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Abstract

A detailed study is made of the effects of variations in
lamination and material parameters of thin-walled composite
frames on their vibrational characteristics. The structures
considered are semicircular thin-walled frames with I and J
sections. The flanges and webs of the frames are modeled by
using two-dimensional shell and plate finite elements. A mixed
formulation is used with the fundamental unknowns consisting
of both the generalized displacements and stress resultants in
the frame. The frequencies and modes predicted by the two-
dimensional finite element model are compared with those
obtained from experiments, as well as with the predictions of a
one-dimensional thin-walled beam finite element model. A
detailed study is made of the sensitivity of the vibrational
response to variations in the fiber orientation, material proper-
ties of the individual layers, and boundary conditions.

Introduction

The physical understanding and the numerical simulation
of the dynamic response of laminated anisotropic structures
have recently become the focus of intense efforts because of
the expanded use of fibrous composites in aerospace, automo-
tive, shipbuilding, and other industries, and the need to estab-
lish the practical limits of the dynamic load-carrying capability
of structures made from these materials. References 1-45 are
indicative of the general interest and efforts focused on various
aspects of the vibration of structures. Experimental studies
have been performed on the free vibration and impact-response
of thin-walled composite frames and stiffeners.” One-
dimensional theories have been developed for the static,
vibration and buckling analyses of thin-walled frame
structures.”® However, no systematic assessment has been
made of the range of validity of the basic assumptions of these
theories. Approximate analytical and numerical techniques
have been applied to the study of the vibrational response of
isotropic  and stiffeners 2! Only a  few
publicati(msn'23 examine the effects of variations in lamination
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and geometric parameters of composite panels on their vibra-
tional characteristics, and these publications do not consider
thin-walled composite frames.

The present study summarizes the results of a recent
study (Noor, Carden, Peters)24 on the effects of variations in
the lamination and geometric parameters of thin-walled com-
posite frames on their vibrational characteristics (frequencies,
and energy components associated with different modes). The
frames considered are semicircular, made of thin-walled
graphite-epoxy material with 1 and J sections and have a
36-inch radius (see Fig. 1).

Analysis

Computational Models

Two computational models are used for the thin-walled
composite frames study. In the first model, the flanges and
web are modeled using two-dimensional shell and plate finite
elements. The second model is a finite element discretization
of the one-dimensional Vlasov’s type thin-walled beam theory.
Henceforth, the two models will be referred to as two-
dimensional (2D) and one-dimensional (1D) finite element
models, respectively.

Mathematical Formulation

a) Two-dimensional models. The analytical formulation
for the two-dimensional models is based on the Sanders-
Budiansky shell theory with the effects of transverse shear
deformation, and laminated anisotropic material response
included. A mixed formulation is used with the fundamental
unknowns consisting of both the generalized displacements and
the stress resultants in the frame (see Fig. 2 for the sign
convention).

Bicubic shape functions are used to approximate each of
the generalized displacements and the stress resultants. The
number of displacement nodes in each element is 16. The
stress resultants are allowed to be discontinuous at interelement
poundaries. The total number of stress-resultant parameters in
each element is 128. The element characteristic arrays are
obtained by using the two-field Hellinger-Reissner mixed
variational principle.
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b) One-dimensional models. The analytical formulation
for one-dimensional models is based on a form of Viasov’s
thin-walled beam theory with the effects of flexural-torsional
coupling, transverse shear deformation, and rotary inertia
included. The fundamental unknowns consist of seven internal
forces and seven generalized displacements of the beam (see
Fig. 3 for the sign convention). The element characteristic

" arrays are obtained by using a modified form of the Hellinger-
Reissner mixed variational principle. The modification con-
sists of augmenting the functional of that principle by two
terms: 1) the Lagrange multiplier associated with the con-
straint condition relating the rotation of the cross section and
the twist degrees of freedom; and 2) a regularization term that
is quadratic in the Lagrange multiplier. Only C° continuity is
required for the generalized displacements. Lagrangian inter-
polation functions are used for approximating each of the
generalized displacements, internal forces and Lagrange
muitiplier. The polynomial functions for the internal forces
and the Lagrange multiplier are one degree lower than those of
the generalized displacements. In the present study quadratic
polynomials are used in approximating the generalized dis-
placements. Linear polynomials are used in approximating
each of the internal forces and the Lagrange multiplier. The
internal forces and the Lagrange multiplier are allowed to be
discontinuous at interelement boundaries. For each element the
total number of generalized displacement parameters is 21, the
total number of internal force parameters is 14 and the total
number of Lagrange multiplier parameters is 2. Noor, Peters
and Min®® present the fundamental equations of the thin-walled
beam theory.

For quasi-isotropic laminated composites, numerical
experiments to be described subsequently have demonstrated
that reasonably accurate results can be obtained using the
one-dimensional model when the laminated composite is
replaced by an equivalent isotropic material with the following
Young’s and shear moduli:

E=A,/h (1)
G =Ay/h )

where A, and A, are the extensional stiffness in the x direc-
tion, and the in-plane shear stiffness used in the classical
lamination theory, respectively; and h is the total wall thickness
(of the flange or web). This approximation was adopted in the
present study.

Finite Element Equations

The finite element equations for each individual element
of the 1D and 2D models can be cast in the following compact
form:

(IKI =02 M1){Z} =0 (3)

where {Z) is the vector of the elemem degrees of freedom; o is

the frequency of vibration; [K] and lM] are the generalized
stiffness and mass mdtuces The expllut forms of matrix

arrays associated with {Z}, |K| and {MI are given in Noor and

Anderson%, and Noor and Peters” for the two-dimensional
models, and Noor, et al® for the one-dimensional model.

Vibrational Sensitivity to Variations in Lamination and Mate-

rial Parameters

The expressions for the sensitivity derivatives of the
frequency and response vector with respect to the lamination
and material parameters, A;, of the composite frames are given

by:28

E3 ES
dw’ K] 5 9IM] v
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and
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*
where {Z} represents a particular solution of the equations:

*
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and ¢; are multipliers given by:
t Jam],,,)
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In Eys. 4to 7, the elgenvectorq are assumed to be nor-
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malized with respect to IMI ie.
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The expressions for the total complementary strain
energy of the frame, U, and its derivatives with respect to A;,

are given by:

‘)li elements

v =1 I {H)IFIH) ©)
<. elenents
and
que a|F1 EXIM,
LAY 2 {H)! {H} +1 50 L EHHE (10)
if J

1

For the purpose of obtaining analytic derivatives with respect
to some of the lamination parameters, such as the fiber orienta-

tion angle of different layers, it is convenient to express )17&] in

aF™

terms of o as follows:

AIF| oLF"!
o, = V¥ T 1P

(11)

IAFI

The matrix o is evaluated using the analytical derivatives
1

of the material stiffness matrix of each laminate (flanges and

1237



web). The material stiffness matrix of the laminate is given in
o
Jones.”

Experimental and Numerical Swudies

Apparatus and Test Procedure

a. Specimens. Two specimens, shown in Fig. 4, were
tested, an I-section and a J-section frame. Nominal dimensions
of each cross section are shown in Fig. I. Weight of the frame
sections was 3.181 and 4.085 lb. (1.443 and 1.853 kg) for the |
and J frames, respectively. The frame sections were made from
AS4/5208 graphite/epoxy unidirectional tape layed up in a
manner which resulted in essentially uniform stiffness proper-
ties in the circumferential direction (i.e., the stiffness coeffi-

cients are independent of 8). The material properties for the
individual layers are given in Fig. 1. The laminate stacking
sequence for the I-section was [£45/0/90]; and |+45/0/90],, for
the J-section. Each frame section was semicircular with a
diameter of 72 inches (1.8288 m.). Bonded to the outside
flange of each frame was a sixteen-ply |£45/0/90],, quasi-
isotropic skin made of the same material. The frame sections
were constructed so that the skin would extend 0.5 inches
(0.0127 m.) beyond each side of the bottom flange of the
frame. Measured dimensions were used in one of the finite-
element models and results were compared to nominal dimen-
sion results and the experimental data.

b, Iastrumentation_and test method. A photograph of
the test equipment and composite frame specimens is shown in
Fig. 4. The ends of the frame sections were potted in a fixture
which was bolted o a large steel beam backstop.

An air-shaker, connected to an air compressor, was used
to excite all test specimens. Excitation was both in-plane
(radially), and out-of-plane. For in-plane excitation, the shaker
was positioned so that the pulses of air struck approximately
along a normal to the surface of the skin. For out-of-plane
excitation, a piece of styrofoam was attached to the side of the
frame by double-sided adhesive tape. Pulses of air struck the
flat face of the styrofoam along a normal to the face. The
position of the air-shaker was adjusted if the excitation was
striking on & node.

A miniature accelerometer was attached at a fixed
location to the frame sections with double-sided adhesive tape.
Output from the accelerometer was amplified and displayed
along the vertical axis of an oscilloscope. Natural modes were
determined by tuning the excitation frequency of the air-shaker
to produce an acceleration maximum on the vertical deflection
on the oscilloscope. Output also passed through a low pass
filter and was displayed as vibrational frequency on a fre-
quency counter.

A handheld velocity probe was moved along the frame to
determine node locations and mode shapes. The output of the
probe was displayed along the horizonial axis of the oscillo-
scope. The probe and accelerometer outputs combined to
create a Lissajous pattern on the oscilloscope. A phase shift in
the Lissajous pattern occurred when the velocity probe passed
over a node.

Since manual equipment was used in mapping the nodal
locations during the vibration survey of the frames, only nodal
lines associated with gross in-plane, and gross out-of-plane
motions were monitored. Other nodal lines, associated with
localized deformation patterns were not surveyed. These
localized deformations were noticeable in some of the higher
vibration modes, with complex deformation patterns and/or
strong coupling between in-plane and out-of-plane motions.

Finite-Element Grids

Two-dimensional models were generated for the actual
frames (test specimens) described in the preceding subsection,
as well as for the corresponding frames with nominal dimen-
sions. Henceforth, the frames with actual and nominal dimen-
sions will be referred to as the actual and nominal frames,
respectively.  For the actual frames, spline interpolations
through measured dimensions were used to generate the wall
thicknesses and coordinates of the nodal points. lsoparametric
finite elements were used to approximate the variations in
stiffnesses and geometry. The one-dimensional models consid-
ered herein are for the frames with nominal dimensions. The
grids vsed for both the one-dimensional and two-dimensional
models are described subsequently.

Two-dimensional models. An 18x8 grid was used for
modeling the whole I-section frame. In this grid two elements
were used to model each of the web, top and bottom flange
sections. The part of the skin adjacent to the bottom flange
section was treated as part of the flange. One element was used
to model each of the two parts of the skin section extending
beyond the bottom flange (see Fig. 1). The middle surfaces of
the top flange and the web were taken to be their reference
surfaces. The middle surface of the combined bottom flange
and skin was taken to be the reference surface.

An 18x7 grid was used for modeling the whole J-section
frame. The distribution of the elements was similar to the
[-section franme. Only one element was used to model the top
flange section (see Fig. 1).

Totally clamped and partially clamped support condi-
tions were considered. For totally clamped supports, all the six
generalized displacements were restrained

(“1’:”2’=W’:¢|’:¢2':¢3':0)‘ The partially clamped

conditions were obrained from the totally clamped case by
successively removing the restraints on one, as well as on
combinations, of the displacement and rotation components.

One-dimensional models. A uniform grid of 24 elements
was used in modeling each of the I-section and J-section
frames. The principal sectorial properties of the cross section
were evaluated using the Fortran program listed in Coyette;m

Identification of Modes and Estimation of the Error in the
One-Dimensional Model Predictions

The two-dimensional models can be used to: a) identify
the in-plane, out-of-plane and coupled modes, and b) estimate
the error in the predictions of the one-dimensional models.
This is accomplished through decomposing the complementary
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strain energy, U, Eqys. 9, associated with each vibration mode,
into three components, U, U, and U, (see Table ). The first
two components, U, and U, are associated with the in-plane
and out-of-plane stress resultants, respectively. The third
component, U,, is associated with the stress resultants which
are particular to two-dimensional plates and shells (not present
in one-dimensional beam models). The in-plane and out-of-
plane modes correspond to the modes for which U,/U® and
U,/U¢ are close to 1, respectively. The strongly coupled modes
correspond to nearly equal values of U /U° and U,/U". The
ratio U,/U is indicative of the error in the one-dimensional
model predictions.

It is also useful to partition the total complementary
strain energy, associated with each mode, into three com-
ponents, Uyp, Uy, Uy, representing the contributions of the top
flange, web, and bottom flange (including the skin).

Comparison of Experimental and Finite-Element Results

The results of the experimental and numerical studies are
summarized in Figs. 5 through 9 and Table 2 for the I-section
frame, and in Figs. 10 through 14 and Table 3 for the J-section
frame. For the finite element model three cases are considered,
namely, totally clamped edges (with both translational and
rotational restraints), partially clamped edges with ¢,- not

restrained, and partially clamped edges (with u, - in the flanges

and ¢, not restrained).

The maximum and minimum values of the frequencies
obtained by the (wo-dimensional finite element model
(corresponding to the totally clamped and partially clamped
edges) are shown in Figs. 5(a) and 10(a) along with the ex-
perimental frequencies. (See also Tables 2 and 3). Note that
the experimental frequencies associated with mode 9 of the
I-section, and of the J-section, respectively, are close in fre-
quency. Modes for these frequencies have very close nodal
locations.  Also, the 12th mode of the l-section (see Table 2)
was missed in the experimental survey which is indicative of
the difficulty of determining the high frequency modes. The
fact that only one of the multiple experimental frequencies with
close nodal locations (mode 9) is predicted by the finite ele-
ment model may be attributed to imperfections in lamination
and material properties; and/or to geometric nonlinearities
which were not incorporated into the finite element model. In
Figs. 5(b) and 10(b) bar charts are given for the frequencies
obtained by two-dimensional models of the actual and nominal
frames along with those of the one-dimensional model.

In Figs. 6 and 11 bar charts are given showing the two
decompositions of the complementary strain energies, associ-
ated with the different vibration modes, described in the
preceding subsection. The ordinates in Figs. 6(a) and 11(a)
represent the ratios of Uy/U®, U, /UC and U3/US, and the
ordinates in Figs. 6(b) and 11(b) represent the
Uy /US, Uy, /US, Up, /U for each of the modes.

ratios

The mode shapes associated with the first five ex-

perimental and analytical frequencies are shown in Figs. 7 and
12. Two views are shown for the deformations associated with
each mode: side view and top view. Also shown are the nodal
lines of the w” displacement on the top and bottom flanges. As
can be seen from Figs. 7 and 12, the deformation patterns
associated with higher modes are fairly complex. As men-
tioned previously, the only experimental nodal lines monitored
are those associated with gross in-plane, and gross out-of-plane
motions. Generally, good agreement between the finite ele-
ment and experimental nodal lines is observed in these cases.
Other nodal lines, associated with localized deformations are
shown only for the finite element solutions.

The sensitivities of the vibration frequencies to the fiber
orientation angles of the top flange, web, and bottom flange
and skin are depicted in Figs. 8 and 13. The ordinates in Figs.
& and 13 represent the sensitivity derivatives with respect to the
indicated fiber angles. Each of the sensitivity derivatives is
normalized by dividing it by the corresponding frequency of
vibration. The sensitivities of the vibration frequencies to the
material parameters E,, E,, G, and G are shown in Figs. 9
and 14. The ordinates in Figs. 9 and 14 represent the sensitiv-
ity derivatives with respect to the indicated elastic moduli.
Each of the sensitivity derivatives is divided by the correspond-
ing frequency and multiplied by the corresponding elastic
modulus. The effects of boundary conditions on the frequen-
cies obtained by the two-dimensional finite element models are
shown in Tables 2 and 3.

An examination of the experimental and finite element
results (Figs. 5 to 14 and Tables 2 and 3) reveals:

1. Reasonably good correlation is observed between
numerical simulation and experiment for the I-section frame
(see Fig. 5(b)). The ratios of the first five experimental fre-
quencies to the corresponding finite element ones ranged
between 0L.92 and 1.02 (see Table 2). For the J-section frame
the correlation is not as good (Fig. 10(b)). The corresponding
ratios for the first five frequencies were 0.87 to 1.04 (see Table
3.

2. Most of the experimental frequencies for the I-section
frame and the J-section frame are between those for the totally
and partially clamped supports (with both ¢,- and u,- in the

flanges not restrained). This is particularly true for the higher
modes. For some of the modes the experimental frequencies
are closer to the partially clamped support case (e.g., modes 10,
11 and 12, see Fig. 5(b)). For the t and J-section frames the
finite element model predicted only one of the multiple ex-
perimental frequencies with close nodal lines (mode 9). The
other experimental frequencies were between those for the
totally and partially clamped supports (with both ¢,-and u,-in

the flanges not restrained, see Fig. 10(b)).

3. The lowest five frequencies obtained by the one-
dimensional model are reasonably close to those obtained by
the corresponding two-dimensional model. This is particularly
true for the J-beam where the errors in the predictions of the
one-dimensional model were well below 10% (see Figs. 5(a)
and 10(a)).
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4. Identification of the modes as in-plane or out-of-plane
can best be accomplished by examining the energy com-
ponents, U, /U and U,/US, associated with the in-plane and
out-of-plane forces, respectively (Figs. 6(a) and 1(a)). Also,
the error to be expected when using one-dimensional thin-
walled beams can be estimated by computing the ratio of the
energy associated with the forces neglected in thin-walled
beams to the total energy, U,/U° (see Figs. 6(a) and 11(a)).

5. The coupling between in-plane and out-of-plane
deformations is more pronounced in the J-section than in the
I-section frame. As an example, the first twenty.modes for the
I-section frame had either U /U or U,/U® = 0.75. On the
other hand, only modes 1 10 4, 6, 8 and 10 in the J-section
frame had U;/U¢ or U;/U® 2 0.75. For the higher modes
neither the ratio U;/U® nor U /U® was close to 1 (see Figs.
6(a) and 11(a)).

6. For the I-section frame, the contributions to the total
energy of the top and bottom flanges far exceeded that of the
web for any given mode. The ratio of the strain energy in the
web to the total strain energy was less than .20 for the first ten
modes and less than (.28 for the succeeding ten modes (see
Fig. 6(b)). For the J-section frame the strain energy in the web
approached 0.4 of the total energy in some of the modes (see
Fig. 11(b)).

7. For the I-section frame, the strain energy of the top
flange is the dominant energy in the in-plane deformation
modes and the strain energy of the bottom flange (including the
skin) dominates for the out-of-plane deformation modes (see
Fig. 6(b)).

8. The vibrational response of both the I-section and
J-section frames is very sensitive to restraining the u, displace-
ments of the flanges (and skin). 1t is somewhat sensitive to the
rotational restraint on ¢,- (see Tables 2 and 3). However, it is

insensitive to restraining the displacement components u,- and

w’, and the rotation ¢ -.

9. The vibrational response of the [-section and J-section
is more sensitive to variations in the +45°, -45° fiber angles of
the top flange than to variations in the 0° or 90° fiber angles,
The variations in the 0° and 90° fibers of the web and the
bottom flange have a noticeable effect on some of the modes,
but their effect is generally less than that of the 45°. -45° fibers
(see Figs. 8 and 13). The vibrational response is also more
sensitive to variations in the elastic moduli E, and G, than o

any of the other material coefficients (see Figs. 9 and 14).

10. The sensitivity of the vibration frequencies with
respect to variations in both E; and G, , is almost the same for
all the modes (see Figs. 9 and 14). This may be attributed to
the quasi-isotropic lamination used for both the flanges and the
web. It suggests the feasibility of replacing the quasi-isotropic
composite, in the one-dimensional thin-walled beam model, by

an equivalent isotropic material, as was done in the present
study.

Comments on Sources of Errors

Sources of Errors

The determination of natural frequencies and modes
from vibration tests and numerical models involves numerous
possible sources of discrepancies or errors which are related to
mmechanical and equipment limitations as well as to theoretical
and physical assumptions. The errors in vibration tests include
inexact equipment calibration, excessive noise, manufacturing
variations, incorrect transducer locations and operation in a
region of nonlinearity of the response. Numerical modeling
errors can be attributed to inaccuracies in estimated material
properties and insufficient modeling detail. In the present
study care was exercised in collecting and recording the
vibration test data, and in the selection of the numerical model.
However, nominal material properties and layups (fiber orien-
tation of the different layers) were used in the numerical model.
The sensitivity analysis helped in identifying the material and
lamination parameters that need to be accurately determined.

Concluding Remarks

A detailed study was made of the effects of variations in
tamination and material parameters on their vibrational charac-
teristics of thin-walled composite frames. The structures
considered are semicircular, thin-walled frames with 1 and J
cross sections. The flanges, web and skin of the stiffeners have
quasi-isotropic laminations with fiber orientation being combi-
nations of £ 45°, 0” and 90" layers. Two computational models
are used for predicting the vibrational characteristics. In the
first model, the flanges and webs of the stiffeners were
modeled by using two-dimensional shell (and plate) finite
elements. The sevond model was a finite element discretization
of the one-dimensional Vlasov’s-type thin-walled beam theory.
A mixed formulation was used with the fundamental unknowns
consisting of both the generalized displacements and stress
resultants (or internal forces) in the frame. The frequencies and
modes predicted by the computational models are compared
with those obtained from experiments. A detailed study was
made of the sensitivity of the vibrational response to variations
in the fiber orientation, material properties of the individual
layers, and boundary conditions. On the basis of this study the
following conclusions are justified:

1. For some of the higher vibration modes the ex-
perimental frequencies for thin-walled frames are generally
between those for the totally and partially clamped supports.

2. Identification of the modes as in-plane or out-of-plane
can best be accomplished by examining the energy components
associated with the in-plane and out-of-plane forces. Also, the
minimum error to be expected when using one-dimensional
thin-walled beams can be estimated by computing the ratio of
the energy associated with the forces neglected in thin-walled
beams to the total energy.

3. For quasi-isotropic composite frames the vibration
frequencies, associated with the lower modes, can be accurately
predicted by isotropic one-dimensional beam model (with
effective elastic moduli). The accuracy of predictions is
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dependent on the cross-sectional distortions during the beam
deformations. As the cross-sectional distortions increase, the
degradation of accuracy becomes more pronounced.

4. The vibrational response of thin-walled semicircular
frames is very sensitive to restraining the displacement compo-
nent of the flanges along the length of the frame. It is some-
what sensitive to the restraint on the associated rotational
component. However, it is less sensitive to restraining the
other displacement and rotation components.

5. The vibrational response of thin-walled composite
frames with quasi-isotropic laminations is more seusitive to
variations in the +45°, -45° fiber angles of the top flange than to
variations in the 0 or 90° fiber angles. Variations in the 0 and
90° fibers of the web and the bottom flange have a noticeable
effect on some of the modes, but their effect is generally less
than that of the 45°, -45° fibers. The vibrational response is
also more sensitive to variations in the material coefticients E;
and G, ... than to all other coefficients.

6. The sensitivity of the vibration frequencies with
respect to variations in both E; and G, is almost the same for

all the modes. This may be attributed to the quasi-isotropic
lamination used for both the flanges and the web. It suggests
the feasibility of replacing the quasi-isotropic composite by an
equivalent isotropic material in the one-dimensional thin-
walled beam analysis, as was done in the present study.
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APPENDIX A - Symbols
Ayqy extensional stiffness of the laminate
(flanges or web) in the x;-direction
Axz in-plane shear stiffness of the laminate
G multipliers (see Eqs. 5 and 7)
E,G effective Young’s and shear moduli of the
equivalent isotropic material, respectively
Ep, Er etastic moduli of the individual layers of

the laminate (flanges or web) in the

direction of fibers and normal to it,
respectively

|F| matrix of linear flexibility coefficients for
an individual element

Gir, Grr shear moduli in the plane of fibers and
normal to it, respectively

{H} vector of stress resultant (or internal
force) parameters

h total thickness of the laminate

|l+(| generalized stiffness matrix for an indi-
vidual element (see Egs. 3)

M, M, M, bending and twisting moments in the
one-dimensional beam model

M. M. My bending stress resultants in the two-
dimensional model

IM], [R)ll consistent and generalized mass matrices
for an individual element (see Eys. 3)

Ny, N3, Ny extensional stress resultants in the two-

dimensional model

N, axial force in the one-dimensional beam
model
Q. Q; transverse shear forces in the one-

dimensional beam model

Q. transverse shear stress resultants in the
two-dimensional model

R radius of curvature of the centerline of the
frame (used in one-dimensional beam
model)

Ry outer radius of curvature of the frame (see
Fig. 1)

U total complementary strain energy of the
frame

Uy, Uy, Uy contributions of the top flange, web and

bottom flange (including the skin) to the
total complementary strain energy

U, Up complementary strain energy components
associated with in-ptane and out-of-plane
forces, respectively

Uj complementary strain energy component
associated with the forces neglected in the
one-dimensional beam model

u, v, w displacement components in coordinate
directions for the one-dimensional beam
model
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U, U, w

ulf,uz»,w'

{Xj
X1, X2, X3

N# N

«T >

LT

91,02

(I)] ‘s ¢2’: (‘)3'

w

d

Subscripts:
1D

2D

$
Superscripts:
t

displacement components of the two-
dimensional model in the xy,x;,x3
coordinate directions

displacement components of the two-

dimensional model in the X 75 Ky s Xge

coordinate directions

vector of nodal displacements

local orthogonal coordinate system used
in conjunction with the two-dimensional
model (for each of the web and the two
flanges)

vector of element degrees of freedom
particular solution (see Egs. 5 and 6)

fiber orientation of individual layers
lamination and material parameters

mass density of material

major Poisson’s ratio of the individual
layers

rotation components of the two-
dimensional model referred to the local
coordinate system Xq , Xo

rotation components of the two-

dimensional model referred to the global
coordinate system x, -, Xy Rys

frequency of vibration
= d/dx

one-dimensional finite element model
two-dimensional finite element model

shear center

matrix transposition

Table I.- Decomposition of total complementary energy, U®
into components.

Associated stress resultant

Energy
Components
Web

(see Fig. 2) Comments

Flanges and Skin

U N1, Np2 N1, My,Qq in plane response

quantities

Uy M{,M2,.Qp Npo, M4 out-of-plane re-

sponse quantities

Us Ny, My, Qy Tesponse quantities

neglected in one-
dimensional model

UC=U; +Uy+U;



Table 2 - Effect of boundary conditions on the frequencies (in hertz) obtained Table 3 - Effect of boundary conditions on the frequencies {in hertz) obtained

by the two-dimensional finite element model for the I-section frame by the two-dimensional finite element model for the J-section frame
Partially clamped model (with the following generatized B Partiatty clamped model (with the following generalized
‘Totally displacements unrestrained) Experiment Totally displacements unrestrained) Experiment
Mode Clamped [ &y 05 uy-inthe u,- in the Mode  Clamped 9, 0,0, uy-inthe - in the
Model flanges flanges & 0, Model flanges flanges & ¢,
[ 9.201 9.001 9.001 6.788 6.632 9.200 | 11.53 1124 11.24 8.488 R.408 [IRCH
(0.978) (0.978) (0.738) (0.721) (11975) (0.975) (0.736) (0.729
2 3186 306 31.06 13.11 17.87 29.70 2 36.87 36.64 16.64 22.4% 2237 3210
0.975) 0975 (0.568) (0.561) (0.994) 0.994)  (0.608) ©.607)
3 37.52 37.37 3137 34.17 33.56 3590 3 39.81 38.80 3879 3277 2R 37.00
(0.996) (0.996) 0911 (0.889) t01.975) (0.974) (0.823) (1.808)
4 73.85 7182 71.8t 38.09 37.69 66.60 4 79.22 78.99 78.99 4R.32 47.94 69.00
®973) 0.972) (0.516) (0.510) ((1997) (0.997) (0.610) (0.605)
R 81.34 81.03 81.03 74.30 73.44 78.10 5 91.41 8R.81 RR.78 72.64 71.68 79.00
(0.996) (0.996) 0.913) (0.903) (0.972) (0.971) (0.795) (1.784)
6 1339 130.1 1301 75.56 74.14 119.0 6 1439 1435 1435 96.58 95.35 126.0
(0.972) 0.972) 1).564) (0.554) 1997y 0.997) L6741 (0.663)
7 1492 148.6 148.6 129.6 1281 145.0 7 bR 163.6 1635 134.4 132.9 145.0
(0.996) (0.996) (0.869) {0.858) (0.973) ((L973) (0.800) {(1.790)
8 2033 198.1 198.1 139.8 137.4 193.0 ] 214.1 2134 2134 167.2 165.0 191.0
(0.974) 0.974) (0.688) (0.676) 0.997) (0.997) (0.781) «0.770)
9 226.5 25.6 225.6 1993 196.9 216.0 9 26340 256.9 256.8 206.5 204.2 2210
0.996) (0.996) (0.880) (0.870) 223.0 0.977) {0.976) (1.785) 0.770) 229.0
247.0
10 2819 275.2 2752 21422 2109 260
1.976) (0.976) (0.760) (1.748) o 297.6 296.2 296.2 2515 2483 266.0
(0.995) (0.995) (0.845) (0.834)
3] 20.6 33 3193 268.0 2649 309
0.996) (0.996) (0.836) (0.826) It 368.2 3612 361t 2987 295.5 w0
{0.981) (0.981) (0811 (2,10}
12 349.8 3423 3423 3051 oy (Missed)
1979 (0.979) (0.872y (L.R60) 12 3828 3R0.3 3R0.3 3367 RERRN REVEY
0.993) 0.99%) ((LRRMY {0.80Y)
i3 419.1 412.6 412.6 3430 339.0 401.0
(01.985) (0.985) 10.819) (©.809) Note: Numbers between parentheses refer to the ratios of the partiatly clamped 1o the totaly

clamped modet frequencies.

) R=36"

: T ey o

‘ 25t ‘ l e 25" 3 J
f 35 ! f 35" A
I-Section J-Section

Material Properties
E, =20 x 107 psi

x .
_ Flanges Ep = 1.7x 108 psi
X, and skin GLT =9.3 x 109 psi
Gyp =6.51 x 105 psi
=0.38
Xy LT
p =0.058 lb/in.3
Nominal layer thickness = 0.005 in.
Eiber Qrientation
\ ¢
*2
NL = . [£45/0
Global coordinate Local coordinate system 8 [ / 90]3

system NL = 16 : [+45/0/90]5

Figure 1.- Thin-walled coniposite frames and coordinate systems used in present study.
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Figure 2.- Sign convention for generalized displacements and stress resultants in two-dimensional model.
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Figure 3.- Sign convention for generalized displacements and stress resultants for one-dimensional model.

1245



© 555
T} IS NE17
71~ @ I “
E & N2
T oF
; S ad — s
o XX 0O ’
il 73] em &
ey 1]
(4] nm =
o £ = )
‘@ = ° =
== o P £EQ <3
© - o o7 g
< 2 EXs 3
. G0 2e8 8
@ o @ o= F
olo% B85 e..hl.w =
0 o o T - o 2
> L s C T oY 25
T oy 2 €59 8 =
= T E X e o :d
nAh 0 0 -
4 o n o i SV
E® D c S un— =
£E2 - g Qo :
L% s 88 4
oF — E=2ad5% 2
0o 2 it =
i mmow.m —
& - == Q@
o (@] 1 E50E&
Q 1 m.-m '
m L i 1 1 L 1 > wn
3 N =) o 00 Eme
T 1 T
gL 3 8 8 3 8 - % .4 4 2 3 '3
=4 e} ~r [e0] (o} o = K= - © -] ] ] ] -
e L ones ABisuz

-circular

-walled semi

Modes

Nominal 1-d

graphite-epoxy specimens and experimental
equipment.

beam model results.

L2774 Actual Clamped

NN
(a) Two-dimensional and one-dimensional

g 3

(zy) Aouenbesq

100
o

500
400

Figure 4.- Photograph of thin

1 12 13

10
the different vibration

in
modes of the thin-walled composite frame

components.

Modes

and Ubf

Uw
th | cross-section.

Energy components
wi

tf’

u

)

b

Figure 6.

(

1246
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Figure 7.- Mode shapes associated with the lowest five frequencies for the thin-walled
composite frame with | cross-section. Parentheses are experimental frequencies.
Others are clamped finite element model results.
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Figure 8.- Sensitivity of vibration frequencies to fiber

orientation angle in the flanges and web of the

thin-walled composite frame with | cross-
section.

2.5 -

0.4 -~

0.3

Deval/ireq

6.2 -

lnaaaaananggg==

Modses

Figure 9.- Sensitivity of vibration frequencies to variations

500

A00

300

200 -

Fraquency (hz)

100 -4

in material characteristics of the thin-walled
composite frame with | cross-section.

P27 Actuat Clamped
BB wominal 29
BN Mominal 1-d

Modes
(a) Two-dimensional and one-dimensional
beam model results.

Frequency, Hz

500

400

300

200

100

Figure

1248

O Experiment
= Clamped Analysis
=== (U1 & Phi2 Free) Analysis 0
'l
: A 1 1 X " 1 " 1 L 1 L A i
0 5 10 15

Modes

(b) Experimental and bounding two-dimensional

model results.

10.- Comparison of finite element and
experimental frequencies for the thin-walled
composite frame with J cross-section.



Energy ratio

1.0 -1 1.0 Uty
ZZ2 wmi B uvwiu
e \ Ny ubt/u
NNNNNY
e
8
>
o
s
w
(a) Uy, Uy, and Ug comoponents. (b) Uy, U, and Uy ; components.

Figure 11.- Energy components in the different vibration modes of the thin-walled
composite frame with J cross-section.
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Figure 12.- Mode shapes associated with the five lowest frequencies of the thin-walled
composite frame with J cross-section. Parentheses are experimental
frequencies. Others are clamped finite element model results.
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