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Abstract

Formal mathematical optimization methods have
been developed during the past 10 to 15 years for
the structural design of aircraft. Together with
reliable analysis programme like finite element
methods they provide powerful tools for the
structural design. They are efficient in at least
two ways:

- producing designs that meet all specified
requirements at minimum weight in one step:

relieving the engineer from a time consuming
search for modifications that give better re-
sults, they allow more creative design modi-
fications.

MBB has developed a powerful optimization code
called MBB-LAGRANGE which uses mathematical pro-
gramming and gradients to £ulfill different con~
straints simultaneocusly.

A method for solving large linear equation
systems by an iterative method is described to show
the effort which went into the program formulating
the physical problem in a very efficient mathema~
tical way.

Some examples depicting the successful applica-
tion of the MBB-LAGRANGE code are presented.

The paper closes with an outlook how the optimi-
zation problem could be enlarged to include also
shape and size of airplanes.

INTRODUCTION

To improve or modify a design, a process, a
procedure, or any given task into a "better" direc-
tion, is referred to as ‘"optimization". This is
often done by experience, parametric investiga-
tions, iterative procedures, by experimental
testing and modifications, or based on empirical
data. This approach usually leads to better results
but nobody can tell how far away the optimum still
is or even where it is. A  more efficient way to
perform this task is provided by a special branch
of applied mathematics, called optimization. This
kind of optimization changes the chosen variables
in a design problem in a way to achieve the best
value for an objective while not violating de-
fined constraints that represent the boundaries of
the design space.
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This formal optimigation was rather early in-
troduced in economics or chemical engineering due
to the linearity of the problems, as described by
Ashley in an excellent overview paper on the aero-
nautical wuse of optimization [1]. In order to use
the potential of mathematical optimization, it is
necessary to describe the physical nature of the
problem in a way that allows the use of optimiza—
tion algorithms.

In structural design, finite element methods
together with modern computers have provided tools
that allow to analyse complex structures with high
accuracy. These were main essentials to initiate
development and application of optimization pro-
grams for structural design since 1970. Approxi-
mately at the same time, composite materials were
introduced in aerospace design. They offer an in-
finite variety to combine their highly anisotro-
pic elastic properties for any specific combina-
tion of design reguirements. For a more efficient
use of these materials, optimization programs are
required to handle the complexity of the problem,
especially if additional requirements besides
strength are involved in the problem [2]. During
the last decade considerable effort has been spent
to develop modern structural optimization proce-
dures, using efficient mathematical optimization
algorithms as well as optimality criteria which
satisfy all requirements simultancusly and £find
optimal values of the design variables by direct
computation. The increasing emphasis of aeroelastic
considerations is shown in fig. 1, which was taken
from [3].
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1. STRUCTURAL OPTIMIZATION IN THE GENERAL DATA
FLOW

The use of structural optimization tools during
the preliminary design stage of an advanced air—
craft gives the following potential improvements:

. satisfies the reguirements of new aircrafts

. minimizes the objective {weight)

. increases the quality of products

. shortenes the development phase

. increases chances of the company in competition

In order to do this, an appropriate mathemati-
cal programming procedure has to be embedded in the

general data flow, which is depicted in fig. 2 and
fig. 3 taken from [4].
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These figures show a typical flow of geometric,
aerodynamic, structural and other data which are
used during the design phase of an aircraft. The
improved productivity is a result of the integra-
ting effects of the structural optimization.
shorter time of development is realised and fewer
data transfers go wrong.

At the present time the development of new air-
planes is influenced by new technigques, such as
flutter suppression, CCV-configuration, gust load
alleviation etc, see fig., 4. In addition to stress,
displacement, aeroelastic and dynamic constraints
an integrated design involves all these techniques
and the optimization procedures must be extended
for these new constraints. Even at the very mo-
ment a reliable optimization code is the basis,
which allows parametric investigations and weight
penalties to be evaluated.
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2.  STRUCTURAL OPTIMIZATICN AT MEB

MBB has developed its own structural optimiza-
tion system called

MBE-LAGRANGE

The performance and requirements/constraints of
this new program system are shown below:

+] RECUIREMENTS

Finite Element Structure

o) STRUCTURE VARIABLES x €[R"

©  Skin Thickness
o Balance Masses
o  Fibre Directions

o Grid Point Coordinates

[] CONSTRAINTS Gj(x}za,jsa\?
¢ Min./Max. - Variable
¢  Stresses
o  Strains
o Deformations

o  Flutter Speed



o Divergence Speed

o  Bercelastic Efficiencies
© Eigen Frequencies

¢ Element Stability

© Dynamic Response

¢ Weight

o MULTIOBJECTIVE FUNCTION £(x} - Min.

Vector Optimization = “"Trade Off" Studies
of Convex Combination of Objectives

The program architecture is organized due to
the concept of H. A. Eschenaver [5] with the main
parts optimization algorithm, optimization model
and structural analysis including sensitivity
analysis.

The corresponding optimization models are based
on the general nonlinear programming problem ac—
cording to [5]. The design variables x are cross
sectional areas of trusses and beams, wall thick-
nesses of membrane and shell elements, laminate
thicknesses for every single layer in composite
elements or nodal coordinates for geometry opti-
mization problems. The constraints in form of
inequalities may be any limitation of displace-~
ments, stresses, strains, buckling loads, aero-
elastic efficiencies, flutter speed, divergence
speed, natural frequencies, dynamic response and
design variables [6].

In the case of scalar optimization, the ob-
jective function £{x) often includes the struc-
tural weight or another linear combination of the
design variables. However, it is also possible to
define one of the constraint functions as objec—
tive and to introduce the weight as constraint at
the same time. If vector optimization problems are
under consideration, then optimization strategies
pl£{x)] according to [5] ensure the transformation
to scalar substitute problems.

It is necessary to provide several different
optimization algorithms, because there is no known
single algorithm which is adapted to every type of

problem. The following algorithms are implemented
in LAGRANGE:

- IBF : Inverse Barrier Function,

- MOM : Method of Multipliers,

- BLP :  SBeguential Linear Programming,

-  SRM :  SBtress Ratio Method,

- RQP1l, ROPZ : Recutsive Quadratic Programming,
-~ GRG :  Generalized Reduced Gradients.

The structural and sensgitivity analysis are
based on finite element methods (FEM). Static,
buckling, dynamic, aeroelastic and flutter moduls
have been incorporated. It is possible, to treat
homogeneous materials with isotropic, orthotropic
or anisotropic behaviour as well as fiber rein-
forced composite materials. The element library
contains the types: truss, beam, membrane (3, 4, 8
nodes), shell (3, 4 nodes) and volume elements. In
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addition, shell structures can be analyzed with a
special transfer procedure. This transfer matrix
procedure transforms the transfer matrices to a
stiffness matrix that can be assembled together
with the remaining finite element stiffness ma-
trices. This mixed procedure allows very efficient
analyses of large shell structures with complex
boundary conditions.

The program architecture of FMBB-LAGRANGE, shown
in fig. 5, has a modular set up with defined inter-
faces. While the modules INPUT and RESULT are used
to enter data or to process the results, the real
optimization calculations takes place in the DESIGN
module. There we have a strong separation between
optimization and analysis. The "mathematics" is
mostly located in the part optimization algorithm.
The ‘'physics", that stands for the structural res-
ponse and its derivatives, are realized in the ana-
lysis and gradient module. The link of both is the
optimization model.
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An interactive user exit with an integrated
knowledge based system supports all phases of op—
timization runs. Further possibilities like the
automatic preparation of batch procedures for
different hardware systems and like the automatic
linking dependent on the problem size ensure a high
user comfort. Standard interfaces enable the inte-
gration in the CAE-environment (NASTRAN, I-DEAS,
PATRAN). Especially the graphical input of some
optimization data saves a lot of time and is really
helpful, e.g. variable linking, buckling fields and
displacement constraints.

In order to illustrate the tremendous effort
which had to be spent to achieve good mathematical
descriptions of the structure whilst still being
able to simultanecusly fulfill several boundary
conditions the derivation of the static aero-
elastic module is shown.

3. ITERATIVE SOLUTION OF LARGE LINEAR EQUATION
SYSTEMS FOR STATIC AEROELASTIC PROBLEMS

There is a tendency in structural analysis to—
wards systems with increasing numbers of elements
and degrees of freedom. This is caused by the tech-
nological demand for exact descriptions of local
structural details, and it is possible with nowa-
days computer sizes and costs [7].



For this reason, the aerodynamic models and
sclution methods for aeroelastic problems are
adapted to finite element methods. 7That means so-
lutions in the structural system. But in contrast
to pure static problems, the aerodynamic loads
matrix is almost fully populated and unsymmetric. &
direct solution method is no longer efficient in
storage size and computing time, and should be re-
placed by an iterative method.

When the mathematical method for LAGRANGE was
selected the driving considerations were

-~ low computer storage space
- low time consumption
— applicability for various problems

3.1 Description of the Problem

In static aserocelastic problems, the aerodynamic
load depends on the deformation of the structure.
The load vector is composed of a part that depends
on the solution and one that is independent of it.
Thus, the problem can be expressed as a static
equilibrium system with n degrees of freedom.

K- u = b, + Dblu) (1}

with Ke®R* ; u, b, ber

K is an n xn stiffness matrix that is symme-—
tric, positive definite, sky line organized, and a
CHOLESKY-factorization is possible. This decompo-
sition can be performed with vectorized algorithms
to save time and space. That means, that during the
iterations equation systems with new right sides
are solved.

In aercelasticity the aerodynamic influence can
often be expressed in linear relations [11]. There-
fore, the vector b{u) can be expressed as

b(u) = C- u ; € =Rexn (2)

This matrix C contains all physical properties,
like the dynamic pressure, and all reguired trans-
formations from the aerodynamic to the structural
sytem. Using eguation {2}, equation (1) can be re-
written as.

{(K-Clu = b, (33

If the difference R-C is regular, eguation (3}
can be sclved. Because the direct solution of (3}
as well as the calculation of € is not favourable,
an other approach is required.

An iteration process for the solution of (3) is
defined in (4), where an additional relaxation pro-
cess is introduced to improve convergence:

Rat®i) = glul™ + (l-w») Ba'™ + @ - b, {4}

This equation corresponds with the following
eigenvalue problem [71:

(aC + (1-w) K - A (w) K)w=o0 (5)

The convergence of the iteration strongly de-
pends on the dominant eigenvalues X, (w). The eigen—
value X ; {w} is derived by the transformation

Nplw) =XNro-w+1, Aoy, . ., (6)

where };, are the eigenvalues of the untransformed
case (w = 1). Because the maxtrix C is  wisymme-
tric, real and conjugate complex eigenvalues X, and
X ; appear. The eigenvector w remains unchanged by
the transformation. Some possible graphs of X
versus  are plotted in Fig. 6. &n approach for
finding optimal values of w (for small X ) is also
indicated in this figure.
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An explicit calculation of eigenvalues and -vec—
tors is impossible in wmost cases. But it can be
shown, that the flow of the iteration allows to de~
duct for dominant eigenvalues. This is complestely
described in [7]. If the matrix for all eigen~
vectors of equation (5) is regular, the solution u
and the initial solution u'®) can be expressed as
linear combinations of eigenvectors.

u = w-d (7}

ule) =wdlel; ule) #u; Werrn;d,de) e (8)

Introduced into (4), this yields an approxima-
tion after step m

n
w® =~ I

Mo o ldy ~§ 1) w (8}
k=1 ‘
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The values A,, 4, 4,(°?, and the eigenvector
W, do not depend on the number of iterations m. For
a chosen approximation u‘®) the iteration process
is determined. The summation terms in equation (9)
vanish for m » =, if

el <15 Ay, (10)

This allows to .extract the difference of two
consequente iteration steps:

fulm+l) = yglssl) o im)

n
B kix Mek® Z ;7 €

(11

where

Z = (1= Ny) (d =G (°)) w (12)

Eguation (11) can be used to analyse the itera—
tion, For the following considerations, it is
assumed that eigenvalues are in a descending order,
and non-dominant eigenvalues do not affect Aufm+l)
for sufficiently high values of m. This leads to
three main cases:

a) One single doeminant eigenvalue exists for a
certain o in this case,

gquatic;n {11) is used for any components j to
orm:

>*t1 - Auj{””? Vé Aujfm*“ (13

The eigenvalue can be transformed back with

equation (6). If point 8 in Fig. 6 is only

determined by real dominant eigenvalues, a

g;gper selection of w allows to find points &
B.

For w= ., two dominant eigenvalues

bs will
appear with different signs.

b} In this case, one additional iteration is used
for equation

Auj(m+3) = >‘t12 Auj(“‘*“; Aj=1...n (14)

to obtain the two eigenvalues A\; and A, =
-, for any component j. If equation (13) is
used for all iteration steps, case b will de-
liver a sequence of alternating identical va-
lues, depending on m even or odd.

¢} In the case of a conjugate complex pair of
eigenvalues, their extraction is much more
difficult.

The real difference sul®) in this case is the
sum of two complex products with changing resl
parts.

amie = MN® oz + }&*g 51* + 0 (A™) {15}

Assuming that only one pair of conjugate

complex eigenvalues is dominant, the sub-
stitution
PV U T LD R U P (16)

is used to derive the following relations:

Autm+2y = 2 Arauimel)y o (X722 & a"2) auiml {17)

Butm™+3) = 2 ATAulmH2) — (W2 4 A"2) putnel)
(183

The only problem here is to determine that a
sequence of this type of values exists after m
steps.

To perform iterations for several values of
& for the optimal case with a preselected
accuracy is an acceptable compromise in this
case.

In the case of optimization the required cal-
culation of gradients leads to a solution of the
transposed problem in static aercelasticity:

Ry=Cy+ £ ;y,fcm (19)

with many right hand sides f. Analog eguation {11}
the following expression is formed:

ay(m+il = f (20

Vector s, is obtained by the corresponding left
eigenvectors.

Although the eigenvalues of the transposed
problem are the same as in the untransformed case,
the iteration can show a different course ~ espec—
ially during the first steps — because of z, # s,.
This can cause a difference in the reguired number
of iterations for the same accuracy.

These three cases show that solutions can al-
ways be found in automated procedures and restarts
are not necessary.

As an example, a realistic structure was in-
vestigated with different values for w. Fig. 7
shows the iterations for w = 0.5, 0.7, 1.0 and
w,,¢ = 0.667. Graph 1 for w = 1.0 shows conver-
gence for the eigenvalue X,;,, but the solution
itself did not converge because X, < -l vio-
lates the convergence condition., A check with
w = 0.7, no. 2, yields X,;, again after the back-
ward transformation. For @ = 0.5 the maxiwal eiger—
value XA,,, is obtained, no. 3. With «,,, the se-
quence of alternating identical wvalues of case b
was obtained. All iterations show a progress durirg
the initial steps that is different from the do-
minant wvalues because of the contributions of the
non-dominant eigenvalues and eigenvectors.
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4. APPLICATIONS

4.1 Heat Flux and Frequency Optimization of a
Satellite Structure

For spacecraft structures usually two differert
operating phases are most decisive. During launch-
ing phase the dynamic loads dominate. On the other
hand the following mission in orbit is character—
ized by thermal effects. Thus an objective conflict
ococurs, because none of the possible designs per—
mits a simultaneous optimal fulfillment of dynamic
and thermal objectives, Here, vector optimization
methods are suitable for determining an unigue
optimal compromise solution.

The ISO-satellite, the European infrared space
observatory, will be wused to explore cosmic
infrared radiation (Fig. 8).

Fig. 8 Infrared space cbservatory satellite (IS0}

In order to maximize the lifetime of the se-
tellite, the heat flux from the outer to the inner
structure, which contains & cooling mechanism for a
special sengor, shall achieve a minimum value. Se-
condly, the natural frequency of the dominant axial
vibration mode is to be maximized.

The objective function vector £(x) includes the
heat flux #(x) and the frequency «, (x):

£ {x) &{x)
£, (x) —u, {x)
where max. «, (x} = ~-min [, (x}] (22}

In the sketch of the structural model (Fig. 9),
it can be seen, that the inner and outer structure
are linked by means of a spatial frame work and sus
pensions.

The cross sectional areas of the supporting
frame work are defined as the design availables
{Fig. 9). As previous studies have shown, the heat
flux § can be treated as a linear function of these
design wvariables. Corresponding checks for the
initial and optimal designs confirm this approach.

inner

Fig. 9 Finite element model and design variables
of the IS0 satellite
n
B(x) ~ ¢, + z c;, X (23)
i=1
and
a3 ~ g {24)
3%,

where the coefficients ¢, and ¢; are calculated in
advance by a heat transfer program.

The natural frequency w, results from eigenvalue
problems of a finite element model (212 elements
and 672 degrees of freedom):

Rix) -2 zmxil g ) = 0 {25}

with X and M as stiffness and mass matrices and g,
the eigenvector solution, associated with the
eigenvalues «*. Since the connection between the
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axial mode duct the seguence of the corresponding
eigenvalue @, in the freguency spectrum

{(k =1 ... n) can change during the optimization
process, it has to be checked within every itera-
tion and, if required, it needs to be adapted [8].

The derivatives of the natural frequency w, are
as follows

2wy =

T BK o w?, M |q {26}
a3x; = 2,

x; A gx,

By means of a constraint-oriented transformation
(trade-off) this vector optimization problem VOP is
reduced to a scala optimization problem SOP [9].
The heat flux ¢ is minimized as main objective and
the freguency w, has to achieve different cor~
straint levels to get different functional effi-
cient solutions. For this optimization problem with
one dominant constraint the recursive quadratic
programming algorithm RQP shows good efficiency
{51.

The initial design has a nondimensional hest
flux of % = 1.0 and a nondimensional freguency of
w, = 1.0. Dependent on the selection of appro-
priate constraint levels for the frequency, ore
gets different optimal compromise solutions.

The functional efficient boundary (Fig. 10} de-
livers a good foundation for the selection of a
final design. Here the design with & = 0.99 and

.6y = 1.08 is chosen {9].

i
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108 Lixl= wix)  (naturdl frequency) ®
Rt z
& i
1.06 ;
1.04 |
1.02
1.00
A | | : ®
Q92 094 0gs 038 100 1.02 &
k-l
Fig. 10 Boundary of functional efficient solutions
for the IS0 satellite
4.2 Design of a Carbon Fiber Wing

The wing structure for the experimental air-
craft X-31A was optimized with LAGRANGE. In this
case, optimization was beneficial for two main ob-
jectives of the program: a low cost approach and a
very short time for development and design. Be-
sides a design for minimum weight another require-
ment was a high flutter margin to reduce efforts
and costs for flutter wind tunnel and flight tests.
Although flutter did not affect the design, it
could be surveyed simultaneously during optimizs~
tion. Static aeroelastic effectiveness was also
investigated during the design process.

Fig. 11 Finite element model of the %-31 wing

A finite element model of the wing is depicted
in Fig. 11, It has 1764 elements and 1871 degrees
of freedom. The optimized skin thicknesses were
then translated into design drawings with small
modifications. As an example, the upper wing skin
weight of 53 kg from an initial design (pre~
optimized with another program) could be reduced to
44 kg in the FEM, which resulted in 45 kg in the
actual design. The final design meets the target

weight and has a margin of 100% in airspeed for
flutter.
4.3 Aercelastic Tailoring of a Fin made of

Composite Material

An aircraft fin has to fulfill quite different
design requirements with a similar priority and the
final design reguires the evaluation of many off-
design point studies [10].

The design of aerodynamic surfaces such as wing,
fin, foreplane and tailplane needs two major design
steps:

First, the aerodynamic design to define the
overall geometry 1like area, span, aspect ratic,
taper ratio and profil.

Second, the structural design to develope the
internal structural arrangement of skin, ribs,
stringers, spars, rudder support, rudder actus-
tion, attachments, eguipment systems.

The final design must fulfill the following de~
sign reguirements with minimum weight:

Static strength to withstand design loads
Asroelastic efficiencies for performance
No flutter inside of the flight envelope
Manufacturing constraints, min. and max. gauges

R
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Fig. 12 Fin structural model with skin element
nunbers

It is quite clear that such a design requires an
interactive coupling of the above mentioned two de-
sign steps. A structural model of the investigated
£in is shown in Fig. 12. A comparison of initial
design analysis results and design constraints is
given in the following table:

DESIGN INITIAL
VIOLATION
CONSTRAINT DESIGN
Load case 2
STRERGTH Strain allowables
Element 18 ~. 123
Tension £ .003Y
Comparison ¢-.00%8 Element 22 ~. 228
Efficiencies
AERDELASTICS FIN ] L 753 ~.05%
K 1.8/750KTS RUDDER .5 4L -.118
Fluttetspeed
FLUTTER
VEF = S30 m/ses 495 my/sec -. 0868
Me 1.2/5.L.

The frequency versus speed behaviour for the
optimized/initial structure is given in Fig, 13.
The corresponding damping is plotted in Pig. 14.
The results of the optimization procedure are shown
in Table 1.

The £lutter speed is increased to 530 m/sec and
aercelastic efficiencies are increased 8% for the
the fin and for the rudder by 13%. The structural
welght is reduced by 7%.

Skin thicknesses for the different carbon fibre
layers of the optimum structurl design are pre-
sented in Pigs. 15-18.
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Look Ahead

Further development of MBB-LAGRANGE will be
concentrated on the introduction of additionsl
analysis options, computing cost reducing approxi-
mation procedures, and new structural constraints
including:

. Heat transfer and thermal stresses

. New routines for buckling and global stability
. Dynamic Response

. Effect of FCS on structural phencmena

. Geometry optimization (fiber direction, posi-
tion of spars)

. Effect of changed loads throughout optimization
. Integration of new disciplines
. Combination of different objective functions

. New optimization routines

For the future, it is & challenge in aercspace
engineering to combine design variables, require-
ments, objectives, and constraints from different
disciplines in one optimization program. But it can
not be expected and is not desired that there will
be one program only for the optimal design of air-
craft.

An initial preliminary design should in fact in-
clude as many disciplines as possibles. But at the
same time, this task must remain in a not too de-
tailed and complex level to allow the investigaticn
of -a great number of designs and to angwer ques-
tions concerning essential changes of design re-
guirements in a relatively short period of time.

After this, the individual disciplines should
use their own programs and methods to £ind the
optimum in a more detailed model, without for-
getting the neighbour areas.

The preliminary design program could in parallel
serve as a tool to integrate the results from de~
tail designs.

Large efforts will be required to reduce the
enormous computational costs by the development of
efficient methods for cross sensitivity calcula-
tions and for approximate optimization procedures.
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