are
generally characterized by a turn at low altitude,
flown at or near the corner-velocity locus.
Despite the fact that full thrust is applied, the
energy rate can be negative during this initial
turn. This is also illustrated in Figure 6.

TPBVP Solutions

Due to the noted sensitivity of the state-Euler
system, finding the extremal that exactly passes
through the specified boundary conditions is
generally a cumbersome computational task.
Fortunately, however, by formulating the optimal
control problem in the special form presented
herein, this task could be significantly al-
leviated. This special problem formulation entails
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such aspects as location and orientation of the
reference frame, specification of boundary condi-
tions and closed form integration of some of the
adjoint equations. In the present effort, Two-
Point-Boundary-Value Problems are solved using a
shooting method.

Descent trajectories are obtained by integrat-
ing the state-Euler system forward in time, start-
ing with guessed values for the triplet in Eq.(43)
and terminating when the assigned time of arrival
has been reached. The guessed values are then
iteratively adjusted until the terminal conditions
of Eq.(22) are met within a specified tolerance.

Climb-out trajectories are similarly obtained
by a three-parameter search involving the triplet
of Eq.(44), attempting to match the initial condi-
tions of Eq.(25) by using backward integration,

Results for Descent and Climb-Out

Results for a trajectory-family of nonturning
descent profiles are presented in Figures 7
through 11. The parameters and boundary conditions
for the numerical examples are listed in the
Appendix.

Figure 7 illustrates the transit time/fuel burn
relationship for the nonturning descent trajectory
family. It is interesting to note that, since the
arrival time is fixed and the system is
autonomous, the Hamiltonian along an extremal is a
constant. Moreover, this constant can be inter-
preted as [6]:

* aWw_(t,.)
R I (47)
f f
*
That is, H can be interpreted as an increment in

fuel consumption due to an unit increment in

*
flight time. In other words, the value of H is
equal to the slope of the time/fuel consumption
curve, evaluated at the assigned time. The nega-
tive sensitivity of fuel consumption with respect
to flight time is often referred to as cost index
CI. This parameter also plays an important role in
_________ where CI is a
priori specified to represent the ratio of time to
fuel cost [5,6]. In Figure 8, the cost index CI is
shown as a function of assigned arrival time.
Here, CI is expressed in units that are commonly
employed in operational practice.

Two points on the curve of Figure 8 are of
particular interest. Firstly, the point CI 0 is
of interest, since it corresponds to the minimum-
fuel solution in case that the time-of-arrival is
not specified. As can be seen from Figure 7, it
represents the absolute minimum that can be at-
tained for any assigned arrival time. The second
point of interest is the point CI -136. This
point corresponds to the solution with Ax= 0,

which represents the slowest descent profile that
can be obtained without path stretching or holding
[4,6].

Figure 9 shows the nonturning descent-family,
parameterized by time-of-arrival tes in the (V,h)-

space. 1t is observed that some of the faster
trajectories "run" into a lower altitude limit.
These extremals may also exhibit bank angle chat-
tering when flying along the lower altitude con-
straint. It is worth noting that both energy and
altitude may actually increase during the initial



phase of the descent. This is also illustrated in
Figure 10, where the descent flight paths in the
vertical plane are shown.

Figure 11 depicts throttle setting as a func-
tion of down range. Not surprisingly, the largest
initial throttle setting is found for the fastest
descent profile. The throttle setting decays
gradually with down range, and a substantial
fraction of the total range is flown at idle
thrust. For trajectories with a positive cost
index, this fraction increases as the descent
profiles become slower, but decreases for trajec-
tories with a negative cost index.

Results for a trajectory-family of nonturning
climb -out profiles are presented in Figures 7
and 12 through 14. The parameters and boundary
conditions for the numerical examples are ligted
in the Appendix.

In Figure 7, the transit time/fuel burn
relationship for the nonturning climb-out family
is compared with that of the descent trajectory
family, for a comparable range of the cost-index.
Although the TMA considered in the climb-out
cdlculations is somewhat smaller than the TMA
considered in the descent calculations, it is
apparent that the time-absorption capability in
climb-out is considerable less than in descent.

Figure 12 shows some representative members of
the nonturning climb-out family in the (V,h)-
space. Extremals with a negative cost index
exhibit a somewhat strange behavior. The graphs of
throttle setting as a function of range-to-go,
shown in Figure 13, may help to explain this
behavior. The initial throttle setting (range-to-
go = 200 km) is always found to be at its upper
limit. As the climb progresses, throttle setting
is reduced and gradually decreases towards its
level at cruise energy. The throttle setting
leaves its limit earlier during the climb if the
trajectories become slower, however, for climb-out
profiles with a negative cost index, throttle
setting may in fact increase again and even run
into its upper limit as the climb progresses
towards its cruise level. Figure 14 shows some of
the nonturning climb-out trajectories in the
vertical plane.

In addition to calculating nonturning ex-
tremals, we have also performed extensive calcula-
tions involving turning trajectories. Figure 15
shows two extremals with the same boundary condi-
tions (including a specified final heading of

150°), but with a different assigned time-of-
arrival. The fast trajectory exhibits a substan-
tial altitude variation during the turning phase,
which takes place very near to the final energy
level. This is even better illustrated in Figure
16, where altitude is shown as a function of
heading. It is obvious that the altitude behavior
of the fast trajectory is not very realistic.
However, it should be realized that such behavior
is inherent to energy-state modeling. Since in the
energy-state model altitude is a control variable,
it is allowed to change instantaneously and this
does indeed occur occasionally. Large altitude
excursions can be prevented by introducing artifi-
cial altitude constraints, but obviously this
adversely affects the fuel consumption.

Figure 17 presents bank angle as a function of
heading angle for a set of extremals which have
the same boundary conditions, but a different
assigned time-of-arrival. It ig observed that the

slower the trajectory, the larger the heading
angle at which the bank angle limit is reached.

Figure 18 presents energy as a function of
heading for extremals which have the same assigned
time-of-arrival and the same boundary conditions,
except for final heading, which is specified
differently for each extremal shown. It is noted
that the curves shown provide simple covering of
the region between initial and final energy levels
{no point in the considered region has more than
one extremal passing through it). This implies
that, for a given time-of-arrival, the optimal
controls can be uniquely expressed as functions of
energy and heading. This is an attractive feature,
which may eventually help the development of an
on-board feedback guidance system.

One of the possible applications of the present
program is to asses the penalties in fuel consump-
tion due to, e.g., the FAA imposed speed con-
straint of 250 knots IAS on climb-out and descent
paths below 10,000 ft. An example in which
"constrained" and "unconstrained" extremals are
compared, is shown in Figure 19. It's obvious that
the magnitude of the fuel penalty increases as the
assigned time-of-arrival decreases. In Figure 20
this is illustrated by comparing the fuel
consumption of the "unconstrained" nonturning
descent solutions of Figure 7, with that of the
corresponding "constrained" solutions. QObviously,
for slow descent profiles the constraint is never
encountered, so that the constrained and
unconstrained solutions are identical.

IV. Conclusions

A program has been developed, capable of com-
puting 4D fuel-optimal climb-out and descent
trajectories in the Terminal Area. A reduced-order
performance model has been used, which considers
the important dynamic effects and operational
constraints, while significantly reducing the
required computational effort.

A field of representative climb-out and descent
extremals can be generated in the form of a three-
parameter family. Extremals that pass through
specified end conditions can be obtained by
searching in the three-dimensional parameter-
space.

It is emphasized that the extremals are merely
candidates for optimality, since they only satisfy
the necessary conditions. However, since the

amount of heading change is limited to 180°, it is
likely that the extremals are also globally op-
timum.

It is a well-known fact that the calculation of
the extremals is very sensitive to the modeling of
drag and propulsion system characteristics. For
this reason, it is desirable to have some of the
current results confirmed by using a different,
preferably more detailed, aircraft model.

The observed trajectory-family structure al-
lowed the essential energy management characteris-
tics to be identified. Occasionally, the extremals
calculated using the simplified system model,
exhibit undesirable features incompatible with
operational practice, such as bank angle chatter-
ing, rapid (possibly instantaneous) altitude
changes, descending turns during climb-out and
climbing turns during descent. Although this
unrealistic behavior can be modified by introduc-
ing additional constraints, this comes at the cost
of an increased fuel consumption. The ability to
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quantify these performance penalties, is one of
the most attractive features of the program.

The insight gained by the present investiga-
tions may be beneficially exploited in the
development of sub-optimal algorithms that can
eventually be implemented on board. The results
obtained herein provide standards against which
such developments can be evaluated.

Appendix: Numerical Values for Boundary
Conditions, Constraints and Model Parameters

In the numerical examples, the modeling ap-
proach and numerical values for the Lockheed C-141
Starlifter jet transport of Ref.l1ll have been
adopted. This model is a modified version of the
model described in Ref.12.

The drag polar of Ref.12 is modified for two
specific reasons. Firstly, to simplify the
analysis, the linear term in CL has been removed

from the drag polar. Secondly, the drag polar is
modified to account for a low speed configuration
(flaps deflected). It is noted that flap setting
is not considered as a separate control variable
in the present analysis. Instead, flap angle is
eliminated from the problem. To this end, for each
flap angle the drag coefficient has been computed
for the lift coefficient corresponding to V,. The

line connecting these points forms an envelope.
Points on this envelope (low speed region) are
used in conjunction with points for zero flap
deflection (high speed region) to fit the drag
polar, yielding:

C, = 0.013 + 8.5x10°%(0.9 - my~2-7 +~

-u.elCLz (a.1)

+ {0.052 + 9.0x1077(0.9 - M)

The fuel flow model of Ref.12 has been modified

as well. The reason for this is that Ref.12

employs a separate fuel flow model for idle

thrust. To ensure smooth fuel flow modeling, a

"composite" model is used here which is the
average of the two models of Ref.12:

otal (0.505 + 0.382xTN+ 0.2U48xM +
+ 0.0096xTN> + 0.346xTNxM +
+ 1.477x4°) 80 (kg/s) (A.2)
where:
™V = T_/(61000) (4.3)

and T is the thrust in N/engine (the C-141 has

four engines). The maximum thrust per engine
(normal rated thrust) is parameterized as:

TH

ax = 1000 (77.57 - 68.23xH - 63.25xM +

+ 0.178XH2 + 81.62xHxM + 42.79XM2 -
= 2.62xHxM - 52.53xHxMZ + 3.34xH2xM)

(A.4)

Tmax(M,h)/4 (N)

H = h/12200 {(m) (A.5)

The minimum normal rated thrust (idle thrust) per
engine is represented by:

TH . = 100 [49.95 - 78.02xH -75.35xM +

min

+ 68.32xH° + 138.69xHxM - 80.95xM° -

- 75.62xH2xM + 61.38xHxM> - 11.12xHoxM2)
= Tyn(MB)/A () (A.6)
Some other aircraft model parameters are:
W= 1145416.7 N , S = 299.9 n° (A.7)

The numerical values for the constraints are:

hp=0m ., au = 27269.113 N/m° | My = 0-83

CL =1.6, Mpax
max

= 30 (A.8)

The numerical values for the boundary condi-
tions in the descent examples are:

Ecr = 12131 m , Ef = 1500 m , R = 250 km

(A.9)
Similarly, the boundary conditions in the climb-
out examples are:

Ecr = 12131 m , E, = 1500 m , R = 200 km (A.10)
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