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Abstract
In this paper, an expert system for the sensor
failure detection and isolation of flight test
system is introduced. In order to detect and
locate faults of an aircraft’s sensors with
sufficient robustness to parameter changes and
noise, accurate discrete-time models is presented

and multi-level separated-bias algorithm is
used for vresidual sequence generation. The
expert system is used for the difficult task

of failure isolation and flight decision making.
Structure and mehtod for building the expert
system is  introduced. The results of simulation
and actual application show that the expert system
for the FD1 (failure detection and isolation) of
flight test instruments can declare the faulty and
locate the failures correcti{y. This expert system
is suitable not only to the flight regime of low
angle of attack but also to the flight regime of
high angle of attack.

L.__Introduction

A wide variety of techniques has been proposed
in recent years for the detection and isolation
of failures in aircraft engine output sensors and
airborne flight test systems ( de Silva,1982;
Patton, 1986 ). In one way or another, all these
methods involve the generation of signals that
are accentuated by the  presence of particular
failures if these failures have actually occurred.

Looking into the literature on FDI based on
analytical redundancy one can see that the wide
variety of methods can raughly be devided into

two mainy groups: (i) parameter estimation method,
(ii) state estimation methods. ‘The parameter
estimation approach employs on-line identification
of the mathematical model in order to determize
the physical coefficients of the process, the
state estimation approach restricts to the on-line
reconstruction of sets or subsets of state or
mesured variables taking the mathematica! model
to be given. This is done with the aid of observer
or extended Kalman fiiters whose estimates or
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innovations are then used for residual deneration.
In practice, There are two weak points in the
parameter estimation approach. First, what is
really identifiedare not the physical coeftficients
of the process but the parameters of its
mathematical model. These actually depend on the
choise of the model and there is in general no
unique relationship backward from the mathematical
parameters to the physical coefficients. Second,
though well apt for simple cases, the standard
parameter estimation method fail when the process
contains nonlinearities. Most of the FD1 methods
have therefore adopted the state estimation
approach. Since biases and unknown scale factors
are usually vpresented in flight test data,
these instrumentation errors must also be
estimated. In order to solve this problem, the

‘biases and scale factors are usually considered

as componets of a so-calied augmented state
vector. Then extended Kaiman filter is used for
both the state and biases estimation. This
approach, However, may be unable to declare the
faulty and locate the failures correctly because
big modeliing errors may often appear when

aircraft maneuvers especially when high angle-of-

attack maneuvers and because it is too difficult

for the ordinary approach to achive on-line state

estimation (Shi, 1989; Wang, 1988). Gn the other

hand, failure isolation and flight decision are

also very difficult taskes. For these reasons an

accurate discrete-time mode!l and robust residual

generation method are presented and an expert

system for the FDI of flight test system is

introduced.

1l. Basic Structure of Expert System

The goal of FDI is to detect and locate fai-
lures of the sensors of flight test instruments
with sufficient robustness to system parameter
changes and noises. Sensor faulty must be dis-
tinguished from ~ wild ’ data firstly. Otherwise,
vhat is really detected may not be the sensor



failures of flight test system but the eftfection
of the ’ wild ’ data. Another important things is
to distinguish output sensor faulty from computed
output faulty to get high efficiency of failure
isolation. Thus, the basic idea of the design of
the expert system for FD! is given as follows.
First, the residuals are compared with predeter-
mined thresholds. 1f the residuals of certain
sensors remain below the thresholds the corres-
ponding sensors are declared unfaulty: if the
residual surpasses the threshold the expert system
will first distinguish the fault from the effects
of ' wild '’ data. If fault occurs, the inference
engine will carry out what kind of the fault may
be, the measured output or computed output? 1f the
measured output is fault the corresponding
instrument is declared faulty and an alarm is
released. If the computed output is tault sensi-
tivity to process parameters or state variations
is calculated and the resuits are given to the
expert system. The expert system may accomplish
the dificult tasks of failure isolation and flight
decision making. In order to detect the failures
of the .instruments in various flight test the
thresholds may actually be made adaptive to the
flight maneuver shapes and to the flight regimes
of both low and high angle of attack. Thus the
expert system, ES can be structured.

Data base: The data base of the expert system
should include the aeroynamic models of aircraft
to be tested, the experiential threshold values,
the inputs of elevator deflection, aileron
deflection, rudder deflection, and other control
signals, flight parameters. These data may be used
to (1) distinguish sensor failure from ’ wild ’
data; (2) distinguish the fault of measured out-
puts and computed outputs. Knowledge base and
inference engine may directly use any of the
experimental data in the data base.

Knowiedge base: The function of the knowledge
base is to provide knowledge sources to the
inference engine of expert system.

In general the fault may be one of the
following three cases:

(1) Measured output
output is fault;

(2) Measured output is fault, computed output
is correct;

(3) Both measured output and computed output
are all fault.

is correct, computed

The knowledge base can provide the knowledge
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source of distinction between ’ wild ’ data and
failures and the knowledge source of distinction
of measured output error {from computed output
error.

Since the threshold logic is a most simple
and common decision strategy, the thresholds
should acctually be changed in different flight
test and flight maneuvers. In the knowledge base
the thresholds may be made adaptive to the flight
maneuvers and to the angle of attack on the basis
of the knowledge source of the experiences of many
many knowledge engineers.

The knowledge base may have the explanation
functions. When fault occurs, the inference
engine will indicate the failures of certain
sensors and the commander or aviator can ask ’ why
the conclusion is carried out ’ and other
questions.

The knowledge base is also of the tunction of
knowiedge acquisition. For more experienced users,
the engineer will be allowed to enter the facts
into the knowledge base. In oder to make decision
for flight, the knowledge source and commander’s
idea will directly be given to inference engine.

The nodes of the knowledge base are the posibi-
lities of the sensor failures of three position
angles, 0, and Y3 three linear accelerations
Ay, Ay, Az three anglar rates p,

g, rs two incidence angle o and B airspeed V,
and altitude h.

inference engine: The function of inference
engine is to isolate failures and make flight
decision on the basis of knowiedge base and data
base combining the decision of ftlight commander.
in order to judge between measured output fault
and computed output fault, the other instrumen-
tation errors should be checked further.

()
the threshold, 8, o,
checked.

(2)
surpasses the threshold,
should be checked.

{3)  When the residua! of
surpasses the threshold, 6,
should be checked.

{4)  When the residual of altitude h surpasses
the threshold, 8, u, v, v, and ¢ should be
checked.

When the residual of airspeed V surpasses
B, ¢, and h should be

WVhen the residual of angle-of attack «
8, u, w, ¢, andh

sideslip angle B
¢, u, v, ¥ and h



(5) When the residual of pitch angle ©
surpasses the threshold, q, r, and ¢ should be
checked.

(6) When the residual of roll angle ¢
surpasses the threshold, p, q, r, and® should be
checked.

{7) When the residual of yaw angle ¥
surpasses the threshold, 8, q, r,and ¢ should be
checked.

(8) When the residuals of three accelerations
surpass the threshold, V, wu, v, w should be
checked.

(9) When the residual of roll rate p surpasses
the threshold, V, v, w, and ¢ should be checked.

(10) When the residual of pitch rate q
surpasses the threshold, 8, u, w, a, ¢, ¥,
and h should be checked.

(11) When the residual of yaw rate r surpasses
the threshold, 8, u, v, B, ¢, and ¥ should be
checked.

For example, if the fault of computed pitch
angle were caused by the fault of pitch rate, the
residuals of ¢, u, w, and ¥ should all surpass
the corresponding thresholds: otherwise the sensor
of pitch rate would be unfauity.

The basic structure of FDI for flight test
system is show in Fig. 1.

l flight data tested

Preprocessing Unit

residual

sequence

Judgement data

between base

failure
output or ‘wild’ knowledge|
alarm data base
commande sensitivity expert
idea ' analysis users
flight inference failure
decision engine ~talarm

Fig. 1. Basic Structure of Expert
System for ¥FDI of flight.
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In Fig. 1 the residual sequence 1is generated
in bias-separated estimator.

Application of state estimation method to the
residual generation of FDi for aircraft is posible
because the torces and resuiting motions of an
along a flight path are related by well-known
equations of motion. The equations may be used to
produce estimates of force and motion variables
that can be compared with corresponding measure-
ment time-histories. Therefore state estimation
technique is used in this paper to generate signal
of failures of sensor for aircraft.

111, Model tor blieht State Kstimation

The mathematical model used for flight state
estimation is described, in general, by three sets
of kinematic equations with the state variables
consisting of three linear velocities u, v, and w;
three position angles ©, ¢, and ¥V : and altitude
h. The input variables in the equations are the
linear accelerations Ax, Ay, A= and
anglar rates p, 4, r. The kinematic equations are
formulated as

U = -qwtrv-gsin 8 +A, }

Vv = —ru+pw+gsin® cos 8 +Ay

W = ~pv+qu+gcos ¢ cos 8 +A.

% = ( rcos® +asin® )/ cos® &‘ (1)
6 = qcos ¢ -rsin¢d

&= p+ { gsin®+rcosd ) tan®

t.n = usin® -vsin ¢ cos 8 -weos 8 cos ¢

Since all variables are sampled, a discrete-
time filter will be applied to process the
measurements. Usually, the nonlinear equations (1)
are first linearized and then transformed into
discrete-time versions. Big modelling errors may
often appear when aircraft maneuvers. ln order to
decrease modelling errors, this present paper
introduces a exact discrete-time model for state
estimation.

Integrating equations (1), we obtained the
exact discrete-time model.



X1.ce1 = XiwobT Jaer 00T AT
@ (t,k1) dt Xe.x
-gP‘T J kT(Ktl) TAT
Jar=@(t, 1) (us*AF) d1dt
Xz.xer = O [(k+DT,KIT Xz, a0t
g S ® VTR [(k+1)T, 1] (ur+AF) dt

(2)
a1 = Opt [ @V Tq,r] B dt C

Prw1 & P + [ aer® 2T (p dt
+tan8 B dt )
Yreer = Pt Joer®" P TB/cos 8 dt C

vhere @ (t, T} is the state-transition matrix of

X =EX
and
r -q
E= |- 0 p
-p 0
X: =h

X2 = [ u, v, w17
X =16, ¢, ¥ J7
ur = [ Nwy ny, nz 17
uz=10p,q,r]"

FT¥ = | cosBk,sinBusin®x,sin 8 xcos ¢ «

-8in 8 ,x,c08 8 kSin ¢ x,c0s B koS O 1)

1 0
A= [ -lsinf 8y, lcosA 8y ]
0 BT
cosA Oy -sinl ¢y
B =
sinA ¢y cosD ¢

cos P x
sin¢x
ABy =8 -8,
Adyr =9 - O

It is considered that the following variables
are measured:

(1) The inputs to the system Ax, Ay, A=z
( Ax= g Dx, Ay= & Ny, A== g n= ),p, q, and r;

(2) The airspeed V, two incidence angles a
and B, three position angles 8, ¢, and ¥, and
altitude h (these variables represent the outputs
of the system ).

The measured variables are corrupted by syste-
matic and random errors. It is, therefore, assumed
that

u = ( I+ Ay) Ui,m + bui,m + N2
=Wt N
Uz = ( 1+ A2) Uz,m * buz.m + W2

=Uz + N2

where u: and u=z are the true values of the
inputs, A, and Az the unknown scale
factor matrices, bu: and buz the constant
biases, and n.1 and n= the measurement
noise vectors, and

A, = diag [ Ay Ay, }\zJ

AZ = diag [ Ap; )\q’ A’l" }
bu1 = (_ bx’ by, bZ ]T
buz = [ bp) st br' ]T

Substitution of equations into equation (2)
yields the discrete-time model for the state
estimation:

Xice1 = Mxe1,x X'f Usc{uz, uz) + B b

B!
+ Dy Jap 0T ]dt

N2

(3)
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where

Xrl-‘:l:ﬂh;UsV’Wy 8, ¢, l‘)}

1 fiz fis
Mice1,c = 0 ¢ [(k“'l)T,kT] {23
0 0 fas

Use = [ Use1 (TJ.I)T, sz(u'—l,ﬁz)T, UXB(UZ)T ]T

b =[ bulT; buZT; }‘xs }\ys }\-zv }\p, )\q’ )\r]T
Ux is not relevant to the states; fiz, fia,
fza, fas, may be carried out from the

equation (2).

The output equations take the forms

Yim hs ( Xi,u1, Uz, b1 )+ ¥y
@
i=1,2,3

H
=

vhere y1
y2 = ( Vo, B, a 17
ya=[ 68, ¢, % 17
b = [ bn, An 1T

b2=va,b°‘,bF: Av; )\qy A' :!T

b3=LbD ,b, ,b,r]r

and
V=[flh,flv,"l,‘ .TI, ’“0 yq? JT
N1
Letting &x= Jur & DT dt
L
and assuming
E{éw} =0, E{ W} =0

E{€x €471 = Oralle
h{ Vi VJT} = 0 waki

E{ Vi €573 =0

equations (3) and (4) can be used for the state

estimation and residual generation.

1V, _ Method for Robust Kesidual Generation

The technoque of state estimation may provide
both a check on instrument accuracy and data con-
sistency, and estimates of unmeasured or  poorly
measured variables. Over the past few years, this
work in the field has been evolving toward the
use of more complete kinematic models, the deve-
lopment of more sophisticated algorithms, and the
treatment of more difficult applications. Since
the measurements often may contain significant
errors which must de identified before the data
are used in residual generation for FDI.

Usually, the biases and scale errors are consi-
dered as components of a so-called augmented state
vector in the most methods of {flight state
estimator. ln the augmented-state implementation
the overall process is of the order nl+nZ , where
the number of dynamic varjables ( i.e., the
dimension of X ) is nl, the number of biases ( the
dimension of b ) is nZ, and the nl+n2 variables
are all coupled, in the filter and in the
covariance matrix propagation. Evidently, it is
too difficult for this approach to achieve real-
time {flight state estimation. In the bias-
separated implementation ( Friediand, 1983 ), the
naximum dimension one needs to be concerned with
is the larger of nl or n2, and errors in the
estimation of the biases do not contaminate the
estimation of the bias-free estimate of the
dynamic state. ‘Theoretical study and actual
application show that the bias-separated filter
implementation would require tewer numerical
operation than the augmented-state one and may
be to avoid numerical ill-conditioning. For this
reason, separated bias identification and state
estimation method would be chosen as the basic
algorithm of real-time flight state estimation
and residual generation.

Since the matrix Mi.i.x of equation (3)
is upper trianglar, hierarchical techniques are
used in this present paper to get high compu-
tational efficiency.

Letting bi= b

b2 = [ bul,bz;)\'x)}\yvAZ]T

ba [ bu2.b3;)\'pr}\q’ Arjl’

Expanding the nonlinear equation (4) in Taylor
series expansion, we obtained
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Yieer = i, we1Xe, ke1tDs, ke1bst
(5)

€1,k+1 * Vi, ka1

where the matrices Hi,xe1 and Di.x-1 are

defined by

®hs( Xi,u1, uz, by )

H!.k<-1 I
X1 X 1t.x+1 ,bx,
Shi( Xi,ur, uz, b1 )
Di.xer = l
Ibs X t.x+1 ,bx,
i=1,2,3
and
e1.xe1 = hil Xg,ua, uz, bs )'Hx.k+1X1.k+1

‘Di.k*lbi

Thus on the basis of stochastic vector
difference equation (3) and measurement equation
{5), flight state and biases can be estimated by
using separated bias identification and state
estimation algorithm.

The time update equations are
bi.ke1sk = b1k
Poi.k+1 =Pbi,wx x
(6)

Xiea1/6® Mot wefioctise (U1, Uz) *Bieibi

Prev1 /M1, kPo, cociert ™ Dl T ™
i=1,2,3

The measurement update of
estimates

Xo1,k+1/k+17 Ki,k+1 kKot k+1 €1,k+1
Kot.k+1=Pos.k+1H1, ke 1K1 P
{7)

Por,ks1Z (1Kot ke1l1. ke1)Pot.iee1k

i=1,2,3

bias-free state

The measurement update of b

br.ke1= b1 kot ko1 €1, K1

Kb1.ee1"Pb1, ko1 k01 (He, ka1

Vb1, ack-14Dt,1ce1) T R17tien

(3)

ek ek (e ket

P e, ko1 /ke1= P
Por,ks1acts, o1 T+Re, ee1) 7t
Croxe1k
i=1,2,3
vhere
Ci.xe13He, ko1l 1etD1, e

Us, M1, ko1, 6Vb1, k=181,

Vo1, ke x=Ut. Ko, ke1Cs, ka1

e1.k+1 = Yim.k+1" hi( Xi.ke1/1,U1,Uz2,b1,x)
i=1,2,3
and
Mi ko1 = 1
Ma.xce1.k = fsa
Mz,ker.e= P [(+DT,KT]

The measurement update of X

X1 k+1/x+1% Xo1,k+1/k+1%
(9)

Vbi.k+1/kai,k+1 €1,1c+1

In the equations (6)--(9) subscript ' 0’
represents the ' bias~free ’ state estimator and
subscript ‘ b’ bias estimator; Xi.ke1k
can also be calculated by using numerical
integration of Runge-Kutta type.

The state estimation error equations can be

written as follows
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Ei,ee1=Mi, o1, kb1, 1% Sk
(10)

'(Kﬂi.k+l+vbi.k¢1/k) Er,x



vwhere

Sk+17sign{K, 1. k+1) bTr.kb1.x

V. _Simulation and Application

The expert system for the FDI of flight test
system has been simulated in flight data acqui-
sition system. The results of simulation and
actual application show that the estimator of
flight state can give robust residual generation
and the expert system can declare the faulty and
focate failures correctly. Some applications of
the flight test of high angle-of-attack show that
this expert system is suitable to the flight
regimes of both low and high angle-of attack.
Fig. 2 shows the result of FDI for flight test
carried out by the expert system presented in this
present paper.

_Vl. Conclusion

An expert system for FDI of aircraft is
presented in this paper. The new method has been
simulated in Chinese Flight Test Center. Various
applications show that the expert system can cor-
rectly declare the faulty and locate the failures.
For more experienced users this expert system may
be improved further.
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Fig. 2. Result of FDI of Expert System for
Aircratt ( t=2.3 second, alarm is
released ).





