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Abstract

This paper is addressed to the free vibrations of
stiffened circular cylindrical thin shells within the frame of
Love’s first approximation theory of elastic shells. The
circular cylindrical thin shells with shear diaphragm ends is
reinforced at uniform intervals by elastic stringers and rings.
The effects of stiffeners are taken into account by the
orthotropic material approach of stiffened shells. The
governing equations are deduced from the
three-dimensional equations of elastodynamics by means of
Hamilton’s principle together with the usual kinematic
hypothesis of circular cylindrical thin shells. The governing
equations are simplified for various special cases involving
the material and geometrical properties of stiffened
cylindrical thin shells. The uniqueness is examined in
solutions of the dynamic governing equations of stiffened
shells. Moreover, the stiffened shell is discretized by
Semiloof shell elements and a matrix equation is obtained
by means of the variational equation to determine the
vibration characteristics of the stiffened shells. The
influence of geometrical parameters and material
properties of stiffened circular cylindrical shells is
investigated on the vibration characteristics. Numerical
results are plotted with respect to the parameters of
stiffened cylindrical shells, and they are compared with
certain experimental results.

1. Introduction

It is required that an aerospace vehicle must be light
weight. In order to overcome this problem, the designer
usually resorts to the use of thin shells reinforced by the
stiffeners, because of their high structural efficiency.
Particularly, circular cylindrical shells reinforced by stringers
and rings are used in the structure of various aerospace
vehicles.

The stiffener members, representing a relatively small
part of the total weight of a structure, substantially influence
its dynamics behavior, stability, stiffeness, and strength.
Hence, the prediction of dynamic characteristics of stiffened
circular cylindrical shells is very important for determination
of inflight behavior, fatigue life, noise generation of the
aerospace vehicle and vibration isolation of the sensitive
electronic instrumentation and on-board computers.

Numerous studies examining free vibration
characteristics have been conducted on elas{ic stiffened
circular cylindrical thin shells. Eggle and Sewall” studied the
vibration of orthogonally stiffened cylindrical shells witll
discrete axial stiffeners by the Ritz method. Bushnell
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evaluated various analytical models for vibrations of
stiffened shells. The free vibrations of a thin cylindrical shell
have been investigated for discrete axg land circumferential
stiffeners by Mead and Bardell”. Mustafa and Ali
determined the frequencies of ring stiffened, stringer
stiffened and oithogonally stiffened shell using super she,
finite elements” and a formulation of energy functional”.
The free vibration characteristics of stiffened circular
cylindrical shells have been studied numgrically using the
finite element method by Mecitoglu”. Although the
uniqueness in solutions of the elastodynamic problems is
very important, only a fe_>v work is found in literature
examining with this subject’.

The purpose of this paper is (i) to derive all the
governing equations for vibrations of cylindrical thin shells
reinforced by stringers and rings, (ii) to examine the
uniqueness in solutions of the governing shell equations, and
(iii) to study numerically the vibration characteristics of
some special cases.

The dynamic governing equations of the stiffened
circular cylindrical shells are derived within the frame of
Love’s first approximation theory of elastic thin shells. By
means of Hamilton’s principle together with the usual
kinematic hypothesis of cylindrical thin shells, all the
governing equations are deduced in a systematic manner
from the three-dimensional equations of elastodynamics
under the well-known assumptions of regularity and
smoothness of field variables. The stiffeners are taken to be
along the usual cylindrical coordinates and their dimensions
to be small compared to the radius of cylindrical shell. The
effects of stiffeners are taken into account by the orthotropic
material approach of stiffened shells. The governing
equations are simplified for various special cases involving
material and geometrical properties of stiffened circular
cylindrical thin shells. The uniqueness is examined in
solutions of the dynamic governing equations of stiffened
shells, and a theorem of uniqueness is given which
enumerates the initial and boundary conditions sufficient for
the uniqueness.

The free vibrations of a stiffened circular cylindrical
thin shell with shear diaphragm ends are numerically studied
by the finite element method. The stiffened shell is
discretized by Semiloof shell elements. Then, by means of
the variational equation, the matrix equation is obtained to
determine the vibration characteristics of the stiffened shell.
The natural frequencies and mode shapes of the stiffened
circular cylindrical shell are determined, '§md their accuracy
is tested with earlier experimental results”. The influence of
geometrical parameters and material properties of the
stiffened cylindrical shell is investigated on the vibration
characteristics. In addition, the effect of the spacings and
dimensions of stiffeners is studied. The numerical results are
plotted with respect to the parameters of the stiffened
cylindrical shell.
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3. Governing Equations
The membran strains in the middle surface of the thin
circular cylindrical shell can be written as

ox = 2%

=1 =ldlaux  oue
ax ° R(ae +W) e (R +ax) (1a)

2R

where ugx, ug, and w denote the displacements of a point on
the shell middle surface in the coordinate system x, 8, and z;
R the radius of cylindrical she]l.

It is assumed by Donnell” that the bending strains of a
thin cylindrical shell are negligibly affected by the
strectching displacement ug. Then the bending strains of a
thin circular cylidrical shell can be expressed

ow Kxd =_1ﬁ

2
1
kx=—aw ke=——2-——2— 1b
;2 R 96 R ax00 (1b)

Figure 1 Circular cylindrical shell.

The force and moment resultants are related to the
membran and bending strains by

Nx = C(ex + veg) No = C(ep + vex) Nyg = Nox =2Ghexo
3
Mx = D(ks+vke) M = D(Ko+vkx) Mo = Mox = G?h kxo

¢y
where (; = Eh/(lz - v2) is the strecthing rigidity of shell,
D = Eh’/12(1 - °) is the bending rigidity of shell and h is
the thickness of shell. Here E and v denote the modulus of
elasticity and Poisson’s ratio, respectively.
The specific strain energy of a thin circular cylindrical
shell can be expressed in terms of the force and moment
resultants and the strains as follows

We = % (Nxex +Npes + 2Nxoexo
+ Mxkx + Mgka + 2Mxokxs) (3a)

The specific strain energy of the shell is related only to
the strains by using the equations (2).’

We = %— C[ex2 + 2vex o+ €% + 2(1- v)exe?] +

+ %—D[kxz + 2ukskp + ko? + 2(1- vykxe?] (3b)

The strain energy of a single stringer per unit length of
the stringer centroidal axis can be approximated by

Us ~21Es [frex - dodA+1 (Gl ke’ (4)
As

where Es, As, and GsJs are the modulus of elasticity,
cross-sectional area, and torsional stiffness of a stringer,
respectively ; ¢is the distance measured along the normal to
the shell middle surface (Fig.2)

z4

Figure 2 Stringers and rings.

On carrying out the integrations and dividing Us by the
stringer spacing ss we obtain the specific strain energy of a
stringer per unit area of the shell middle surface:

Ws ~1 EByel - EAY eyl
+ %(%In)s ke? + % (-Cil)S keo? (4b)

where I, is the moment of inertia of a stringer about the n
axis and csis distance to the centroid from the shell middle
surface (eccentricity)(Fig.2).

A similar expression can be written for the rings

Wr ~% (—E—SA)r eo? - (%)r eoke

+5 Eoyig + 3 (i’ )

By adding the specific strain energy of the stringer and
ring to that of the circular cylindrical shell, we obtain the
total specific strain energy of the stiffened circular
cylindrical shell.

W= We+ Ws +W;
= E1ex? + Enzexeo + Ezeg” + Giexp’+ F ke’ +

Fiokske + F2ke” + Gokeo® — Hiexkx — Hoegks  (6)

where the denotations by

Eh 1,EA, ,EA
E1E2,En2} = 1,1,2s} + = {(=2), (2, 0
{E1,E2,E12} Z—T(I—V){ } 2{(s)s(s ), 0}

3
{FiF2Fi) = —E 12,13+ LiElny,, Elty, 0
24(1- ) 2 s ]

_GP’, 1,6}  1.GI
Gz = +§(S)S+§(s g

G1 = 2Gh, 3

Hp = (E?c M= (E;\c)r
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Substituting the equations (1a) and (1b) into the
equation (6) and integrating over the middle surface of the
circular cylindrical shell, we obtain the strain energy of
stiffened shell in the form

2

+w)2
R & 9

+§.1(M +lt’%)2+1:1(6zw )2+ Fp2 g
d
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The kinetic energy of stiffened cylindrical shell may be
expressed as

=_;m”(ﬁ§+ﬁg+\i/2)dA Q)
A

Here, m = phe is the average smeared-out mass per unit area
of the stiffened circular cylindrical shell; p is the material
densty and he is the equivalent thickness of stiffened shell.

Now, the governing equations and boundary
conditions of the stiffened circular cylindrical shell are
derived from Hamilton’s principle

SJT(U—K)dt =0 (8)

by allowing the variations of the three displacements ux, ug,
and w to be arbitrary. Here T = [tg, t1). Hence, we obtain

2 2 2
_ 1 G1,9ug , G1 9 ux
=2F; &% 4 1 (g, + G1y3ue | Gi
= 2 TR 2 s T 2R a0

3
+H YL Euaw . -0 (92)
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3
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For a cylindrical shell with shear diaphragm ends, the
solutions must satisfy the boundary conditions

ug=w=Mz=Nxy=0 at x=0,L (10)

and the initial contitions!®

u=u=w=_0

. . . = 11
b=t = W =0 att=0 (11)

4. Uniqueness of Solutions

In the previous section, a set of two-dimensional,
differential, approximate equations of Donnel’s type is
derived for the dynamic response of a cylindrical elastic shell
with stringers and rings. The two-dimensional governing
equations of stiffened cylindrical shell are constructed by use
of Hamilton’s principle within the limits of the well-known
Kirchhoff-Love hypothes of thin shells. Now, the boundary
and initial conditions are obtained which are sufficient to
ensure the uniqueness in solutions of the dynamical
governing equations. Of the several arguments to be uged to
establish the uniqueness of solutions in elasticity”, the
clasical energy argument is used. The energy argument
relies upon the posiiiive-definiteness of strain and kinetic
energies. Kirchhoff ™ used the energy argument 33
establishing uniqueness in elastostatics, so did Neumann
in elastodynamics and Weiner!” in thermoelasticity. A
uniqueness theorem of Neumann’s type is proved for
solutions of the initial mixed-boundary value problems
defined by the two-dimensional governing equations of
stiffened cylindrical shell (cf.[14] for elastic shells).

To begin with, consider two possible sets of solutions to
the governing equations of stiffened cylindrical shell,
namely,’

A = (ux,ug,w; ex,c6,€x8,kx,ko,kxe; Nx,Ng,Nxo,Mx,Mop Mxs),
a=12 (12)
Let the difference set of two solutions be denoted by
A= A2-A1.

The difference set of solutions apparently satisfies all the
governing equations of stiffened cylindrical shell due to
their linearity. It will be shown that the homogeneous linear
governing equations possess only the zero solution, that is,
the two sets of solutions (12) are equivalent under the
pertinent boundary and initial conditions. In so doing, we
introduce a relation of the form

r =I(rx +To+Twydt =0 (13)
with T
Ix = ”’rxudi Tg = ”'rel'ledA Iw = [ IdeA
A A A

where =, 78, and «w are defined by the equations (9a-c).

Now, let us calculate the rates of the kinetic and strain
energies of the stiffened cylindrical shell in terms of the
displacement components. The rate of the kinetic energy is
expressed with respect to the difference set of solutions in
the form

K= ”m (axﬁx + agug + aw )dA (14)
A

In this equation, ax(=1ix), ag and a are the components of
acceleration, and the equation (7) are used.

Likewise, the rate of the total strain energy is obtained
by use of the equation (6a) as follows
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in terms of the difference set of solutions. Integrating this
equation by parts, one arrives at the rate of the form

s ux  Eix otup ow
TR (— —)
%30
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In this equation, the quantities of the form
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g = {[2E1 ( +w) + Hp
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are introduced.
In view of the energy rates (14) and (16), the relation
(13) is expressed as

r=- L(i( +U)dt + J dt§weRde + J udx)=0  (18)
T L

An integration of this equation with respect to time yields

K(t1) + U(t) = K(to) + U(to) + [r\lldt (19)
with
¥ =¢wgRde + | wxdx 20)
qroRn + [ (

The kinetic and strain energy densities are positive-definite,
by definition, and initially zero; so that the total kinetic
energy and strain energy, K and U, calculated by integration
from the difference set of solutions for the stiffened
cylindrical elastic shell have the same properties. Thus, it
follows from the equation (19) that

K(t1) = U(t1) = K(to) = U(to) = 0

This implies a trivial solution for the difference set of
solutions, A, since the remaining term ¥ of the equation (19)
vanishes in view of the equation (11). Hence, the uniqueness
is ensured in solutions of the governing equations of
stiffened cylindrical elastic shell. The following theorem of
uniqueness is then concluded.

2D

T h e or e m - Given the regular region of a stiffened
cylindrical elastic shell in the Eucliden three-dimensional
space, then there exists at most one set of single-valued
solutions, Ac, namely,

= [ux, ug and w € C12; ex, €g, €xg and kx, ke, kxo € Coo;
Nx,NO,Nxe,Mx,MO, MXO € CIO]

which satisfies all the governing equations of the stiffened
shell, provided that the kinetic and strain energies are
positive-definite, and the boundary (10) and initial
conditions (11) are prescribed. Cmn refers to the function
with derivatives of order up to and including (m) and (n) with
respect to space coordinates (x,8) and time t.

5. Method of Solution

In this section some properties of the Semiloof element
developed by Irons - are briefly reviewed. Figure 3 shows
the Semiloof cylindrical shell element where the global
coordinate system (x, 8, z), isoparametric curvilinear



Figure 3 Semiloof cylindrical shell element

coordinate system (&, m, ) are depicted. Semiloof element
has three types of nodes: the corner and midside nodes, Loof
nodes, and central node. The displacements uy, ug, and w are
define;i a:(;'ari?bles at the corner and midside nodes, and
central node. In addition, the rotations are
defined at the Loof nodes and the central I%eafnl‘-jleflecze, an
element includes 45 degrees of freedom (d.of.). Two d.o.f.
are eliminated from the element combining the
dlsplac.ements at the central node to obtain only a normal
deflection. Then, applying th? J(irchhoff-Love hypothesis of
thin shells in discrete manner °, the number of freedoms are
reduced to 32 d.o.f.

Semiloof element is an isoparametric element which
adopts 8-noded parabolic model. The shape functions are
defined in terms of the curvilinear coordinate systems (&)
as

Ni = i (1+ €0)(1 +mo)(so + mo - 1) at corner nodes

Ni=(1-&)(1+m0) &=0

2 at mid-side nodes
Ni=(1-9)(1+ &), ni=0
=3 3241 _.2 22
Li =35 (3= =) + g [3s0(1- ") (22)

+ 3n0{3¢% + g0 - 1 +%§o(§2—n2)}] g==1
=332 2.1 _
+30(3% 410 ~ 1+ 300> -} mi = =1
Ne = 1-&1-H)

where Lj stand for the shape functions at the Loof nodes.
The global displacements q of a point P are related to
the nodal displacements Q° by means of the shape functions:

at the central node

q = {ux, up, w}T = NQ® (23)

The derivatives in the middle surface are obtained
easily as

g _oNge g _oNqge
X oX . 40 98 Q (243)

It is used to the following equation to get the x, 8 derivatives
of the shape functions

N & [N
ox F13 o€ 3
N x| (23)
a8 o onjlém

The derivative sux/oz are given by

Sux_ (dux N couxyk 1 oN PARPC e
oz (az) +(az) h{Hx ax+ Hg ™ Q" + Liaxz)
(24b)

where h represents the shell thickness at the point P and Hx
and Hg are the components of a thickness vector H defined

by the following formula

H=$nz (26)
]’
Here, Z; is the unit normal vector of the midle surface at the
Loof nodes, and the central node. It can be computed from
the vector product at any point, say P, as

z=2x2 @7)

Similar expression can be obtained for sug/oz. Since it is

assumed that the shears "x; and Yoz are zero, it may be written
W g W_pdug (28)
ax 0z a9 az

The derivatives governing the bending behavior of the
shell are given by

2
7wy _ 1, oHxoN _oHeoN . 9HzaNvge (Ll g re
{ 0 X o0 9 | ox ae}Q +ao{®"z}
(29)

Similarly, the derivatives azux/axaz, azue/axaz, and azue/aeaz
can be obtained.

The local displacement components and their
derivatives are used to determine the stiffeness and mass
matrices affgr an application of the discrete Kirchhoff-Love
hypothesis ™.

Discretizing the stiffened cylindrical shell with Semiloof
elements, we obtain the matrix equation

MQ +KQ =0 (30)

by means of Hamilton’s principle (8) for the dynamic
behavior of the stiffened shell. Here, M and K are the mass
and stiffeness matrices of the stiffened cylidrical shell,
respectively. Q is the vector of nodal displacements and
rotations. .

Assuming harmonic motion, Q = Qelm, the equation
(30) reduces a linear eigenvalue problem as

[K-0’M}{Q} =0 (31)
This equation is solved by using the EISPACK routines.
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§. Numerical Results

The vibration characteristics are determined for
stiffened circular cylindrical shells having shear diaphragm
ends, which have integral stringers and/or rings. Two types
of stiffened circular shell model are used. C model is
reinforced by the stringers with rectangular cross-sections
and F model is reinforced by the stringers and/or rings with
profile shape cross-section. Geometrical and material
properties of the models are listed in Table 1.

Table 1 Geometrical and material properties.

Model
Properties C F
L(m) 0.39446 18.00
R(m 0.04976 1.95
h(m) 0.00165 0.0012
E(N/m?) 68.95x1 68.95x10°
o(kg/m>) 2760 2760
v 03 03

R S

The natural frequencies and the mode shapes are listed
in Table 2 for a stringer stiffened shell, (mode! C). Natural
frequencies obtained by using the super shell finitg element
and measured values obtained by Hoppmann™ are also
included for the purpose of comparison. Dimensions of a
stringer are ds = 0.005334 m, f = 0.003175 m and the
number of external stringers is N5 = 16. The present results
are in good agreement with earlier experimental and
numerical results.

Table 2 Natural frequencies of a stringer stiffened shell
with shear diaphragm ends (Model C).

predicted natural frequencies (Hz)

mode 9 nine-noded
number experiment” present present  element
m,n d.of=272 dof=376 d.of = 592
2,1 - 4216 3964 4264
2,2 - 3228 2134 2011
2,3 1830 2686 1827 1729
2,4 2600 2330 2480 2450
2,5 4080 - 3977 3680

The variation of the natural frequency ratio 0/00 of
circular cylindrical shell (model C) with the depth ratio of a
stringer is shown in Fig. 4 for different width ratio of
stringers. Here, 0o is the natural frequency of the
unstiffened circular cylindrical shell. Number of stringers is
Ns = 16.

The influence of the number of the stringers and rings
on the vibration characteristics is investigated for
orthogonally stiffened circular cylindrical shells (model F).
The cross-section of a stringer and a ring is depicted in Fig. 5.

The effects of the number of stringers on the vibration
characteristics are investigated for an orthogonally stiffened
circular cylindrical shell. The number of rings is taken to
be 36. The variation of the lowest three natural frequencies
is plotted in Fig, 6.
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Fig. 4 The depth ratio effects on the natural frequency ratio
of a stiffened cylindrical shell.
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Fig. 6 Natural frequencies vs the number of stringers.
Nr = 36.
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Fig. 8 Natural frequencies vs the length of the cylindrical
shell. R=1.95m. ,

Similarly, the effects of the number of rings on the
vibration characteristics are examined and the numerical
results is ploted in Fig. 7. The number of stringers is selected
to be 60.

Finally, the effects of length of an orthogonally stiffened
cylindrical shell on the vibration characteristics are
investigated using the model F. The spacings of the stringers
andrings are ss = 0.2042 m and s; = 0.5 m, respectively. The
numerical results are ploted in Fig. 8.
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1. Discussion

The free vibrations of stiffened circular cylindrical thin
shells with shear diaphragm ends are studied numerically
within the frame of Love’s first approximation -theory of
elastic shells. The governing equations are obtained from
the three-dimensional equations of elastodynamics by
means of a generalized variational principle together with
the usual kinematic hypothesis of cylindrical thin shells. The
effects of stiffeners are taken into account by the orthotropic
material approach. The uniqueness is tested in solutions of
the dynamic governing equations of stiffened shell. The
vibration characteristics are obtained numerically by means
of the finite element method. A comparison of the present
results with earlier results shows good agreement.

In the uniqueness theorem, the boundary and initial
conditions which render ¥ to zero are shown to be sufficient
for the uniqueness in solutions of the governing equations
of stiffened cylindrical elastic shell. The conditions (10) and
(11),and also, to specify one member of each of the products
in ¥ of (20) ensure a unique solution for the governing
equations. Besides, the sufficient conditions can be
expressed in terms of the 1sgre:ss resultants as well as the
displacement components ", and they can obtained by
logarithmic convexity arguments y,vith no restrictions on the
positive-definiteness of energies1 .

For a circular cylindrical shell reinforced by stringers,
the natural frequency slightly decreases with the depth ratio
of the stringer. The influence of the width ratio intends to
decrease the natural frequency. Because anincrement at the
depth ratio and the width ratio of a stiffener contributes to
the stiffeness and mass of the cylindrical shell, but the
contribution to the mass of the shell is significant for the
considered examples.

The number of the stringers slightly effects the dynamic
behavior of the stiffened cylindrical shell. But the number of
rings considerably increases the natural frequency
corresponding to the mode shape m,n = 1,3, and decreases
the natural frequency of mode shape m,n = 1,1. It should be
noticed that the mode shape corresponding to the lowest
natural frequency is not the simplest one, and this mode
shape may change with the geometrical properties of the
stiffened cylindrical shell and the conditions of reinforcing.
Sometimes although the variation of the lowest natural
frequency with a parameter is negligible, other frequencies
may show considerable increasing with the parameter.

The natural frequencies corresponding some mode
shapes strongly decreases with the increasing in the length
of orthogonally stiffened circular cylindrical shells.

The present method can be successfully used so as to
investigate the effect of rectangular cutouts on the free
vibration characteristics of stiffened cylindrical shell. Also,
by the method, the free vibration analysis can be carried out
for the stiffened cylindrical shell with discrete stiffeners.
The method can be extended to the forced-response
dynamic behavoir and linear buckling analysis of stiffened
cylindrical shell; this is will be reported else where.
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