ICAS-90-2.4.3

A Systems Approach to
Avionic Multiprocessing Architectures

J. Dennis Seals
AT&T Bell Laboratories
Whippany, N.J. 07981, USA

Abstract: Commercial, military, and aerospace airframes are
now being developed that require avionics systems with
processing capabilities that rival today's largest supercomputers.
To meet these requirements, avionics designers will have to
address issues such as software support, multiprocessor control,
and open machine architectures as an integral part of the
processing system design. This paper describes a
heterogeneous multiprocessing architecture (support software,
operating system, and hardware) that will meet these real-time
processing requirements and significantly reduce software
development and support costs. The application support
software augments the Ada toolset with a powerful graph
language that functions as a program design language and, in
many cases, is machine-translatable into Ada code. A hybrid
control mechanism handles the complexities of multiprocessing
control while providing a transparent interface between the
application user and physical machine. The machine architecture
is based on a modular building block concept and asynchronous
communication network that permits processors with different
functions, clock speeds, and data bandwidths to be integrated
into a common system without major protocol problems or data
bottlenecks.

The Problem

Avionics systems are emerging that require cooperative, real-
time, multiprocessing throughputs that will rival today's
supercomputers. In addition, the systems will have to meet
demanding environmental and packaging requirements, and
provide fault-tolerant computing. As challenging as the
requirements are, they pale in comparison with the software
problem. Estimates for embedded software range from several
hundred thousand lines to aver a million lines of high-level code
per system, and the life cycle support of this code promises to
run into tens of billions of U.S. dollars. To meet these
processing requirements and stem the rising costs of software,
new approaches to language and application capture, software
support, operating systems and machine architectures have to be
developed. Unlike conventional systems that approach these
components more-or-less independently, new systems must
design and integrate them as an integral part of the overall
processing system design.

Software costs are rapidly reaching crisis proportions, with
estimates now ranging from 50% to 80% of a processing
system's total life-cycle cost. Estimates of the embedded
software needed to support programs such as the U.8.'s
advanced tactical fighter, lightweight helicopter, and national
aerospace plane range from 0.5 to over 2 millien lines of high
order code. Even new commercial airplane avionics wili require
several hundred thousand lines of code to support new structur: .
and diagnostic systems and intelligent pilot aids. Curren:

estimates of the development cost of a line of code range from
$30 to $100 US, depending on the mission criticality of the
code. But design and development is only part of the overall
cost of software. Life-cycle support cost can often exceed
development costs many times over. -To grasp the size of the
problem, one has only to consider how long its would take to
scan 1 million lines of code. Assuming six seconds per line and
eight-hour days, it would take over six months just to scan this
software. Now imagine how long it would take to find an error
or make an update! Simple arithmetic shows that life cycle cost
of each of these future software programs will range from
several hundred million to several billion US dollars each unless
new approaches can be found.

As avionics systems increase in complexity, so must the
operating systems that control them. Most large commercial
processing systems use complex operating systems that utilize
from 40% to 60% of the available computational resources.
These systems typically control only a few processing units and
are optimized for a particular type of processing, such as real-
time control or distributed processing. While the next generation
of avionics operating systems will not have to deal with the
intricacies of virtual memory and disk-based control, they will in
many ways be far more complex. They will have to dynamically
assign tasks, share resources (and non-system assets), meet
millisecond latency requirements, support highly complex fault
management, and provide data security. In addition, these
systems will need to concurrently control a wide variety of
cooperating processors without incurring excessive processing
resource overhead.

Finally, future avionic applications will call for machine
architectures to support a diverse mix of signal, data, control,
and decision processing. This necessitates an open architecture
and high-speed communication network in which processors
with different functions, clock speeds, and data bandwidths can
communicate and exchange data without creating major
bottlenecks. As systems become highly integrated, the machine
architecture must provide the necessary hardware and
communication links to support the fault detection and recovery
needed for critical flight systems.

AT&T Bell Laboratories has developed and is now testing an
avionics multiprocessing architecture that promises to greatly
mitigate these problems. This architecture, called the Advanced
Avionics Core Processing (AACP) architecture, embodies
several innovations in software language, application
development, operating system and hardware design. It
represents an integrated design approach since support software,
operating system, and hardware system were designed
specifically tc work together.

624

Solving the Software Problem

The AT&T architecture embodies two advances that can
significantly reduce software life-cycle costs: functional
programming and decoupled control. Functional programming
permits applications to be captured as data-flow graphs - a type
of structured flow chart. While the architecture supports
conventional programming approaches (e.g., Ada programs),
functional programming can provide a more than two-fold
reduction in life-cycle costs. Decoupling the application and
control software simplifies system integration by removing
complex control issues, such as cooperative control,
fault/overload management, and mode changes from the
application programs and placing them into independent high-
level command programs.

The AT&T architecture is based on a three-level approach to
embedded software consisting of application programs, a run-
time executive, and local operating systems (See Figure 1). The
application program defines the sequence of operations needed
to solve a user's application problem. It may be captured either
as Ada programs or a graph language. The run-time executive
software performs the high level scheduling and resource
allocation functions for the application programs. Its major
function is to hide the complexities of the machine hardware and
local operating system from the application user. This approach
not only simplifies application programming but allows growth
and technology insertion to occur with little or no impact on
existing software. The local operating system software provides
lower level services that support the executive. This software is
tailored to a specific processor class, permitting different
processor classes to be included in the architecture.

Programming Language & Style - AACP application software
has three basic components: application procedures, /O
procedures, and command programs. Each application
procedure defines a sequence of functions or transformations to
be applied to a particular data stream. Application procedures
may be captured either as Ada programs or data flow graphs.
The data flow graph is a functional programming approach in
which application programs are defined as directed graphs and
are quite similar to conventional flow charts. The data flow
graph provides a very compact and natural program design
language (PDL). For many applications such as signal
processing, these graphs can be machine compiled into an
intermediate code (Ada, SPGN) without programmer
intervention. Government-sponsored evaluations of this
programming methodology has shown a reduction of more than
80% in development time and testing, and project a halving of
the life-cycle costs.

A data flow graph (See Figure 2) comprises three basic
components: nodes, queues, and graph entities. A node defines
the basic function or application process that is being applied to
the data inputs. Queues provide the primary data storage and
transfer mechanism between nodes, and can be conceptualized
as an elastic FIFO buffer. Graph entities are data structures that
specify node and graph parameters, such as the number of filter
taps, or current entries in a threat file. The data flow graph also
provides a natural partitioning of the application for parallel
processing (when coupled with the appropriate control
mechanism). This approach enforces a high level of code reuse
and provides hierarchical viewing of an application process.

Command programs control the actions and interactions of
application programs and their external interfaces. For example,

DFOS EXECUTIVE

» Task Scheduling
» Communications

i

* Memory Management

APPLICATION SOFTWARE

* Application Graphs
» Command Programs

R

+ Health Monitoring
+ Resource Mgmt.

KERNEL O.S.

| |
» Task Management * Locks and Semaphores * Exception Handling
» J/O Device Control

FIGURE 1 - Embedded Software Heirarchy

T

» Event Sched.
» Event Service

625

LEGEND

® =1/0 Data
O = Node (Task)

)—» = Data Queue

=% =Graph Entity

Subgraph Expansion

FIGURE 2 - A Simple Data Flow Graph

a command program can start and stop application programs,
and control mode changes, sensor steering, revisits, overload
management, and diagnostic testing. Command programs are
optional and may not be needed for some single sensor or
display applications. However, command programs can greatly
simplify the development of highly integrated systems by freeing
the subsystem application developers from the intricacies of
global control. Similarly, the developers of the command
program are concerned only with the global aspects of control
and not the intricacies of subsystem application processing.

I/O programs are valves between the external world and the
application programs. They are dependent on actual hardware,
implementation, highly specialized in nature, and are typically
bound to specific processors.

Application Programming Support - Future software support
environments must reduce application code development/test
efforts and simplify the software needed for parallel and
cooperative processing. The application support environment
provides a rich tool set for program development, performance
simulation, and system test and debug. It supports a highly
structured methodology for software development that naturally
partitions an application program into smaller units with well-
defined interfaces. This methodology permits the application
programming to be allocated to groups with specialized talents
and well-defined responsibilities. It promotes a high degree of

code reuse and eliminates many errors that occur in the interface
code.

The application development tools support application capture

either as Ada programs or data flow graphs. Therefore, a graph
provides a natural paradigm for the program design language.
The application tool set provides a language-directed, interactive,
graphical editor that enables the application engineer to capture,
modify, and annotate data flow application graphs. Application
capture is a top-down, hierarchical development in which the
first step is to create the system or big picture graph. At this
level, the graph shows the various application subgraphs as
undefined black boxes. This graph level defines the flow of data
and interfaces between the various processing subsystems.
Once this graph is captured, the subgraphs are assigned to and
defined by sensor and subsystem processing specialists.
Definition of each sensor/subsystem subgraph can be carried out
concurrently and independently. ’

Graphs are created on a high-resolution, bit-mapped terminal.
The principal mode of input is via a three-button mouse that
permits the user to choose graph objects, attributes, viewing
levels, and edit functions from pop-up menus., The keyboard is
needed only for naming objects and graph files, or for filling in
templates. The graph capture proécss is fast, allowing graphs of
several thousand nodes to be captured in a few weeks or less.
The editor also provides some run-time syntax checking,

626

catching many errors during the edit process. The output of the
graph editor is either converted manually into Ada code, or
depending on the application, machine-translated into Ada code.
The translation process consists of creating the public (interface)
part of an Ada package (for each node) around the reusable
private part stored in the graph library. Aside from the graphical
support tools, the application support toolset provides a
complete set of library management tools, compilers, linkers,
global optimizers, source debuggers, and system build tools.

A powerful set of simulation tools has been supplied to aid both
the application programming and the processor design teams.
This tool set has three basic simulators: the system simulator, the
graph simulator, and the node simulator. The system simulator
is a 100! for evaluating the performance of the architecrure as a
whole. It provides information on processor loading and usage,
memory usage, latencies, bus and network loading, etc. It
enables the application software team to determine if their
programs are correctly partitioned and, meet processing latency
and control requirements. This simulator also allows the
processor (machine) design team to determine the proper set of
processing elements/groups and interconnection topology. A
special compiler converts valid data flow graphs into input for
this simulator.

A graph simulator is provided for interactive debugging and
validation of the application graphs. This simulator is target
independent and allows the user to monitor and control
execution by using breakpoints and data manipulation. It is
supported by a large library of reusable Ada primitives and
provides convenient tools for the addition of new primitives.

The node simulator simulates the execution of nodes and graph
segments in exactly the way they would execute on a given
processing element. Since it can be prohibitive in time and cost
to execute a complete graph, this tools enables the application
user to debug and validate individual nodes and node chains.

The test support tools aid in the test and integration of
application software on the target multiprocessor. They allow
the user to monitor program execution, set test and breakpoint
conditions, monitor bus and network messages, and otherwise
test applications on the target machine. This software, coupled
with the test monitor hardware, allows the user to monitor each
processing element and their buses in a non-interfering, real-time
mode. It is also possible for the user to introduce data or control
messages on the system buses via the test monitor.

Building a Better Operating System

The AACP operating system consists of the Data Flow
Operating System (DFOS) executive and the Kernel Operating
System (KOS). The DFOS executive performs high-level
scheduling, communications, and resource allocation functions.
Its world consists of the dynamic flow of large grain tasks such
as an image transform, diagnostic update, or data base query. It
assigns each task to an available (or specified) processor and
monitors its status. Once a task has been assigned to a
processor, its execution is under the low-level control of the

kernel operating system. After task execution is completed,
control is returned to the DFOS executive. The data from this
task triggers new tasks, continuing the data flow process cycle.
Although the DFOS executive must control scheduling and
resource allocation for a large and diverse number of processors,
its task is greatly simplified because of the high-level nature of
this control. This minimizes the potential for the executive to
become the processing bottleneck. Since there is little or no
inter-task dependency between low-level control functions, they
can easily be distributed across the various processors. This
allows each processor to have its own unique low-level control
structure and ensures that each processor can operate
concurrently and independent of others within the same system.

The DFOS Executive - This software provides three basic
functions: task scheduling, resource allocation, and task
assignment. It is a decentralized control mechanism that
supports real-time control, parallel processing and dynamic load
balancing while making the machine architecture appear as a
single processor to the application user. It can provide demand
and data-flow control as well as conventional thread control.
This hybrid control approach evolved to meet the variety of real-
time scheduling and load dynamics projected to occur in future
avionics systems. Some applications such as radar processing
are highly regular and driven by stringent real-time constraints
and predictability. Other applications such as communications
and electronic support measures are primarily driven by the
dynamics of the environment and can experience near
instantaneous changes in processing workloads of over three
orders of magnitude. Still other processes such as diagnostic
tests and airframe stress monitoring can run in the background.
The run-time executive can support these different control
requirements via three basic modes: threading, pooling, and
chaining.

Threading permits the application user to bind a flow sequence
of nodes (called a thread) to one or more processing elements.
The run-time executive supports the distribution of the thread on
the processors, its initialization, and firing. After firing, thread
nodes (tasks) request data from their predecessors , making this
a demand-driven mode. All movement of data between nodes is
accomplished through logical queues maintained by the run-tine
executive. Data integrity and firing order is guaranteed and
deterministic latencies can be calculated. This mode is typically
used for applications requiring critical time constraints and fast
response times (<10 ms.).

Pooling dynamically assigns nodes to available processing
TeSOUTEeS, permitting uniform load balancing in a dynamic
environment. Nodes are executed when all their inputs are
available, making this a data driven mode. The run time
executive matches an executable node to an available processor
resource, and consumes its inputs upon execution. This mode
of operation offers the best utilization of processing resources
but can create the longest and most non-deterministic latencies.

Although code reuse can provide large gains in software
productivity, users often have to trade generality for application
efficiency and control. Chaining solves this problem by

627

allowing the application user to create new nodes from primitive
node sequences, and to customize existing nodes with little or no
cost in execution efficiency or operating system overhead. This
is done by allowing a sequence of nodes to be designated and
scheduled as a single super node. For example, new nodes can
be created from primitive nodes such as vector subtract and dot
product. Existing nodes can be customized by appending
decision logic nodes. Chaining reduces processing latency,
memory, and data bandwidth problems by reducing the
scheduling and data handling associated with several small
nodes to that for a single node. Data integrity and execution
sequencing between chained nodes is guaranteed by the run-time
executive. The operating system overhead associated with the
execution of chains is deterministic, making it applicable to time
critical applications, Chaining can be used in conjunction with
threading and pooling modes.

Machine Architecture

The machine hardware designers were faced with three major
challenges. First, they had to provide hardware support for the
application language and operating system. Secondly, they had
to design a new communication network that provided an
improvement of two orders of magnitude in data bandwidth over
existing avionics systems. This was necessary to support both
the requirements of the distributed operating systems and the
increased clocking frequencies of the next generation of CPUs
and memories. Finally, the hardware had to support a diverse
mix of signal, image, data, and decision processing.

The resulting machine architecture (See Figure 3) was realized as
a small set of standard form/fit modules with common electrical
interfaces and a high-bandwidth, asynchronous interconnection
network. The basic building block (and LRM) is the module,
which conforms to the SEM-E form factor. Modules can be
combined (via a set of common buses) to form processing
elements such as a data or signal processor. Each processing
element can execute high-level tasks and is characterized by
having its own executive and local operating system. Functional
elements can be combined into tightly-coupled groups called
functional groups. These groups provide the close cooperation
needed for some applications such as radar processing.
Functional elements are combined into a multiprocessing
architecture via a fully-connected network switch capable of
transferring billions of bits of information per second. The
asynchronous nature of this switch network permits processing
elements with different functions, I/O bandwidths, and clock
speeds to communicate efficiently using a common set of
commands and protocols. External communications with
sensors, displays, and other subsystems is provided by high
bandwidth optical links.

The Processing Modules - The AACP architecture had to
support a diverse mix of data, signal, and decision/control
processing. Since each class of processing needs unique
processing capabilities, multiple processing engine modules are
required. The current module inventory include four different

processing modules: a general purpose data/control processor, a
video processor, a fixed-point signal processor, and a floating-
point signal processor. Requirements for decision processing
(object or fuzzy rule-based) modules are now under
investigation. The data/control processing module is based on a
32-bit RISC architecture augmented with special /O and fault
management coprocessors. These powerful coprocessors free
the main CPU from the many support tasks that can rob it of
over 60% of its computational utility. The signal processors are
highly pipelined, parallel processing ensembles capable of
providing several hundred million operations per second. A
memory expansion bus and memory modules permit additional
memory to be added to these processing elements.

External 1/0 Modules - Communications between the
multiprocessing architecture and other subsystems such as
sensors, displays, and weapons/countermeasures are currently
handled by two modules: the sensor/video I/O module and the
high speed data bus. The sensor/video I/O modules provide the
basic building block for the Pave Pillar Sensor Data Distribution
Network (SDDN) and Video Data Distribution Network
(VDDN), while the high speed data bus provides many high
level control functions. Both modules use fiber optic
communication links, providing vastly improved data bandwidth
and EMI/EMP protection.

The sensor/video /O module provides four transmit and four
receive fiber optic links (point-to-point), each capable of 200
Mbits/sec (data) burst transmission. The data links may be
assigned as independent data paths or grouped for greater link
bandwidth. The protocol uses a 8B/10B block encoding, based
on an expanded version of the Fiber Data Distribution Interface
(FDDI) 4B/5B block code used in fiber optic token ring
networks. The design greatly reduces the number of buses and
discretes normally associated with avionic systems by allowing
interrupts, control, and synchronization signals to be embedded
in the data streams. Special encoding rules and hardware allow
these signals to be stripped from the incoming data and routed
directly to a control processor with little or no impact on data
movement.

The high speed data bus provides a 100 Mbit/sec data bus
between the multiprocessor and other subsystems.” Its primary
use is for system setup (booting and initialization), high-level
control between subsystems, and fault recovery.

The Communication Network - Internal communications
between processing elements and groups are accomplished via
network buses and a fully connected switch network. The
network bus is a message-passing bus that moves information
between the various modules comprising a processing element
or group. It also permits these modules to share a common port
in the switch network. The switch network provides multiple,
simultaneous, non-blocking communications between functional
elements and groups. Simultaneous communications are limited
only by the number of switch ports and by the number of
processing element/group pairs requiring communication paths.

628

A connection path is guaranteed if the requesting (source) and
receiving (destination) ports are not busy. Control of the
network is completely decoupled from the actual data transfer
operation, thereby permitting control operations such as
arbitration, port monitoring, time-out monitoring, and
connection/disconnection assignment to be performed
concurrently. Each communication path is asynchronous, with
the source interface suppling the clock. The switch network can
easily be expanded (by adding additional switch modules) to
build 8-port, 16-port, or 32-port switches. The burst transfer
bandwidth is 40 Mbytes/sec per port. Each port is bi-
directional, half-duplex, with full duplex operation accomplished
by using two ports per functional element.

Summary

Although the AACP architecture represents major advances in
software capture, hybrid control mechanisms, and machine
architectures, its most important achievement lies in combining
these advances to improve overall system efficiency and
supportability. The performance of these systems would have
been impossible to achieve with conventional design
approaches. Some AACP systems have achieved sustained
computational rates in excess of several billion 32-bit floating
point operations per second, yet occupy a volume of less than
two cubic feet. Large applications are now being captured in
one-fifth the normal development time.

FUNCTIONAL
ELEMENT

FUNCTIONAL
GROUP

s~ NETWORK BUS -8

Functional
Element

000

i

Functional
Element / Group

Functional
Element / Group

A NETWORK BUS -t

MACHINE ARCHITECTURE

FIGURE 3 - Machine Synthesis

\{\\\\\\\\\

{

AN,

Functional Group

Functional

000
Element / Group

Copyright ©® 1990 by the authors. Published by the American Institute of
Aeronautics and Astronautics, Inc. with permission.

629

