1CAS-90-2.4.4

THREE REAL-TIME ARCHITECTURES:

A STUDY USING REWARD MODELS

J. A. Sjogren
Air Force Office of Scientific Research
Washington, DC
R. M. Smith*
Yale University
New Haven, Connecticut

Abstract

Numerous applications in the area of computer system
analysis can be effectively studied with Markov reward
models. These models describe the evolutionary behavior
of the computer system by a continuous-time Markov chain
and a reward rate is associated with each state. In
reliability fvailability models, upstates have reward rate 1
and down states have reward rate zero associated with
them. In a combined model of performance and reliability,
the reward rate of a state may be the computational capa-
city, or a related performance measure. Steady-state
expected reward rate and expected instantaneous reward
rate are clearly useful measures which can be extracted
from the Markov reward model. We illustrate the diversity
of areas where Markov reward models may be used with a
comparative study of three examples of interest to the fault
tolerant computing community.

Introduction

Digital computers are playing a critical role in avia-
tion that will only increase in the near future. The com-
mercial Airbus 320 relies on digital control without back-
ups. The F-18 fighter has a quadraplex fly-by-wire system,
with full analog backup, and additional mechanical backup
on pitch and yaw. The JAS-39 Gripen (Royal Swedish Air
Force) uses triplex FBW control, with analog backup.
Sooner or later, FBW technology will be declared mature
enough to dispense with backups altogether, but in the
meantime significant problems remain to be solved.

These issues arise from the very-high dependability
requirements imposed on avionics systems, by comparison
with the reputed high reliability of the aircraft structure for
example. Which fault-tolerant architectures are compatible
with real-time performance? How should software be
certified: through testing and simulation, or by formal
methods of proof?

Today I focus on one of these issues, the relationship
of performance to reliability, and how to work with this

relationship analytically.

A control task, such as an elevator adjustment, should
be completed by its ‘‘hard deadline’’ or else the controlled
plant may be in jeopardy. Thus if performance is too low,
‘‘environmental’’ reliability goes down. To increase per
formance (expressed in KIPS or MIPS) one may add new
components to exploit a resulting pipelined or parallel
architecture. But adding new components leads to a higher
system failure rate, which lowers the ‘‘system’’ reliability.

Thus the performance and reliability measures are
interrelated. One should also not overlook the performance
burden that fault-tolerance features can place on a real-time
architecture. Using the Draper Laboratories’ Fault-Tolerant
Processor, experimenters found a 43% degradation in
throughput, due to the presence of FDIR routines (Fault-
Detection, Isolation, and Reconfiguration) in its operating
system.

We use the term ‘‘dynamic failure’’ to indicate the
condition of a task failing to complete by its deadline.
Many design factors affect the dynamic failure probability.
Hardware capabilities must be taken into account. Also
there is scheduling strategy; whether to use static
(unchanging) or data-dependent dynamic task scheduling.

Certainly the tasks and their workload characteristics
give another critical factor. The execution of a task
imposes a workload on the processor, in terms of computa-
tion cycles needed. This workload is determined by the
program’s branching structure. For example, multiplica-
tion.by zero might be executed more quickly than multipli-
cation by a non-zero floating-point number. Often, the sto-
chastic structure of a task-workload is
represented by a weighted-sum-of-normals distribution
(which is approximated by the discrete distribution induced
by the mean execution time of each program branch). See
Figure 1.

accurately

Clearly the scheduling scheme and task execution
times have an essential bearing on the probability of
dynamic system failure. In general one would want to

achieve a given performance level with minimal

*Supported in part by the NASA Langley Research Center under Grant NAG-1-897.

This _paper is dec]ared a work of the U.S. Government and is
not subject to copyright protection in the United States.

630

Figure 6, should be compared to the model seen in exam-
ple 1. We assume that no work gets done in any of the
recovery or reconfiguration states. The deadline for agree-
ment is exactly T, the data interarrival time (since the pur-
pose of the computer is to reliably disseminate the data to
the four channels). Recall that Y;(z,t) is the distribution of
accumulated reward given that the system started in state 1
with no work having been done. Then

Prob. [The critical workload completes by ¢]

=0ij(z,t) B(z) dz.

Figure 7 shows how an increase in the value of)\, the
failure rate, causes the dynamic failure probability, for the
fixed deadline value T =1.0 to increase as well.

Example 3. Software Fault-tolerance

A ‘“‘Fault-tolerant Software’’ scheme is implemented on the
same system as in Example 1 (subject to intermittent
faults). Program II, is a control routine based on a ‘‘direct
method”’ matrix inversion, and completes as a normal dis-
tribution with mean 6 ms and Std. 2 ms, in other words
N(6, 2); the answer it produces is sufficiently accurate
99.99% of the time. If II; has not finished executing by
time T <10 ms, program II, is started, which utilizes an
iterative matrix algorithm and completes according to a
normal MN(2, .5) distribution; the answer given by II, will
be sufficiently accurate 95% of the time. What is the pro-
bability that we have an accurate answer at 10 ms? We
show the sensitivity of this probability to 7.

The probability of failure is

Prob. [II, does not complete correctly by T] x
Prob. [II, does not complete correctly in 10 — T'].

For II; to complete correctly by T equals ®47)x0.9999
where @, is the probability that IT; completes by T.

Similarly, for T, to complete correctly in 10 — T equals to

$,{(10 — T)X0.95 where ®,(10—T) is the probability that II,
completes in 10—T.

Thus,
(1) = of Y{(z, T)B (z)dz.

where B/(z) is the density function of N(6,2), with a similar
expression for ®,(10-T).

In Figure 8 we show several curves plotting comple-
tion probability against switch-over time; each curve
corresponds to a different variance for the workload distri-
bution of program IL. For the case shown, in the dashed
curve where the variance equals 0.5, we see the

justification for the switeh-over strategy and an optimal
switch-over time of about 6.8 ms. This illustrates the value
of improved understanding of software characteristics in
fault-tolerant system design.

Conclusions and Future Work

We have laid some of the foundations, through the basic
mathematics, the numerical solution methods and their
coded implementation, as well as in modeling techniques,
for the application of Markov reward models to real archi-
tectures. Future work could involve an extension to semi-
Markov reward processes.

Approximate Density of

Workload
Density
4
1
1
Work
Figure 1
PARALLEL FAULT TOLERANT
TASK A TASK B TASK A
P, P, P,
VOTE
Figure 2.

631

unreliability. Architecture comparisons could be done with
these criteria in mind. For example, in the Allied Bendix
MAFT (Multicomputer for Achieving Fault Tolerance), the
redundant nodes can be made to run the same schedule (as
does the F'IP) for greater reliability, or else to run in a dis-
tributed way as a multischedule to inerease throughput.
See Figure 2.

Now that we have identified some of the factors in
‘‘performability analysis’’, let us move on to consider a
few examples, and discuss the solution techniques
employed.

Example 1. Priority Job Arrival

Consider a single-processor system subject to intermittent
faults. Faults arrive at a constant rate A\ =.005, and we
assume that they are instantly detected by built-in self test.
Upon fault detection, the system initiates a rollback and
retry procedure. The retry fails with rate 4 and completes
successfully with rate 104, We initially set v=10.0. Even
when the system ‘‘fails’’, there is a global repair mechan-
ism that completes with rate g =0.50. The Markov model
of system behavior is given in Figure 3. The times spent
in states for this model are exponentially distributed. Often
fault recovery has a sum-of-normals distribution, and our
model would become a semi-Markov model.

Various reliability measures can be extracted from the
model, such as the probability of the system being in the
failed state at a given time . It is natural to imagine that
computational ‘‘work’’ is being done in state 1, but that no
useful work is being done in state 2 (nor in state 3). What
is the probability of z units of work having been done by
time ¢ (mission time)? An important situation oceurs when
a priority job A must be completed. (A pre-empts normal
processing.) Such jobs have a fixed computational require-
ment of 0.75 units (CPU-seconds).

We are interested in the probability that, when a
priority job A arrives, that it will be successfully com-
pleted. This probability depends on which state (fully
functioning, retry, or failed), that the system is in when A
arrives. We assume the system has been running for some
time; therefore, steady-state probabilities accurately
describe the likelihood that the system is in a given state 1.

What is needed, for each of the three states, is the follow-
ing information:

given this initial state, what is the probability that =
units of computational work is done by a deadline (which
we take as T =1.0secs)! These quantities are determined
by solving a set of partial differential equations for

Y(z,1.0) =
{The probability that at most z amount of work has been
done by time 1.0, given that the starting state is 1,

i =1, 2, 3.} This quantity is called the accumulated reward
distribution of the model.

632

The new theory of Markov reward processes shows
that an equivalent problem is to solve a linear system
(involving symbolic variables):

(sI +uR — Q)Y *(u, s) =e,

where R is the reward structure matrix, and @ is the Mar-
kov system failure-recovery structure matrix, and the ¥ * is
the double transform of the vector Y{(z,t), and e is the
“ones’’ column vector. See Figure 4.

The solutions we exhibit here were mainly found by a
semi-symbolic inversion technique developed by R. Smith.
It is an analytic method (closed-form) in the ‘‘time’’ vari-
able s and numerical in the ‘‘reward’”’ u.

Now we are ready to write down the solution to the
priority job completion question. Say that A arrives when
the system is in ‘‘retry’’ (state 2). Then the probability of
there being sufficient computational capacity in the system
to fulfill A’s requirement is

Y£(0.75, 1.0) =1 —Y,(0.75,1.0).

It we call this quantity w,, then taking the other states and
their steady-state probabilities into account we have the
overall priority job completion probability as:

p1wy +powe +p3ws .

Some numerical answers, showing the effect of the param-
eter -y are shown in Figure 5.

Example 2. Byzantine Failure

Adherence to the fault-tolerance concept of input-data con-
sistency requires the computer to transit the average of 4
sensor values to each of 4 computing channels. The chan-
nels perform averaging based on the spread of the values
received initially. Let D =max[s;] —min[s;], where
, 4. The number of agreement rounds required
is ceiling[D| +1. The increased software complexity is
modeled by a workload distribution ~N(0.02, 0.005), units
in CPU-seconds. Experimentation gives the following
discrete distribution for D:

i=1, ---

Value Probability Workload
<1 12 N(0.02, 0.005)
1<D <2 14 N(0.04, 0.01)
2<D <3 18 N(.06, 0.015)
3<D <4 146 N(.08, 0.02)

4 <D 146 N(0.10, 0.025)

The unconditional workload distribution is:

B(z) =1/2-N(0.02, 0.005) +1/4-N(0.04, 0.01) + - - - .
Even if not enough rounds have been completed by the
deadline, the channels may still agree on a particular sensor
value, say that held by the first channel. This is considered
valid unless any one of the channels is experiencing mali-
cious Byzantine failure, whose probability we take as
4/) =0.001. The underlying hardware failure model, seen in

Hardware Failure Model

Data Dissemination Problem

rr =10 4 rr = 0.0 rr = 09
A
= hard failure

recovery
=10 A m =00 = 0.0
- n
Y .
10y hard failure . global repair
\./ —
retry 2 ; gbog’ 0.1, 0.2, 0.5, 1.0
B = 1.0 o
A = 0.005 » 4= 05 . Pro.ba.blhty of
Z = (1),55, 10 global repae T = o1 Byzantine arrival by T ~ 0.001
T = 10 Figure 6
Figure 3
Fixed Mission Time, T = 0.1 seconds
A Dynamic Failure Probability
-2 A 0 1.0 00 0.0 0.05 4.44 x 107°
Q=|107 -1y v |p_| 00 00 00 0.10 4.71 x 10~%
0 b —p 00 00 00 0.20 5.26 x 1075
0.50 6.88 x 108
Figure 4 1.00 9.47 x 10~5
prob. Complating Workload Figure 7 Dynamic Failure Prob varying A
with Mission Time of 1.0 seconds \ A e
Pl oY(t) > x I Mission Success Probabilities
i with transitions to less reliable
1.000 - WORK = 0.75 i Prob program at time T
1.000 | 0.990 |
0.990f . 0.970 |
0.999 | 0.950 |
0.9985 0.930 |
0. 995 | 0.910 4
. . . , — 0.890 |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
WORK

Figure 8

633

