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Abstract

Both pilot opinion and the accident statistics indicate

a need to improve safety in the take-off phase. A
major problem encountered is the high speed overrun of
the runway during a rejected take-off (RTO). At
present cockpit instrumentation which presents the type
of information necessary for accurate performance
during take~off is limited to the airspeed indicator.
Additional information to monitor the progress of the
take—of f would warn pilots of any shortcomings and thus
a take-off could be rejected at an earlier stage during
the ground roll to prevent a high speed overrun. This
paper reviews the development of an efficient Take-Off
Performance Monitor (TOPM) and focuses on the role of
the Kalman filter in deducing optimal estimates of the
take-of f conditions. The goal of achieving a high

level of accuracy in the outputs while also employing
filter algorithms that are both stable and robust has
been achieved. Important improvements in operational
safety could result form the widespread use of
efficient take-off monitors.

Nomenclature
ba  accelerometer bias m/s2
bg  GSS bias m/s
ba  gyroscope drift-rate bias rad/s
F nxn continuous system dynamics matrix
G nxr plant noise input matrix 2
g acceleration due to gravity m/s
H mxn measurement matrix
K nxm Kalman gain matrix
P nxn covariance matrix of x
P nxn covariance matrix of x’
Q rxr system noise covariance matrix
R mxm measurement noise covariance matrix
Re Earth equatorial radius m
S nxn square root of P
S nxn square root of P
t time s
U rxr square root of Q
u IRS velocity in North direction m/s
\' mxm square root of R
v m~dimensional Gaussian measurement noise vector
v IRS velocity in East direction m/s
Vg  GSS velocity in runway along-track direction m/s
w  r-dimensional Gaussian plant noise vector
w IRS velocity in vertical direction m/s2
wa accelerometer white Gaussian noise m/s
wg GSS white Gaussian noise m/s
wa  gyroscope drift-rate white Gaussian noise rad/s
X n~dimensional state vector
z m~-dimensional measurement vector
At  sampling interval s
Au  North direction velocity error m/s
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AV error measurement m/s
AVg error in GSS signal m/s
Ax  North direction distance error m
A®  tilt error in East platform stabilising

gyroscope rad
3k1 Kronecker delta function
€ statistical expectation
[ nxn discrete system state transition matrix
I‘2 nxr system noise coefficient matrix
o variance of noise process
e platform rotation about East axis rad
GR runway heading rad
Subscripts
LO lift off
M measured parameter
R rotation
1 decision
2 denotes take-off safety speed
Dressings

time derivative
. time update
~ optimal estimate

1. Introduction

In January 1982, an Air Florida Boeing 737 attempting
to leave Washington National Airport was unable to
climb properly due to sub-standard thrust development
throughout its ground roll. The aircraft crashed into
a bridge with loss of 78 lives. The accident
investigation found that there was significant wing
contamination by ice, thus affecting the engine inlet
pressure probes. Before take-off roll commenced the
pilot attempted to set take-off thrust using Engine
Pressure Ratio, but his adjustment to an indicated
value of 2.04 produced an effective value of 1.70 due
to the pressure probe blockage. Consequently a
lower-than-normal level of thrust was applied during
take~off.

The ensuing accident report recommended the
development of a TOPM, as existing airworthiness
requirements contained several inadequacies. The
accelerate-stop performance and thus the field length
computations are based on the assumption that the
aircraft acceleration will be normal up to the decision
speed (Vi). Currently, the scheduled accelerate-stop
distance may be exceeded even before the decision point
is reached and a decision made to reject take-off. On
any day, factors such as runway contamination, degraded
engine performance, actual runway profile (as opposed
to ‘effective gradient’) and tyre failures can
adversely affect the airplane acceleration and cannot
therefore be accounted for during standard
certification procedures . Furthermore, for aircraft
certified in accordance with US Federal Aviation



Regulations (FAR), the decision speed and field length
calculations for contaminated surface operations are
based on a clean, dry runway. Thus the accelerate-stop
criteria cannot always be guaranteed to provide an
acceptable level of safety in real situations.

Acciden;c data compiled by the Society of Automotive
Engineers” (SAE) indicates very clearly that the
take-off accident rate has not declined during the last
two decades. Service history indicates that most fatal
accidents are due to some form of performance
deficiency and that catastrophic overruns continue to
occur even when the take-off is rejected at speeds
substantially below Vi. Between 1962 and 1978 over 25%
of the overruns” occurred due to RTOs initiated at a
speed equal to or below Vi. Pilot opinion sought
during this study revealed that common feelings of
anxiety existed among air crew about the thoroughness
and accuracy of take-off communications and decisions.
It was made eminently clear that the take-off decisions
and accelerate-stop problems deserved scrutiny.

It is clear that during the take-off roll the pilot
currently has no means except his instinct by which to
determine whether the performance is normal for the
existing weight and engine setting. Thus in order to
improve safety in this area much more comprehensive
monitoring of the take-off is required. An efficient
TOPM would assist the pilot in keeping the progress of
the take-off constantly in view, so as to make it
easier to decide if a take-off can safely be continued
or to support the decision to abandon it, even before
he reaches Vi. There is little doubt that the
predictive capacity of a TOPM is crucial to flight
safety if only because warning would be given before a
critical situation occurred. Consideration has been
given to both distance-to~go runway markers and
time-to-speed checks in the past, but both have been
discarded as insufficient for safe civil operations.
Despite the recommendation noted in 1982, only limited
progress has been made in producing a reliable system.
In contrast to work reported to date, which considers
only a deterministic approach, this paper reviews the
development of an efficient TOPM and focuses on the
processes required to deduce optimal estimates of the
take-of f conditions by employing Kalman filtering
techniques.

The remainder of this paper is sub-divided as
follows. Section 2 examines. the possible benefits of a
take-of f monitor and outlines the main problems that
must be tackled for the successful development of a
take-off monitor. The equations for the Kalman
formulation of a statistical filter are then summarised
in Section 3. The implementation of the filter is
illustrated by application of the equations to a simple
example. Next, simulation results are presented for a
typical take-off using an Inertial Reference System
(IRS) aided by an independent groundspeed signal.
Finally, support is provided for the attitude that an
efficient system of this kind would contribute
significantly to air safety.
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2.0 General Principles for a Display

Fundamental to the objectives of this research is the
desire to produce a display with reliable predictive
capacities which will provide warnings of take-off
dangers earlier than would otherwise be the case.
Numerical integration of the set of equations, to which
the filter outputs contribute values of sensed
parameters, will provide at least

(a) the current position of the aircraft on the runway
(lc), a continually lengthening bar growing within
a simple runway outline,

(b} stopping distance required for current speed (Se),

(c) the predicted position which the aircraft will
reach when its speed becomes V1 (lvi) or VR, (this
could be represented by a narrow bar across the
runway strip, and preferably coloured (green) and
visible as the ‘next marker’ along the strip)

(d) the predicted stopping distance required for the
aircraft when it reaches Vi (Svi). (This would be
represented by another narrow bar (red) and
initially visible as another marker beyond the
‘next marker’.)

A simple form of the display would be as shown in
Fig.1.

Fig. 1 Simple TOPM Display

Indeed these positions would be calculated and
displayed using nominal payload data along with other
nominally correct data such as engine thrust, while
taxiing out. Thus those take-offs that were only
marginally safe would become apparent at that stage.

After brake-release, these critical lengths would be
displayed on the basis of real measured data and
‘forward computations’. The rolling resistance
characteristics of the runway need to be established,
including runway or tyre resistance and impingement
drag associated with runway contaminants whether dirt
or snow. Runway contaminants will affect braked wheels
and friction coefficients cannot be assumed to remain
unchanged for stopping performance predictions. The
TOPM algorithms will need to take into account the
extent of engine or tyre failures and the consequential
effect on the aircraft’s performance. Other anomalies
such as excess weight unknown to the pilot must also be
reflected in all performance computations to avoid
misleading the crew. The current windspeed as obtained
from an onboard windspeed estimator should be
incorporated in all predictions such that dangerous
situations arising from unexpected wind changes are
prevented. The accuracy of the prediction phase would
be enhanced if the actual runway profile rather than
the official effective gradient were employed.



All four variables will be re-evaluated regularly,
subject to data being collected from

+ Inertial Reference System (accelerometers and
gyroscopes)

+ Air Data Computer (ADC) (wind/velocity sensors)

« Groundspeed sensor (GSS) (eg. wheel rotation
rate or doppler)

+ Wheel Monitors (eg. Tyre Pressure Indicating
System to monitor ‘tyre health’)

« Engine parameters in order to measure gross
thrust and thus monitor engine health

+ An algorithm that estimates the effective runway
rolling friction coefficient

and any important consequences of changes in these data
would be displayed as frequently as the chosen
screen-refresh rate.

The following could happen, with consequences noted:

- Some loss of thrust: lvi would be extended, but
other lengths would be unaffected (assuming that
credit was not given for reverse thrust when
predicting stopping performance).

~ Multiple tyre failure: lvi, Svi and Sc would all
be lengthened.

As the two bars associated with lvi and Svi close upon
each other, the pilot’s margin for error, delay or
decision narrows and if the order of the two bars is
reversed, ie. the pilot sees the red bar as the ‘next
marker’ along the runway strip, he can forsee problems
before they arise. Take-off can be aborted before a
threat to safety arises.

2.1 The Runway Requirement after Decision Speed

The description above embodies the central predictive
concept, but is probably short on realism. The proper
requirements will have to take account of the
following, namely the distances associated with
stopping, or clearing the screen height, from the
runway position at which a decision is made.

Fig. 2 shows the layout of speeds and positions
relative to the clearance required at the screen. The
allowable stopway length is also shown beyond the
formal runway limit. Three speeds are assumed to exist
in ascending order along the runway at successively
greater distances from brake-release, namely Vi, VR and
Vio. There follows the flare and eventual clearance as
required, reaching Va.

7 c desired
Vz/(_/

35

V Vv Vo

runway Stopway
Fig. 2 Take-Off Reference Speeds

For the TOPM there is a need to calculate the total
length beyond a critical speed (Vi or VR) to clear the
screen and to achieve an agreed V2 based on current
aircraft data, eg. all-up-weight, for the climb
performance required. The total distance required
would involve a calculation backwards from the screen
height effectively. It is this length which really
governs the ‘go/no go’ decision.
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2.2 A More Realistic Display Requirement

The description in 2.0 above is useful for considering
concepts of prediction and warning, but is less than
realistic for a particular runway. The important
requirements for a decision to support a safe take-off
or abort might be met by the following variation.

Fig. 3 shows a comparable display which assumes that
the aircraft joins the runway at some point near a
taxiway and removed from the near end of the runway.

taxiway end of runway
\ \ or stopway ‘

brake le Vee  Vam
release

Fig.3 Realistic TOPM Display

Details of the runway could be entered into the TOPM
manually, but in a mature system they would probably be
stored in much the same way that current navigation
data are held in memory and would include facts such as

« runway profile data

+ length, taxiway junctions, stopway provision
» runway heading

+ special obstructions to be cleared

» nominal runway friction data, if available.

The operation of the display and supporting
computations would be the same as in 2.0 above but the
two bars shown in Fig. 3 would be defined as follows:

(a) VRe is the position along the runway at which a
critical speed, say VR, will be reached and
indicating that the take-off ‘can go’.

(b} VrRm is the position on the runway, calculated
backwards from the screen or stopway, at which the
same critical speed must be reached in order to
satisfy the minimum safe take-off requirements and
at which the take-off ‘must go’.

The relative positions of the two warning bars ‘can
go’ and ‘must go’ will provide the predictive
assistance to the pilot. These bars would migrate if
the take-off parameters (eg. engine health, tyre
conditions, runway contamination) changed during the
ground roll and the pilot would get earlier than normal
warning that a difficult situation was impending.

The capacity to detect a significant performance
deficiency can be enhanced by employing a simple
acceleration monitor, which essentially distinguishes
between ‘acceptable’ and ‘unacceptable’ acceleration.
The danger with this form of monitoring is that some
take-offs could be rated visually as sub-normal while
the performance would still be within acceptable limits
for the current runway. An efficient acceleration
monitor has the ability to discriminate properly
between safe and unsafe situations in order to avoid a
high rate of unnecessary RTOs. The acceptable level of
acceleration for performance assessment purposes must
be deduced.

Inherent in the outputs of a TOPM are errors
associated with both the hardware and software which
may adversely affect the safety of the take-off. For
example, uncertainties introduced into the stopping
distance prediction would display to the pilot a
distance that was either overestimated or one that was



underestimated. Hardware errors will be introduced
into the TOPM outputs as there will always be
uncertainty in the sensor outputs, even after the
filtering process. Analysis must show that the
possibilities of ‘failure to warn’ and ‘nuisance to

warn’ are kept to an absolute minimum in order to avoid
a‘high rate of unnecessary RTOs and to insure that the
display gives adequate warning of an approaching
emergency.

2.3 The Definition of Sufficient Warning

Fig. 4 shows the usudl method of finding a balanced

ficld length and defining Vi, the decision speed which
allows

(a) continued take-off with a failed engine and
clearance to the screen height at V2

(b} emergency stop within the length that includes
remaining runway and the stopway.

By definition, the balanced field length has the two
lengths for (a) and (b) equal, implying that the
fictitious screen is at the end of the the stopway.
Both the ‘go’ and the ‘no go’ criteria demand the same
length to complete the operation.

- continued take -off

runway

tength

required Hare/
clearance

stopping

reduced
acceleration

accelerating

length required
by both criteria and
stopping distance at V¢

runway position
2t engine failure

Fig. 4 Balanced Field Length Concept

The equivalence of the two lengths assumes that
stopping distance has been calculated with valid
friction data. These could change and it can be argued
that instead of a reverse calculation of the length
given in Fig. 2, from V2, a comparable reverse
calculation should be made from the end of the stopway,
to find the requirement for runway remaining at the
latest decision point. Whichever criterion is used,
there can be displayed a ‘must go’ position on the
runway strip and, for convenience, only one such
position is shown on Fig. 3 namely Vrm.

3.0 Optimal Filtering of Inertial Flight Data

The objective of this section is to propose a suitable
state estimator which filters the data from two
independent sources to deduce optimal estimates of the
take-off conditions. Work reported to date considers
only a deterministic approach td filter these signals.
For example, a fixed-gain second~order Complementary
filter has been utilised in a recent system . The
Kalman filter approach to deduce optimal estimates of
the errors present in the measurement signals is
investigated here.
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3.1 Data Sources

A method of measuring aircraft motion needs to be
employed so that the instantaneous aircraft performance
is known and to enable a prediction of future
performance. Whilst conventional sources of data such
as the IRS and ADC are bound to be used, there is also
a need to employ alternative sources such as rotation
servos in the wheel units and perhaps a reflective
method such as forward-looking doppler or a mechanism
akin to a radio altimeter directed toward highly
reflective targets at each runway threshold. It is
recognised that the selection of sensors normally
available onboard would depend upon the aircraft in
question eg. Transport, General Aviation. A
mathematical model of a Boeing 747 aircraft has been
employed in this investigation which houses both an IRS
and an alternative GSS to determine airplane velocity
and position on the runway.

The IRS consists of accelerometers for measuring
specific forces acting on the aircraft, plus a
stabilised platform containing rate gyros for measuring
aircraft attitude and attitude rates. The IRS
considered herein employs the geographic axes (ie.
East, North and vertical) as the reference frame for
measurements and we assume that the platform is not
aligned correctly with the geographic axes due to an
initial tilt error and gyro drift. The East, North and
vertical platform stabilising gyroscopes are in error
by angles A8, A¢ and AB respectively. It is assumed
that the GSS provides measurements in the runway
reference frame.

The data from all motion sensors must be processed by
filter algorithms in a common frame of reference. The
roll, pitch and heading measurements, together with the
known runway heading, are used to compute the
appropriate transformation matrix between platform
variables and the runway reference frame. This matrix
can then be employed to convert measurements into their
appropriate components in the required reference frame.
The relationship between geographic, platform and
runway axes is illustrated below.

AB

Oy

runway reference

‘} geographic
E, E

platform

RUNWAY

X
along-track

runway
co-ordlnate)s/
Y
across-track

Fig. 5 Co-ordinate Systems



For this investigation it has been assumed that the
runway along-track direction is aligned with geographic
North and the aircraft is constrained to move along a
meridian of a non-rotating Earth. The IRS will then
indicate directly the acceleration along the runway and
the East velocity is taken to be zero. In addition,

the angle of latitude can be assumed to remain constant
during the take-off manoeuvre.

3.2 Kalman Filter Algorithm

The mathematical model of the plant used in the Kalman
filter is assumed to be a Markov process defined by the
following difference equation

x(k+1) = &(k+1,k)x(k) + F(k)w(k) (1)

where }_(k) is the n-dimensional state vector, ¢ is the

nxn nonsingular state transition matrix, T' is the nxr
system noise coefficient matrix and w(k) is an

r-dimensional process noise vector. It is assumed that
the measurements are a linear function of the system
states and thus the discrete observations are given by

z(k) = H(k)x{k) + v(k) (2)

where z(k) is the m-dimensional measurement vector,
v(k) is the mxl measurement noise vector and H(k) is
the mxn measurement matrix. Both w and v are assumed

to be uncorrelated zero-mean Gaussian white-noise

processes. The noise statistics are
e{wlk)} = 0 elv(k)} = 0 for all k
elww (1)) = QU3
ely(R)Y' ()} = RIS, R(K) > 0

Assume, also, that the state vector initial condition,
_75(0), is uncorrelated with respect to w and v. The

best estimate of the state, g(kﬂ), and its variance,
P(k+1), at time tk X can be updated for minimum
+

variance by the following Kalman update equationsb.

Extrapolation between measurements

%’ (k+1) = d(k+1,K)%(K) 3)

P(k+1) = &(k+1,k)P(K)® (k+1,k) + T(K)IQUAI (k) (4)

Measurement update

K(k+1) = P (k+1)H (k+){H(K+1)P (k+1)H " (k+1)

+ R(k+1)]™" (s)
x(k+1) = x’ (k+1) + K(k+D)[z(k+1) - Hlk+1)x’ (k+1)] (6)
P(k+1) = P'(k+1) — K{k+DH(k+1)P (k+1) n

with initial conditions

x(0) = &{x(0)}

P(0) = £{[x(0)-X(0)I[x(0)-x(0)]"}
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3.2.1

operating conditions it has been shown that the Kalman
filter algorithm above can be unstable as th; state
estimation errors actually diverge with time'. The two
common causes of filter divergence are inaccuracy in
modelling the system, and round-off errors inherent in
the implementation of the filter equations on a finite
word-length digital computer. Modelling errors can be
overcome by use of random forcing functions which
causes the more recent measurements to be weighted
higher than past measurements. For the filter to
operate successfully one important requirement is to
propagate the covariance matrix P (and P’) accurately
as the elements of P decrease to very small values with
time. In the presence of machine-caused errors the
covariance matrix ceases to be positive definite and
symmetric which are essential to a covariance matrix.
The square root formulation of the conventional filter
circumvents this difficulty by computing the square
root of P instead of P and thereby cuts in half the
number of significant figures required of the computer.
This approach is therefore adopted in the proposed
design.

Square Root Formulations. Under certain

The covariance square roots are defined as

P'(k) = S(sT(x) (8)
P(k) = S(k)S"(k) (9)
Qk) = UU (k) (10)
and R(K) = VRV (K) . a1

The time update of the covariance matrix is given by7

T T
Pl = 180+ 1IS(O) : T(ougo) | 3- {68 (keLk)
U OrT (k)

(12)

which may be verified by performing the multiplication
on the right hand side of the equation and comparing
the result with (4). The following two-step procedure
is used to compute the square root S (k+1):

T T
AT = §_L§l§_£];(:l.’.l_(l (13)
uTortx)
and STik+1) = AT (14)

where A" is reduced to upper triangular form by -
employing the modified Gram-Schmidt orthogonalisation
procedure.

The square root formulation for the measuremsent
update of the covariance matrix due to Andrews” is

Sk+l) = S'(k+IHI - ZOWH W + V+1) 2Ty (15)
where
Z = ST (k+1)H (k+1)
and ww' = R(k+1) + Z'Z . (16)

This procedure may be verified by multiplying (15) by its
transpose and comparing the result with (7).



3.3 State Equations for the Kalman Filter

The ‘indirect’ approach is used in which the error
states of the dynamic process are estimated as opposed
to the actual physical states. The estimates are
computed by differencing the basic navigation outputs
as produced by the different systems and the resulting
error measurements are then processed by the filter.
These error states are used to correct the outputs of
the navigation systems in a feedforward mechanisation
in order to produce best estimates of the take-off

conditions. This approach is illustrated below.
best estimate of
+ take-off conditions
IRS k3
Lh -
+
KALMAN
FILTER
error 2;35: :’sﬂmata
errors
GSS | measurements
Vo,

The statistical error models on which the filter is
to be based must be reasonably complex if they are to
describe the ‘real world’ accurately. In contrast,
error models that are too complex may cause the storage
and computation time constraints to be exceeded. Thus
one of the basic design problems is to ensure a
sensible balance between complexity and performance.

The error in a state is defined as the indicated
value minus the true value. As an example, only simple
models of the sensor uncertainties are used in this
study. Typical IRS errors would be accelerometer
biases, platform tilt errors, gyro drift and white
Gaussian noise variables. The minor effects of gyro
drift during take-off are included here for
completeness but in practice a lower order error model
would probably be employed. The tilt error introduces
components of ‘g’ and vertical acceleration, v'vM, in the

accelerometer measurement aligned with the North axis.
The error equation for the North axis acceleration
measurement is

AMi=0 -1
M

A@(WM +g)+ bat+t wa . 17)

It is assumed here that v'vM can be measured with

negligible error. As A® is small, the effect of a
measurement v'vM corrupted with noise and biases will be

negligible. The dynamic system generating the constant
random variable ba is of course

ba=0 . (18)
The gyro drift-rate error model is assumed to consist

of a bias component and a white noise process. The
error equation for the drift rate is

=0 -0

1
™
A e
o|x

I
|
g
g

(19)
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and by definition

b&_
Ax = Au

|
(=]

(20)

The error model assumed for the GSS measurement is
defined as

AV = bz + wg

b =0 . (21)
The error measurement at discrete time intervals is

AV = u, - VgM = Au - AVg . (22)

The differential equations for the error states may be
written as

x(t) = F(t)x(t) + G(t)w(t) (23)
and thus
Al 0 0 (g+WM) 1 00 Au
Ak 1 0 o] 0 0 Q Ax
A® | = |-1/Re O 0 010 .\2]
ba 0 0 0 0 0 0 ba
ba 0 0 0 0 0 0 ba
bg 0] o] 0] 0O 0 O bg
1 0
o 0 w
0 1 [ ‘]
*10 o wo (24)
00
0 0
The associated measurement equation is
_th) = H(t)§(t) + X(t) (25)
or
Au
Ax
AW=110000-11 2} -w (26)
ba
be

Formulating the Kalman filter for implementation on a
digital computer requires the continuous state space
model defined above to be converted to the equivalent
discrete-time model defined by (1) and (2). In the
stationary case (where F is time invariant), or for
small sampling intervals At, it is well known that

o« n
AtF(t) At
ot )=o) =e W = Z — F)

n=0

= - 27
where At=t -t 27
The product I'w in Equation (1) is defined as

t

k+1

roowt) = [ et DGm@Wd 28)
t
k



and an approximate solution of this integral for small
sampling intervals is easily found by substituting the

expansion for the & matrix. Application of the above
approximations !ields the following matrices if terms
of the order At” and higher are ignored:

C . A
- © At(g+wm) At2 cC o
At
t —_
A 1 C > o o
Bl Bt 5 iC At
Re Re 2Re
0 0 0 1 0O 0
(o} 0 0 0 1 0
L 0 0 0 0 o 1 ]
g + W)
where C= — (29)
and
At C ]
Al
2
2
At
r=|-
7Re At (30)
0 0
0 0
b 0 O -
The covariance matrix for the plant noise vector is
expressed by a simple diagonal matrix with elements
Qk) = Q = diagle®>. 06> 000 ] (31)
wl w3
where o‘ii is the variance of the noise process.
Similarly the covariance matrix (or scalar in this
case) for the measurement process is
R(kk) =R = ¢° (32)
vl

In order to initiate the Kalman filter, it is
necessary to specify an initial state estimate, x(0),.

and its associated a priori covariance matrix, P(0).
This covariance matrix is simply a diagonal matrix
consisting of the variances of the individual initial
state error variances. The initial estimate of the
state variables in this investigation are assumed to be
zero. All terms required by the filter are now defined
and the equations in 3.2 can be used to estimate the
errors in the measurement signals optimally.

4.0 Results and Discussion

The equations employed in this study for the ground
roll simulation of the dynamic model are nominally the
set for the Boeing 747 aircraft. Algorithms were also
developed to simulate the sensors mounted on the
aircraft with all their attendant errors and noise
values. The simulations considered below were
conducted on an IBM 3090 mainframe with the aid of a
dynamic systems simulation package, ‘SCSIM’, available
within the Aerospace Engineering Department of the
University of Bristol. These time responses were
performed for standard sea level conditions.

1601

The filter algorithms described in 3.2 are greatly
simplified as the scalar measurement case is presented
here. The appropriate simplifications (eg. matrix
inversion avoided) have been made in the
implementation.

Fig. 7 below shows the runway position and velocity
as measured by the independent measurements alone
compared with true values (eg. distance errors growing
to over 200 m), whereas Fig. 8 (note change of scales)
shows how closely the filter can track the true values
when the multiple sources contribute to the hybrid
configuration (eg. comparable distance errors growing
to about 15 m).

Velocity m/s
100

80F TruelRS GSS

60

40

20

Q 10 20 30 40 50

Distance m
2500

2000+
1500
1000}

500

0 L a L N 1 I a

s} 10 20 30 40 50
Time s

Fig. 7 True and Unfiltered Measurements Signals

These error states are used to correct the IRS outputs
and the resulting best estimates are presented to the
prediction and display routines. Thus two independent
measurements have been combined to eliminate
significant errors which are generally evident in each.
Optimal estimates of the take-off conditions also
enhance the accuracy of the predictive performance
routines. Consequently the likelihood of displaying
hazardously misleading information is reduced, which
ultimately implies greater reliability and improved
pilot action. This superior system reliability is
crucial in providing positive evidence that both pilots
and airworthiness authorities should accept the
take-of f monitor.

The tilt error and gyroscope drift rate bias have
been included in the state model in order to provide a
more complete dynamic model of the system and also to
illustrate the effectiveness of the filter. These
parameters are not required for use outside the
filtering algorithms. The relatively small magnitude
of these states implies that their contribution to the
uncertainties in the acceleration signal is minor. For
example, the magnitude of ba was correctly estimated to
fluctuate about 4.8 x10 ' rad/s (and is therefore not
illustrated above). In these situations,
simplifications to reduce the order of the state model
are appropriate. The resulting state vector could
consist of only four states, namely Au, AX, ba and bg.



The matrices required for the filter implementation
would be simplified and in addition the ‘(g + v'vM)' term

would disappear from the F matrix. Consequently the
computational burden of implementing the Kalman filter
is reduced. Fictitious plant noise can be added to
combat divergence due to this intentional incorrect
plant modelling. The actual level of noise can be
determined by a number of techniques which vary from
trial and error methods to more complex systematic
approaches’. Only a comprehensive sensitivity analysis
can determine the effectiveness of the reduced order
model.
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5.0 Conclusions

The performance being achieved and the approach of a
potentially dangerous situation during take-off cannot
be observed without special instrument aids. Detection
of any shortfall in the performance early in the
take-off run would thus not only prevent a high speed
overrun, but would aid the pilot in judging the point
at which an undisturbed take-off were both possible and
safe. The Kalman filter can be employed as a state
estimator to deduce optimal estimates of the take-off
conditions and consequently enhance the accuracy and
reliability of the TOPM. However, the acceptability of
the take-off monitor to pilots and airworthiness
authorities will require considerable parallel efforts.
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